Abstract

The light absorption of a hybrid novel MoS2-based nanostructure is theoretically investigated by using the finite-difference time-domain (FDTD) simulations, and high-efficiency broadband absorption is achieved in the visible wavelength region. The enhancement of localized electromagnetic field owing to that localized surface plasmon resonances (LSPRs) supported by Au nanoparticles (NPs) can be used to enhance the absorption of MoS2, and the localized absorption of monolayer MoS2 are remarkably enhanced up from about 18.3% and 4.6% to about 55.2% and 84.8% at the resonant wavelengths of 467.7 nm and 557.8 nm, respectively. Furthermore, the effects of radii of Au NPs, period of Au NPs array, Au@Si NPs core-shell ratios, period numbers of the distributed Bragg mirror (DBR), and incident angle on the absorption of the proposed nanostructure have been systematically investigated. The similar design idea to enhance the light-MoS2 interaction can also be applied to other transition-metal dichalcogenides (TMDCs). This work will contribute to the design of TMDCs-based nanophotonic and optoelectronic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface enhanced resonant Raman scattering in hybrid MoSe2@Au nanostructures

Inès Abid, Weibing Chen, Jiangtan Yuan, Sina Najmaei, Emil C. Peñafiel, Renaud Péchou, Nicolas Large, Jun Lou, and Adnen Mlayah
Opt. Express 26(22) 29411-29423 (2018)

Plasmon-enhanced performance of CdS/CdTe solar cells using Au nanoparticles

Sangsu Kim, Jonghee Suh, Taeyueb Kim, Jinki Hong, and Shinhaeng Cho
Opt. Express 27(15) 22017-22024 (2019)

Enhanced lasing from organic gain medium by Au nanocube@SiO2 core-shell nanoparticles with optimal size

Shuya Ning, Naming Zhang, Hua Dong, Xun Hou, Fanghui Zhang, and Zhaoxin Wu
Opt. Mater. Express 8(10) 3014-3022 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  4. J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
    [Crossref] [PubMed]
  5. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
    [Crossref] [PubMed]
  6. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref] [PubMed]
  7. K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
    [Crossref]
  8. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
    [Crossref] [PubMed]
  9. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref] [PubMed]
  10. E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
    [Crossref]
  11. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
    [Crossref] [PubMed]
  12. D. Krasnozhon, D. Lembke, C. B. Nyffeler, Y. Leblebici, and A. Kis, “ MoS2 transistors operating at gigahertz frequencies,” in Materials Research Society Mrs Spring Meeting(2015).
  13. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
    [Crossref] [PubMed]
  14. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
    [Crossref] [PubMed]
  15. Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
    [Crossref] [PubMed]
  16. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
    [Crossref] [PubMed]
  17. J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
    [Crossref]
  18. M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
    [Crossref] [PubMed]
  19. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
    [Crossref]
  20. K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires,” Appl. Opt. 57(1), 102–111 (2018).
    [Crossref] [PubMed]
  21. Z. Jia, Q. Cheng, J. Song, Y. Zhou, and Y. Liu, “Enhanced absorptance of the assembly structure incorporating germanium nanorods and two-dimensional silicon gratings for photovoltaics,” Appl. Opt. 55(31), 8821–8828 (2016).
    [Crossref] [PubMed]
  22. Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
    [Crossref]
  23. Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
    [Crossref]
  24. J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
    [Crossref]
  25. J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
    [Crossref] [PubMed]
  26. B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
    [Crossref]
  27. D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
    [Crossref] [PubMed]
  28. J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
    [Crossref]
  29. Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, W. Huang, W. Peng, L. Li, H. Lin, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100 (2017).
    [Crossref]
  30. L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
    [Crossref]
  31. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
    [Crossref] [PubMed]
  32. X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
    [Crossref] [PubMed]
  33. H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
    [Crossref] [PubMed]
  34. H. J. Li, Y. Z. Ren, J. Hu, M. Qin, and L. L. Wang, “Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides,” J. Lightwave Technol. 36(16), 3236–3241 (2018).
    [Crossref]
  35. S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
    [Crossref] [PubMed]
  36. T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
    [Crossref]
  37. W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
    [Crossref] [PubMed]
  38. X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).
  39. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
    [Crossref] [PubMed]
  40. A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
    [Crossref]
  41. Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
    [Crossref]
  42. E. D. Palik, “Handbook of optical constants of solids II,” Boston Academic Press 39 (1), 189–189 (1985).
  43. K. H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18(10), 10369–10376 (2010).
    [Crossref] [PubMed]
  44. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
    [Crossref]
  45. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
    [Crossref] [PubMed]
  46. D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42(3), 450–453 (2017).
    [Crossref] [PubMed]
  47. J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
    [Crossref]
  48. P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
    [Crossref] [PubMed]

