Abstract

Neuronal morphology, long-distance transport and signalling critically depend on the organization of microtubules in the cytoskeleton. Second harmonic generation (SHG) imaging has been recognized as a potentially powerful tool for in situ label-free neuroimaging with specific sensitivity to microtubules. We study here the structural organization of microtubules in living neurons using a wide-field multiphoton microscope that performs 3D imaging using a structured illumination. This microscope allows label-free high throughput imaging of living mammalian neurons. We show that we can image structural correlations by taking advantage of the structured illumination and the coherence of the emitted light. The result allows us to study the microtubule organization throughout the development of the neuron and to differentiate between the regions of the cytoskeleton in the matured neuron.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Estimation of the effective orientation of the SHG source in primary cortical neurons

Sotiris Psilodimitrakopoulos, Valerie Petegnief, Guadalupe Soria, Ivan Amat-Roldan, David Artigas, Anna M. Planas, and Pablo Loza-Alvarez
Opt. Express 17(16) 14418-14425 (2009)

Scattering reduction by structured light illumination in line-scanning temporal focusing microscopy

Yi Xue, Kalen P. Berry, Josiah R. Boivin, Dushan Wadduwage, Elly Nedivi, and Peter T. C. So
Biomed. Opt. Express 9(11) 5654-5666 (2018)

Imaging axonal transport in the rat visual pathway

Carla J. Abbott, Tiffany E. Choe, Theresa A. Lusardi, Claude F. Burgoyne, Lin Wang, and Brad Fortune
Biomed. Opt. Express 4(2) 364-386 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of neural science (McGraw-hill, 2000), Vol. 4.
  2. P. W. Baas, “Microtubules and neuronal polarity: lessons from mitosis,” Neuron 22(1), 23–31 (1999).
    [Crossref] [PubMed]
  3. L. C. Kapitein and C. C. Hoogenraad, “Which way to go? Cytoskeletal organization and polarized transport in neurons,” Mol. Cell. Neurosci. 46(1), 9–20 (2011).
    [Crossref] [PubMed]
  4. C. Conde and A. Cáceres, “Microtubule assembly, organization and dynamics in axons and dendrites,” Nat. Rev. Neurosci. 10(5), 319–332 (2009).
    [Crossref] [PubMed]
  5. A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
    [Crossref] [PubMed]
  6. M. Kuijpers and C. C. Hoogenraad, “Centrosomes, microtubules and neuronal development,” Mol. Cell. Neurosci. 48(4), 349–358 (2011).
    [Crossref] [PubMed]
  7. M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
    [Crossref] [PubMed]
  8. L. C. Kapitein and C. C. Hoogenraad, “Building the neuronal microtubule cytoskeleton,” Neuron 87(3), 492–506 (2015).
    [Crossref] [PubMed]
  9. S. F. B. van Beuningen and C. C. Hoogenraad, “Neuronal polarity: remodeling microtubule organization,” Curr. Opin. Neurobiol. 39, 1–7 (2016).
    [Crossref] [PubMed]
  10. P. W. Baas, M. M. Black, and G. A. Banker, “Changes in microtubule polarity orientation during the development of hippocampal neurons in culture,” J. Cell Biol. 109(6), 3085–3094 (1989).
    [Crossref] [PubMed]
  11. R. P. Tas, A. Chazeau, B. M. C. Cloin, M. L. A. Lambers, C. C. Hoogenraad, and L. C. Kapitein, “Differentiation between oppositely oriented microtubules controls polarized neuronal transport,” Neuron 96(6), 1264–1271 (2017).
    [Crossref] [PubMed]
  12. M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
    [Crossref] [PubMed]
  13. Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
    [Crossref] [PubMed]
  14. P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
    [Crossref] [PubMed]
  15. X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
    [Crossref] [PubMed]
  16. H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
    [Crossref] [PubMed]
  17. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
    [Crossref] [PubMed]
  18. F. S. Pavone and P. J. Campagnola, Second Harmonic Generation Imaging (CRC Press, 2013), p. 476.
  19. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
    [Crossref] [PubMed]
  20. C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
    [Crossref] [PubMed]
  21. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1-3), 1–4 (1998).
    [Crossref]
  22. J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
    [Crossref] [PubMed]
  23. E. Y. Yew, H. Choi, D. Kim, and P. T. So, “Wide-field two-photon microscopy with temporal focusing and HiLo background rejection,” in SPIE BiOS, (International Society for Optics and Photonics, 2011), 79031O–79031O–79036.
  24. E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
    [Crossref] [PubMed]
  25. M. A. Lauterbach, E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani, “Fast calcium imaging with optical sectioning via HiLo microscopy,” PLoS One 10(12), e0143681 (2015).
    [Crossref] [PubMed]
  26. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  27. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
    [Crossref] [PubMed]
  28. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
    [Crossref] [PubMed]
  29. J. Michaelson, H. Choi, P. So, and H. Huang, “Depth-resolved cellular microrheology using HiLo microscopy,” Biomed. Opt. Express 3(6), 1241–1255 (2012).
    [Crossref] [PubMed]
  30. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  31. E. Hecht, Optics, IVth ed. (Addison-Wesley, 2001).
  32. A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces,” Phys. Rev. Lett. 75(21), 3918–3921 (1995).
    [Crossref] [PubMed]
  33. J. C. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24(9), 1270 (1985).
    [Crossref] [PubMed]
  34. P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
    [Crossref] [PubMed]
  35. W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
    [Crossref] [PubMed]

