Abstract

Quantum – or classically correlated – light can be employed in various ways to improve resolution and measurement sensitivity. In an “interaction-free” measurement, a single photon can be used to reveal the presence of an object placed within one arm of an interferometer without being absorbed by it. With a technique known as “ghost-imaging”, entangled photon pairs are used for detecting an opaque object with significantly improved signal-to-noise ratio while preventing over-illumination. Here, we integrate these two methods to obtain a new imaging technique which we term “interaction-free ghost-imaging” (IFGI). With this new technique, we reduce photon illumination on the object by up to 26.5% while still maintaining at least the same image quality of conventional ghost-imaging. Alternatively, IFGI can improve image signal-to-noise ratio by 18% when given the same number of interacting photons as in standard ghost-imaging. IFGI is also sensitive to phase and polarisation changes of the photons introduced by a structured object. These advantages make IFGI superior for probing light-sensitive materials and biological tissues.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ghost imaging: from quantum to classical to computational

Baris I. Erkmen and Jeffrey H. Shapiro
Adv. Opt. Photon. 2(4) 405-450 (2010)

The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera

D. S. Tasca, R. S. Aspden, P. A. Morris, G. Anderson, R. W. Boyd, and M. J. Padgett
Opt. Express 21(25) 30460-30473 (2013)

High quality computational ghost imaging using multi-fluorescent screen

Hossein Ghanbari-Ghalehjoughi, Sohrab Ahmadi-Kandjani, and Mansour Eslami
J. Opt. Soc. Am. A 32(2) 323-328 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
    [Crossref]
  2. A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measurements,” Foundations Phys. 23, 987–997 (1993).
    [Crossref]
  3. M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Trans. R. Soc. Lond. 375, 20160233 (2017).
    [Crossref]
  4. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
    [Crossref]
  5. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161 (2004).
    [Crossref]
  6. G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227 (2010).
    [Crossref]
  7. N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field micscope,” Light. Sci. & Appl. 6, e17005 (2017).
    [Crossref]
  8. A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat, ““interaction-free” imaging,” Phys. Rev. A 58, 605–613 (1998).
    [Crossref]
  9. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
    [Crossref]
  10. P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
    [Crossref]
  11. G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
    [Crossref]
  12. O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogationt,” Nature 439, 949–952 (2005).
    [Crossref]
  13. Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
    [Crossref]
  14. J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
    [Crossref]
  15. P. Bierdz and H. Deng, “A compact orbital angular momentum spectrometer using quantum zeno interrogation,” Opt. Express 19, 11615–11622 (2011).
    [Crossref]
  16. K. T. McCusker, Y.-P. Huang, A. S. Kowligy, and P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
    [Crossref]
  17. A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffractlon, holography, and transformation of two-dimensional signals,” JETP 78, 259 (1994).
  18. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [Crossref]
  19. R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
    [Crossref]
  20. R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
    [Crossref]
  21. P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
    [Crossref]
  22. R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, and et al., “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049–1052 (2015).
    [Crossref]
  23. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  24. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [Crossref]
  25. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [Crossref]
  26. D. Duan, S. Du, and Y. Xia, “Multiwavelength ghost imaging,” Phys. Rev. A 88, 053842 (2013).
    [Crossref]
  27. Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
    [Crossref]
  28. Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
    [Crossref]
  29. G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011).
    [Crossref]
  30. M. N. O’Sullivan, K. W. C. Chan, and R. W. Boyd, “Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging,” Phys. Rev. A 82, 053803 (2010).
    [Crossref]
  31. M. Genovese, “Real applications of quantum imaging,” J. Opt. 18, 073002 (2016).
    [Crossref]
  32. H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
    [Crossref]
  33. B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
    [Crossref] [PubMed]
  34. M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
    [Crossref]
  35. A. C. Elitzur and S. Dolev, “Nonlocal effects of partial measurements and quantum erasure,” Phys. Rev. A 63, 062109 (2001).
    [Crossref]
  36. A. C. Elitzur and E. Cohen, “Quantum oblivion: A master key for many quantum riddles,” Int. J. Quantum Inf. 12, 1560024 (2014).
    [Crossref]
  37. C. Robens, W. Alt, C. Emary, D. Meschede, and A. Alberti, “Atomic “bomb testing”: the elitzur–vaidman experiment violates the leggett–garg inequality,” Appl. Phys. B 123, 12 (2016).
    [Crossref]
  38. L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett. 73, 2279–2283 (1994).
    [Crossref]
  39. D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
    [Crossref]
  40. A. Schori and S. Shwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25, 14822–14828 (2017).
    [Crossref]
  41. Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