2018 (5)

K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires,” Appl. Opt. 57(1), 102–111 (2018).
[Crossref] [PubMed]

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

H. J. Li, Y. Z. Ren, J. Hu, M. Qin, and L. L. Wang, “Wavelength-selective wide-angle light absorption enhancement in monolayers of transition-metal dichalcogenides,” J. Lightwave Technol. 36(16), 3236–3241 (2018).
[Crossref]

T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
[Crossref]

2017 (10)

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Y. Long, H. Deng, H. Xu, L. Shen, W. Guo, C. Liu, W. Huang, W. Peng, L. Li, H. Lin, and C. Guo, “Magnetic coupling metasurface for achieving broad-band and broad-angular absorption in the MoS2 monolayer,” Opt. Mater. Express 7(1), 100 (2017).
[Crossref]

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
[Crossref] [PubMed]

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42(3), 450–453 (2017).
[Crossref] [PubMed]

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

2016 (6)

J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
[Crossref] [PubMed]

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, Y. Zhou, and Y. Liu, “Enhanced absorptance of the assembly structure incorporating germanium nanorods and two-dimensional silicon gratings for photovoltaics,” Appl. Opt. 55(31), 8821–8828 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref] [PubMed]

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

2014 (10)

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

2013 (4)

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

2012 (3)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

2011 (3)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

2010 (2)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

K. H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18(10), 10369–10376 (2010).
[Crossref] [PubMed]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Afanas’ev, V.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Alù, A.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Arbouet, A.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Ayala-Orozco, C.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Barton, R. A.

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Belle, B. D.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Brenner, K. H.

Britnell, L.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Cao, J.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Casiraghi, C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Castro Neto, A. H.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Chang, H.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

Chang, J. K.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Chen, C. H.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Chen, K. P.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Chen, L.

Chen, L. J.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Chen, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Chen, Y. B.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Chenet, D. A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Cheng, L.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Cheng, Q.

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires,” Appl. Opt. 57(1), 102–111 (2018).
[Crossref] [PubMed]

J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, Y. Zhou, and Y. Liu, “Enhanced absorptance of the assembly structure incorporating germanium nanorods and two-dimensional silicon gratings for photovoltaics,” Appl. Opt. 55(31), 8821–8828 (2016).
[Crossref] [PubMed]

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Chingsungnoen, A.

T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
[Crossref]

Chiu, F. C.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Dai, X.

Dao, T. D.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Dasri, T.

T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
[Crossref]

Deng, H.

Ding, Q.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Eckmann, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Eda, G.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Englund, D.

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Fan, Y.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fujita, T.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Gan, X.

Gao, S.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Geim, A. K.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Georgiou, T.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Girard, C.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Giustiniano, F.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Gorbachev, R. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Grigorenko, A. N.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guo, C.

Guo, J.

Guo, W.

Guo, X.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Halas, N. J.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Han, S.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

He, J. H.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Heinz, T. F.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Hill, H. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Hone, J.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Houssa, M.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Hu, J.

Huang, W.

Huo, D.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Ishii, S.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Jalil, R.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Jia, Z.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, L.

Jiang, X.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Kayci, M.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Kim, Y. J.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Kis, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Kozawa, D.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Lauchner, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Lee, B. J.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Lee, H. J.

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Lembke, D.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Léotin, J.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Li, H.

Li, H. J.

Li, J.

Li, L.

Li, L. J.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Li, P.

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Li, S.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Li, X. J.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

Li, Y.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Liang, W.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Lin, H.

Liu, B.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Liu, C.

Liu, J. T.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

Liu, N. H.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

Liu, Y.

Loh, K. P.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Long, L.

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Long, Y.

Lopez-Sanchez, O.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Lou, J.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Lu, H.

Lu, J.

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Lu, L.

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

K. Zhou, Q. Cheng, J. Song, L. Lu, Z. Jia, and J. Li, “Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires,” Appl. Opt. 57(1), 102–111 (2018).
[Crossref] [PubMed]

Lu, Y.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Luo, Z.

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
[Crossref] [PubMed]

Ma, R.

Mak, K. F.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

Mao, D.

Matsuda, K.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Mishchenko, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Mlayah, A.

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Morozov, S. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nagao, T.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Najmaei, S.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

Niu, X.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Novoselov, K. S.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Okamoto, K.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Oulton, R. F.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Pankin, P. S.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Peng, W.

Peres, N. M.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Ponomarenko, L. A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Pourtois, G.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Pullerits, T.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Qin, M.

Radenovic, A.

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Ren, R.

Ren, X.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Ren, Y. Z.

Ribeiro, R. M.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Rogach, A. L.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Scalise, E.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

Shan, J.