2017 (5)

R. P. Tas, A. Chazeau, B. M. C. Cloin, M. L. A. Lambers, C. C. Hoogenraad, and L. C. Kapitein, “Differentiation between oppositely oriented microtubules controls polarized neuronal transport,” Neuron 96(6), 1264–1271 (2017).
[Crossref] [PubMed]

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[Crossref] [PubMed]

X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
[Crossref] [PubMed]

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

2016 (1)

S. F. B. van Beuningen and C. C. Hoogenraad, “Neuronal polarity: remodeling microtubule organization,” Curr. Opin. Neurobiol. 39, 1–7 (2016).
[Crossref] [PubMed]

2015 (3)

L. C. Kapitein and C. C. Hoogenraad, “Building the neuronal microtubule cytoskeleton,” Neuron 87(3), 492–506 (2015).
[Crossref] [PubMed]

Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
[Crossref] [PubMed]

M. A. Lauterbach, E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani, “Fast calcium imaging with optical sectioning via HiLo microscopy,” PLoS One 10(12), e0143681 (2015).
[Crossref] [PubMed]

2014 (1)

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (4)

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
[Crossref] [PubMed]

L. C. Kapitein and C. C. Hoogenraad, “Which way to go? Cytoskeletal organization and polarized transport in neurons,” Mol. Cell. Neurosci. 46(1), 9–20 (2011).
[Crossref] [PubMed]

M. Kuijpers and C. C. Hoogenraad, “Centrosomes, microtubules and neuronal development,” Mol. Cell. Neurosci. 48(4), 349–358 (2011).
[Crossref] [PubMed]

2010 (2)

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

2009 (2)

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

C. Conde and A. Cáceres, “Microtubule assembly, organization and dynamics in axons and dendrites,” Nat. Rev. Neurosci. 10(5), 319–332 (2009).
[Crossref] [PubMed]

2008 (3)

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[Crossref] [PubMed]

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

2003 (2)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

1999 (1)

P. W. Baas, “Microtubules and neuronal polarity: lessons from mitosis,” Neuron 22(1), 23–31 (1999).
[Crossref] [PubMed]

1998 (1)

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1-3), 1–4 (1998).
[Crossref]

1995 (1)

A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces,” Phys. Rev. Lett. 75(21), 3918–3921 (1995).
[Crossref] [PubMed]

1989 (1)

P. W. Baas, M. M. Black, and G. A. Banker, “Changes in microtubule polarity orientation during the development of hippocampal neurons in culture,” J. Cell Biol. 109(6), 3085–3094 (1989).
[Crossref] [PubMed]

1985 (1)

Baas, P. W.

P. W. Baas, “Microtubules and neuronal polarity: lessons from mitosis,” Neuron 22(1), 23–31 (1999).
[Crossref] [PubMed]

P. W. Baas, M. M. Black, and G. A. Banker, “Changes in microtubule polarity orientation during the development of hippocampal neurons in culture,” J. Cell Biol. 109(6), 3085–3094 (1989).
[Crossref] [PubMed]

Bacskai, B. J.

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[Crossref] [PubMed]

Banker, G. A.

P. W. Baas, M. M. Black, and G. A. Banker, “Changes in microtubule polarity orientation during the development of hippocampal neurons in culture,” J. Cell Biol. 109(6), 3085–3094 (1989).
[Crossref] [PubMed]

Bartlett, E.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Bartoo, A. C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Best-Popescu, C.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[Crossref] [PubMed]

Black, M. M.

P. W. Baas, M. M. Black, and G. A. Banker, “Changes in microtubule polarity orientation during the development of hippocampal neurons in culture,” J. Cell Biol. 109(6), 3085–3094 (1989).
[Crossref] [PubMed]

Bon, P.

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

Boss, D.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Bozinovic, N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Bradke, F.

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

Bungart, B.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Cáceres, A.

C. Conde and A. Cáceres, “Microtubule assembly, organization and dynamics in axons and dendrites,” Nat. Rev. Neurosci. 10(5), 319–332 (2009).
[Crossref] [PubMed]

Chazeau, A.

R. P. Tas, A. Chazeau, B. M. C. Cloin, M. L. A. Lambers, C. C. Hoogenraad, and L. C. Kapitein, “Differentiation between oppositely oriented microtubules controls polarized neuronal transport,” Neuron 96(6), 1264–1271 (2017).
[Crossref] [PubMed]

Cheng, J.-X.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Choi, H.

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Chu, K. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

Cloin, B. M. C.

R. P. Tas, A. Chazeau, B. M. C. Cloin, M. L. A. Lambers, C. C. Hoogenraad, and L. C. Kapitein, “Differentiation between oppositely oriented microtubules controls polarized neuronal transport,” Neuron 96(6), 1264–1271 (2017).
[Crossref] [PubMed]

Conde, C.

C. Conde and A. Cáceres, “Microtubule assembly, organization and dynamics in axons and dendrites,” Nat. Rev. Neurosci. 10(5), 319–332 (2009).
[Crossref] [PubMed]

Depeursinge, C.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Diels, J. C.

Dombeck, D. A.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Drenan, R.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Dubertret, B.

E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
[Crossref] [PubMed]

Emiliani, V.

M. A. Lauterbach, E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani, “Fast calcium imaging with optical sectioning via HiLo microscopy,” PLoS One 10(12), e0143681 (2015).
[Crossref] [PubMed]

Fernandes, D.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[Crossref] [PubMed]

Fontaine, J. J.

Ford, T. N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Fort, E.

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

Fragola, A.

E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
[Crossref] [PubMed]

Gamou, Y.

A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces,” Phys. Rev. Lett. 75(21), 3918–3921 (1995).
[Crossref] [PubMed]

Gao, M.

X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
[Crossref] [PubMed]

Gomis-Rüth, S.

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Hoogenraad, C. C.