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

Shen, L.

Shih, E.-M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Si, M.

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

J. Song, M. Si, Q. Cheng, and Z. Luo, “Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter,” Appl. Opt. 55(6), 1284–1290 (2016).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Sobhani, A.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Song, J.

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Stesmans, A.

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Su, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Su, S. H.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Sun, M.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Sun, M. G.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Sun, R.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Sun, Z.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

Timofeev, I. V.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Tsai, D. S.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Tsai, M. L.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

van der Zande, A. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Verzhbitskiy, I.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Voiry, D.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Wang, C.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

Wang, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Wang, J.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Wang, L.

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

H. Li, M. Qin, L. Wang, X. Zhai, R. Ren, and J. Hu, “Total absorption of light in monolayer transition-metal dichalcogenides by critical coupling,” Opt. Express 25(25), 31612–31621 (2017).
[Crossref] [PubMed]

Wang, L. L.

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

Wang, R.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Wang, S.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Wang, T.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Wang, T. B.

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

Wang, Z.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Wen, F.

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

Wen, S.

Wu, C. I.

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

Wu, D.

Wu, J.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

J. Wu, L. Jiang, J. Guo, X. Dai, Y. Xiang, and S. Wen, “Turnable perfect absorption at infrared frequencies by a Graphene-hBN Hyper Crystal,” Opt. Express 24(15), 17103–17114 (2016).
[Crossref] [PubMed]

Xiang, Y.

Xiao, S.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Xu, H.

Yamaguchi, H.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Yan, P.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Yan, X.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Yang, D.

Yang, G.

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Yang, X.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Yang, Y.

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Yang, Z. Y.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yao, Y.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Ye, H.

D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, and H. Ye, “Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region,” Opt. Lett. 42(3), 450–453 (2017).
[Crossref] [PubMed]

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Yokoyama, T.

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Yu, H.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Yu, L.

Yu, P.

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Yu, X.

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Yu, Z.

Zhai, X.

Zhang, G.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

Zhang, H.

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Zhang, J.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Zhang, X.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Zhang, Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, B.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, H.

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Zhao, J.

Zhao, J. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, W.

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Zheng, J.

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Zhong, Q.

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Zhou, H.

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

Zhou, K.

Zhou, Y.

ACS Nano (4)

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref] [PubMed]

M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, L. J. Li, L. J. Chen, and J. H. He, “Monolayer MoS2 heterojunction solar cells,” ACS Nano 8(8), 8317–8322 (2014).
[Crossref] [PubMed]

S. Najmaei, A. Mlayah, A. Arbouet, C. Girard, J. Léotin, and J. Lou, “Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures,” ACS Nano 8(12), 12682–12689 (2014).
[Crossref] [PubMed]

ACS Photonics (2)

J. Zheng, R. A. Barton, and D. Englund, “Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors,” ACS Photonics 1(9), 768–774 (2014).
[Crossref]

Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, “Narrowband wavelength selective thermal emitters by confined Tamm plasmon polaritons,” ACS Photonics 4(9), 2212–2219 (2017).
[Crossref]

Adv. Mater. (1)

W. Zhao, S. Wang, B. Liu, I. Verzhbitskiy, S. Li, F. Giustiniano, D. Kozawa, K. P. Loh, K. Matsuda, K. Okamoto, R. F. Oulton, and G. Eda, “Exciton-plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles,” Adv. Mater. 28(14), 2709–2715 (2016).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou, and N. J. Halas, “Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells,” Appl. Phys. Lett. 104(3), 03112 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

J. Appl. Phys. (1)

J. T. Liu, T. B. Wang, X. J. Li, and N. H. Liu, “Enhanced absorption of monolayer MoS2 with resonant back reflector,” J. Appl. Phys. 115(19), 193511 (2014).
[Crossref]

J. Heat Transfer (1)

B. J. Lee, Y. B. Chen, S. Han, F. C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Magn. Magn. Mater. (1)

T. Dasri and A. Chingsungnoen, “Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle,” J. Magn. Magn. Mater. 456, 368–371 (2018).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (3)

L. Long, Y. Yang, H. Ye, and L. Wang, “Optical absorption enhancement in monolayer MoS2 using multi-order magnetic polaritons,” J. Quant. Spectrosc. Radiat. Transf. 200, 198–205 (2017).
[Crossref]

Q. Cheng, P. Li, J. Lu, X. Yu, and H. Zhou, “Silicon complex grating with different groove depths as an absorber for solar cells,” J. Quant. Spectrosc. Radiat. Transf. 132(2), 70–79 (2014).
[Crossref]

J. Song, L. Lu, Q. Cheng, and Z. Luo, “Surface plasmon-enhanced optical absorption in monolayer MoS2 with one-dimensional Au grating,” J. Quant. Spectrosc. Radiat. Transf. 211, 138–143 (2018).
[Crossref]