R. P. Tas, A. Chazeau, B. M. C. Cloin, M. L. A. Lambers, C. C. Hoogenraad, and L. C. Kapitein, “Differentiation between oppositely oriented microtubules controls polarized neuronal transport,” Neuron 96(6), 1264–1271 (2017).
[Crossref] [PubMed]

S. F. B. van Beuningen and C. C. Hoogenraad, “Neuronal polarity: remodeling microtubule organization,” Curr. Opin. Neurobiol. 39, 1–7 (2016).
[Crossref] [PubMed]

L. C. Kapitein and C. C. Hoogenraad, “Building the neuronal microtubule cytoskeleton,” Neuron 87(3), 492–506 (2015).
[Crossref] [PubMed]

M. Kuijpers and C. C. Hoogenraad, “Centrosomes, microtubules and neuronal development,” Mol. Cell. Neurosci. 48(4), 349–358 (2011).
[Crossref] [PubMed]

L. C. Kapitein and C. C. Hoogenraad, “Which way to go? Cytoskeletal organization and polarized transport in neurons,” Mol. Cell. Neurosci. 46(1), 9–20 (2011).
[Crossref] [PubMed]

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

Hourtoule, C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Huang, H.

Hyman, B. T.

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Ingelsson, M.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Ioannou, A.

E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
[Crossref] [PubMed]

Jiang, Y.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Jourdain, P.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Juškaitis, R.

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1-3), 1–4 (1998).
[Crossref]

Kandel, M. E.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[Crossref] [PubMed]

Kapitein, L. C.

R. P. Tas, A. Chazeau, B. M. C. Cloin, M. L. A. Lambers, C. C. Hoogenraad, and L. C. Kapitein, “Differentiation between oppositely oriented microtubules controls polarized neuronal transport,” Neuron 96(6), 1264–1271 (2017).
[Crossref] [PubMed]

L. C. Kapitein and C. C. Hoogenraad, “Building the neuronal microtubule cytoskeleton,” Neuron 87(3), 492–506 (2015).
[Crossref] [PubMed]

L. C. Kapitein and C. C. Hoogenraad, “Which way to go? Cytoskeletal organization and polarized transport in neurons,” Mol. Cell. Neurosci. 46(1), 9–20 (2011).
[Crossref] [PubMed]

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

Kasischke, K. A.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Kawai, T.

A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces,” Phys. Rev. Lett. 75(21), 3918–3921 (1995).
[Crossref] [PubMed]

Kim, J.

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

Kuijpers, M.

M. Kuijpers and C. C. Hoogenraad, “Centrosomes, microtubules and neuronal development,” Mol. Cell. Neurosci. 48(4), 349–358 (2011).
[Crossref] [PubMed]

Kwan, A. C.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[Crossref] [PubMed]

Lambers, M. L. A.

R. P. Tas, A. Chazeau, B. M. C. Cloin, M. L. A. Lambers, C. C. Hoogenraad, and L. C. Kapitein, “Differentiation between oppositely oriented microtubules controls polarized neuronal transport,” Neuron 96(6), 1264–1271 (2017).
[Crossref] [PubMed]

Lauterbach, M. A.

M. A. Lauterbach, E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani, “Fast calcium imaging with optical sectioning via HiLo microscopy,” PLoS One 10(12), e0143681 (2015).
[Crossref] [PubMed]

Lécart, S.

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

Lee, H. J.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Lévêque-Fort, S.

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

Liao, C.-S.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Lim, D.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

Liu, X.

Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
[Crossref] [PubMed]

Liu, X. W.

X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
[Crossref] [PubMed]

Loriette, V.

E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
[Crossref] [PubMed]

Macias-Romero, C.

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

Maghelli, N.

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

Magistretti, P. J.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Marquet, P.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

McMichael, I. C.

Mertz, J.

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33(16), 1819–1821 (2008).
[Crossref] [PubMed]

Michaelson, J.

Moratal, C.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Muro, E.

E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
[Crossref] [PubMed]

Nagashima, A.

A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces,” Phys. Rev. Lett. 75(21), 3918–3921 (1995).
[Crossref] [PubMed]

Nahalka, I.

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

Neil, M. A. A.

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1-3), 1–4 (1998).
[Crossref]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Okur, H. I.

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

Oshima, C.

A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces,” Phys. Rev. Lett. 75(21), 3918–3921 (1995).
[Crossref] [PubMed]

Pavillon, N.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Popescu, G.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[Crossref] [PubMed]

Rappaz, B.

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

Roke, S.

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

Ronzitti, E.

M. A. Lauterbach, E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani, “Fast calcium imaging with optical sectioning via HiLo microscopy,” PLoS One 10(12), e0143681 (2015).
[Crossref] [PubMed]

Santos, S.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Shakir, H.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[Crossref] [PubMed]

Shan, X.

Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
[Crossref] [PubMed]

Shih, P.-Y.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Simoni, F.

Singh, S. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Skourides, P.

E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
[Crossref] [PubMed]

So, P.

Sternberg, J. R.

M. A. Lauterbach, E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani, “Fast calcium imaging with optical sectioning via HiLo microscopy,” PLoS One 10(12), e0143681 (2015).
[Crossref] [PubMed]

Stiess, M.

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

Stoothoff, W. H.

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[Crossref] [PubMed]

Tao, N.

X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
[Crossref] [PubMed]

Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
[Crossref] [PubMed]

Tas, R. P.

R. P. Tas, A. Chazeau, B. M. C. Cloin, M. L. A. Lambers, C. C. Hoogenraad, and L. C. Kapitein, “Differentiation between oppositely oriented microtubules controls polarized neuronal transport,” Neuron 96(6), 1264–1271 (2017).
[Crossref] [PubMed]

Taylor, A. M.

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[Crossref] [PubMed]

Tejima, N.

A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces,” Phys. Rev. Lett. 75(21), 3918–3921 (1995).
[Crossref] [PubMed]

Tolic-Nørrelykke, I. M.

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

van Beuningen, S. F. B.

S. F. B. van Beuningen and C. C. Hoogenraad, “Neuronal polarity: remodeling microtubule organization,” Curr. Opin. Neurobiol. 39, 1–7 (2016).
[Crossref] [PubMed]

Vermeulen, P.

E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
[Crossref] [PubMed]

Vishwasrao, H. D.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Wang, S.

X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
[Crossref] [PubMed]

Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
[Crossref] [PubMed]

Wang, W.

X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
[Crossref] [PubMed]

Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
[Crossref] [PubMed]

Webb, W. W.

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Wilsch-Bräuninger, M.

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

Wilson, T.

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1-3), 1–4 (1998).
[Crossref]

Wu, J.

X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
[Crossref] [PubMed]

Wu, X.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Wyart, C.

M. A. Lauterbach, E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani, “Fast calcium imaging with optical sectioning via HiLo microscopy,” PLoS One 10(12), e0143681 (2015).
[Crossref] [PubMed]

Xu, X.-M.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Yang, Y.

X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
[Crossref] [PubMed]

Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
[Crossref] [PubMed]

Yu, H.

Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
[Crossref] [PubMed]

Zhang, D.

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

X. W. Liu, Y. Yang, W. Wang, S. Wang, M. Gao, J. Wu, and N. Tao, “Plasmonic‐based electrochemical impedance imaging of electrical activities in single cells,” Angew. Chem. Int. Ed. Engl. 56(30), 8855–8859 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biophys. J. (2)

E. Muro, P. Vermeulen, A. Ioannou, P. Skourides, B. Dubertret, A. Fragola, and V. Loriette, “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophys. J. 100(11), 2810–2819 (2011).
[Crossref] [PubMed]

P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Fast label-free cytoskeletal network imaging in living mammalian cells,” Biophys. J. 106(8), 1588–1595 (2014).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

S. F. B. van Beuningen and C. C. Hoogenraad, “Neuronal polarity: remodeling microtubule organization,” Curr. Opin. Neurobiol. 39, 1–7 (2016).
[Crossref] [PubMed]

Cytometry A (1)

M. E. Kandel, D. Fernandes, A. M. Taylor, H. Shakir, C. Best-Popescu, and G. Popescu, “Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy,” Cytometry A 91(5), 519–526 (2017).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008).
[Crossref] [PubMed]

J. Cell Biol. (1)

P. W. Baas, M. M. Black, and G. A. Banker, “Changes in microtubule polarity orientation during the development of hippocampal neurons in culture,” J. Cell Biol. 109(6), 3085–3094 (1989).
[Crossref] [PubMed]