Nano Lett. (2)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2.,” Nano Lett. 10(4), 1271–1275 (2010).
[Crossref] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2.,” Nano Lett. 11(12), 5111–5116 (2011).
[Crossref] [PubMed]

Nano Res. (1)

E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, “Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2,” Nano Res. 5(1), 43–48 (2012).
[Crossref]

Nanoscale Res. Lett. (1)

D. Huo, J. Zhang, H. Wang, X. Ren, C. Wang, H. Su, and H. Zhao, “Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array,” Nanoscale Res. Lett. 12(1), 465 (2017).
[Crossref] [PubMed]

Nanotechnology (1)

X. Jiang, T. Wang, S. Xiao, X. Yan, L. Cheng, and Q. Zhong, “Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling,” Nanotechnology 29(33), 335205 (2018).
[Crossref] [PubMed]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref] [PubMed]

O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2.,” Nat. Nanotechnol. 8(7), 497–501 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics 10(4), 216–226 (2016).
[Crossref]

Nature (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Jia, Q. Cheng, J. Song, M. Si, and Z. Luo, “Optical properties of a grating-nanorod assembly structure for solar cells,” Opt. Commun. 376, 14–20 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 Pt 2B3 Pt 2B), 036617 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

P. Yu, Y. Yao, J. Wu, X. Niu, A. L. Rogach, and Z. Wang, “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7(1), 7696 (2017).
[Crossref] [PubMed]

Science (4)

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Science 340(6138), 1311–1314 (2017).

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340(6138), 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335(6071), 947–950 (2012).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

J. Cao, J. Wang, G. Yang, Y. Lu, R. Sun, P. Yan, and S. Gao, “Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed bragg reflector,” Superlattices Microstruct. 110, 26–30 (2017).
[Crossref]

Other (2)

E. D. Palik, “Handbook of optical constants of solids II,” Boston Academic Press 39 (1), 189–189 (1985).

D. Krasnozhon, D. Lembke, C. B. Nyffeler, Y. Leblebici, and A. Kis, “ MoS2 transistors operating at gigahertz frequencies,” in Materials Research Society Mrs Spring Meeting(2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the MoS2-based nanostructure. r represents the radii of the Au NPs; Px and Py stand for the periods in the x- and y-directions; d1 (d2) stands for the thickness of Si (SiO2) layer in the DBR with a period number of N.
Fig. 2
Fig. 2 (a) Normal absorption spectra A λ of Au NPs/MoS2/DBR, Au NPs array, Au NPs/MoS2 and monolayer suspended MoS2 for TM-polarized light. (b) Normal reflection spectra R λ of DBR for different period numbers N. (c) Impedance of the MoS2-based nanostructure. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 3
Fig. 3 Electric field (|E|) and magnetic field (|H|) amplitude distributions of the proposed MoS2-based nanostructure for normal TM-polarized light. (a) |E| and (b) |H| at the resonant wavelength of λ = 467.7 nm. (c) |E| and (d) |H| at the resonant wavelength of λ = 557.8 nm. White lines denote the profile of MoS2. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 4
Fig. 4 Normal absorption spectra A λ of the proposed MoS2-based nanostructure with (a) different period numbers (N) of the DBR, (b) different radii (r) of Au NPs and (c) different periods (P) of Au NPs array. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 5
Fig. 5 Effect of incident angle on the absorption spectra A λ of the proposed MoS2-based nanostructure for (a) TM polarization and (b) TE polarization. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 6
Fig. 6 Normal absorption spectra A λ of the MoS2-based nanostructure using Au@Si NPs at different core-shell ratios. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.
Fig. 7
Fig. 7 Normal absorption spectra A λ of monolayer (a) WS2, (b) MoSe2 and (c) WSe2 introduced into our nanostructure, where the blue, red and black lines, respectively, represent the absorption spectra of Au NPs/TMDCs/DBR, Au NPs/TMDCs and monolayer suspended TMDCs. r = 39 nm, P = 100 nm, d1 = 38 nm, d2 = 90 nm, and N = 5.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w ( x , z ) = 1 2 ε 0 ω ε ( x , z ) | Ε ( x , z ) | 2 ,
α = w ( x , z ) d V 0.5 c 0 ε 0 | Ε inc | 2 S area cos θ .
S 21 = S 12 = 1 cos ( n k d ) i 2 ( Z + 1 2 ) sin ( n k d ) ,
S 11 = S 22 = i 2 ( 1 Z Z ) sin ( n k d ) ,
Z = ± ( 1 + S 11 ) 2 S 21 2 ( 1 S 1 1 ) 2 S 21 2 .

Metrics