J. Neurosci. (1)

P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31(33), 11846–11854 (2011).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

H. J. Lee, D. Zhang, Y. Jiang, X. Wu, P.-Y. Shih, C.-S. Liao, B. Bungart, X.-M. Xu, R. Drenan, E. Bartlett, and J.-X. Cheng, “Label-free vibrational spectroscopic imaging of neuronal membrane potential,” J. Phys. Chem. Lett. 8(9), 1932–1936 (2017).
[Crossref] [PubMed]

Mol. Cell. Neurosci. (2)

M. Kuijpers and C. C. Hoogenraad, “Centrosomes, microtubules and neuronal development,” Mol. Cell. Neurosci. 48(4), 349–358 (2011).
[Crossref] [PubMed]

L. C. Kapitein and C. C. Hoogenraad, “Which way to go? Cytoskeletal organization and polarized transport in neurons,” Mol. Cell. Neurosci. 46(1), 9–20 (2011).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

C. Conde and A. Cáceres, “Microtubule assembly, organization and dynamics in axons and dendrites,” Nat. Rev. Neurosci. 10(5), 319–332 (2009).
[Crossref] [PubMed]

Neuron (3)

P. W. Baas, “Microtubules and neuronal polarity: lessons from mitosis,” Neuron 22(1), 23–31 (1999).
[Crossref] [PubMed]

R. P. Tas, A. Chazeau, B. M. C. Cloin, M. L. A. Lambers, C. C. Hoogenraad, and L. C. Kapitein, “Differentiation between oppositely oriented microtubules controls polarized neuronal transport,” Neuron 96(6), 1264–1271 (2017).
[Crossref] [PubMed]

L. C. Kapitein and C. C. Hoogenraad, “Building the neuronal microtubule cytoskeleton,” Neuron 87(3), 492–506 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1-3), 1–4 (1998).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, “Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces,” Phys. Rev. Lett. 75(21), 3918–3921 (1995).
[Crossref] [PubMed]

PLoS One (1)

M. A. Lauterbach, E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani, “Fast calcium imaging with optical sectioning via HiLo microscopy,” PLoS One 10(12), e0143681 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7081–7086 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003).
[Crossref] [PubMed]

A. C. Kwan, D. A. Dombeck, and W. W. Webb, “Polarized microtubule arrays in apical dendrites and axons,” Proc. Natl. Acad. Sci. U.S.A. 105(32), 11370–11375 (2008).
[Crossref] [PubMed]

Science (2)

M. Stiess, N. Maghelli, L. C. Kapitein, S. Gomis-Rüth, M. Wilsch-Bräuninger, C. C. Hoogenraad, I. M. Tolić-Nørrelykke, and F. Bradke, “Axon extension occurs independently of centrosomal microtubule nucleation,” Science 327(5966), 704–707 (2010).
[Crossref] [PubMed]

C. Macias-Romero, I. Nahalka, H. I. Okur, and S. Roke, “Optical imaging of surface chemistry and dynamics in confinement,” Science 357(6353), 784–788 (2017).
[Crossref] [PubMed]

Small (1)

Y. Yang, H. Yu, X. Shan, W. Wang, X. Liu, S. Wang, and N. Tao, “Label‐free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique,” Small 11(24), 2878–2884 (2015).
[Crossref] [PubMed]

Other (5)

F. S. Pavone and P. J. Campagnola, Second Harmonic Generation Imaging (CRC Press, 2013), p. 476.

E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of neural science (McGraw-hill, 2000), Vol. 4.

E. Y. Yew, H. Choi, D. Kim, and P. T. So, “Wide-field two-photon microscopy with temporal focusing and HiLo background rejection,” in SPIE BiOS, (International Society for Optics and Photonics, 2011), 79031O–79031O–79036.

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

E. Hecht, Optics, IVth ed. (Addison-Wesley, 2001).

Supplementary Material (4)

NameDescription
» Visualization 1       2PEF 3D image stacks
» Visualization 2       2PEF 3D image stacks
» Visualization 3       2PEF 3D image stacks
» Visualization 4       2PEF 3D image stacks

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Two beam illumination and the corresponding interference pattern. (a) The pattern displayed on the SLM is a grating of spatial frequency σ diffracting the incident beam. (b) The diffracted beams are filtered in the Fourier plane: only beams corresponding to ± 1 diffraction orders are kept. (c) Those two beams arrive with an incident angle δ on the sample, creating a cosine interference pattern with frequency kg in the sample plane. (d) The sample plane is imaged on an IEM-CCD camera.
Fig. 2
Fig. 2 Axial resolution of the microscope and coherence. (a) Interference pattern in the image space depending on the degree of coherence of the emitted light. Here the pattern is shown for fully coherent light, partially coherent light and incoherent light. (b) The HiLo algorithm relies on the visibility of the interference pattern: all depths displaying an interference pattern will show in the HiLo image, limiting its axial resolution. (c) SHG signal from one hBN monolayer deposited on a 20 nm thick SiNx film on a Si wafer as a function of imaging depth, for three different spatial frequencies kg. (d) 2PEF signal from a 200nm Trypan Blue slab as a function of imaging depth, for three different spatial frequencies kg. (e) Measured axial resolutions for SHG from hBN (in green) and 2PEF from Trypan blue (in magenta), for different spatial frequencies kg.
Fig. 3
Fig. 3 Label-free TPEF and SHG imaging of living neurons. (a) Phase contrast (PC) image of mouse brain neurons. The two arrows show dendrites and the arrow head the axon, (b) Top panel: endogenous 2PEF signal averaged over 100 frames, with 639 ms/frame. Middle and bottom panels: SH images, in green obtained with an excitation and detection polarization direction along the X axis (XXX), and in red obtained with an excitation and detection polarization direction along the Y axis (YYY). Both images are averaged over 100 frames, acquired with 639 ms/frame and a power on sample around 125 mW. (c) Composite image with label-free SHG XXX and YYY in green and red respectively, and endogenous 2PEF in blue.
Fig. 4
Fig. 4 The degree of mutual polarization gives information about structural organization. (a) Scheme of microtubules organizations in different parts of the cytoskeleton and their corresponding expected degree of mutual polarization for the SHG signal. Images of a cortical neuron at different depths with structured illumination: (b-d) SHG and (e-g) endogenous 2PEF. Visualization 3 and Visualization 4 are the corresponding 3D image stacks. (h) Corresponding white light phase contrast image. (i) Map of the FWHM of the obtained interference pattern. (j) Map of the degree of structural correlations γ, proportional to the axial resolution (FWHM) of the SHG signal emitted by the microtubules in the neuron.
Fig. 5
Fig. 5 Principle of the HiLo algorithm used here. A scheme of the information content in the Fourier space (along the dashed line) is given under each image. Images in Fourier space are in colors, while images are black and white. (a) Two structured illumination images with shifted interference patterns are recorded, I1 and I2. The sum of those two images gives a “uniform illumination” image Iu. (b) Lo image: (top) a structured illumination image is firstly denoised with a low cut-off frequency high-pass filter: this allows to remove noise at low frequency; (bottom) we take the absolute value of the denoised image to bring back image information around 0 frequency, then we apply a low-pass filter on this image to obtain the Lo image. (c) Hi image: a high-pass filter (complementary of the low-pass filter) is applied on the uniform illumination image to obtain the Hi image. (d) Hi and Lo images are summed to obtain the final HiLo image.
Fig. 6
Fig. 6 Snapshot of a video showing the reconstructed 3D SHG response. The axon is much wider than its actual size, due to the high degree of coherence.
Fig. 7
Fig. 7 Snapshot of a video showing the reconstructed 3D 2PEF response.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I 1 = I in [ 1+M · cos( k g x ) ]+ I out I 2 = I in [ 1+M · cos( k g x+π ) ]+ I out ,

Metrics