2017 (4)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Trans. R. Soc. Lond. 375, 20160233 (2017).
[Crossref]

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field micscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

A. Schori and S. Shwartz, “X-ray ghost imaging with a laboratory source,” Opt. Express 25, 14822–14828 (2017).
[Crossref]

2016 (3)

M. Genovese, “Real applications of quantum imaging,” J. Opt. 18, 073002 (2016).
[Crossref]

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

C. Robens, W. Alt, C. Emary, D. Meschede, and A. Alberti, “Atomic “bomb testing”: the elitzur–vaidman experiment violates the leggett–garg inequality,” Appl. Phys. B 123, 12 (2016).
[Crossref]

2015 (3)

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, and et al., “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049–1052 (2015).
[Crossref]

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

2014 (3)

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

A. C. Elitzur and E. Cohen, “Quantum oblivion: A master key for many quantum riddles,” Int. J. Quantum Inf. 12, 1560024 (2014).
[Crossref]

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

2013 (3)

D. Duan, S. Du, and Y. Xia, “Multiwavelength ghost imaging,” Phys. Rev. A 88, 053842 (2013).
[Crossref]

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, and P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

2012 (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

2011 (3)

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

P. Bierdz and H. Deng, “A compact orbital angular momentum spectrometer using quantum zeno interrogation,” Opt. Express 19, 11615–11622 (2011).
[Crossref]

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011).
[Crossref]

2010 (2)

M. N. O’Sullivan, K. W. C. Chan, and R. W. Boyd, “Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging,” Phys. Rev. A 82, 053803 (2010).
[Crossref]

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227 (2010).
[Crossref]

2009 (1)

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

2008 (1)

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

2007 (1)

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[Crossref]

2005 (4)

Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogationt,” Nature 439, 949–952 (2005).
[Crossref]

2004 (2)

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

2001 (1)

A. C. Elitzur and S. Dolev, “Nonlocal effects of partial measurements and quantum erasure,” Phys. Rev. A 63, 062109 (2001).
[Crossref]

1999 (1)

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[Crossref]

1998 (1)

A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat, ““interaction-free” imaging,” Phys. Rev. A 58, 605–613 (1998).
[Crossref]

1995 (2)

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

1994 (2)

L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett. 73, 2279–2283 (1994).
[Crossref]

A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffractlon, holography, and transformation of two-dimensional signals,” JETP 78, 259 (1994).

1993 (1)

A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measurements,” Foundations Phys. 23, 987–997 (1993).
[Crossref]

Alberti, A.

C. Robens, W. Alt, C. Emary, D. Meschede, and A. Alberti, “Atomic “bomb testing”: the elitzur–vaidman experiment violates the leggett–garg inequality,” Appl. Phys. B 123, 12 (2016).
[Crossref]

Alt, W.

C. Robens, W. Alt, C. Emary, D. Meschede, and A. Alberti, “Atomic “bomb testing”: the elitzur–vaidman experiment violates the leggett–garg inequality,” Appl. Phys. B 123, 12 (2016).
[Crossref]

Arlt, J.

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

Aspden, R. S.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, and et al., “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049–1052 (2015).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Bai, Y.

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[Crossref]

Barnett, S. M.

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

Barreiro, J. T.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogationt,” Nature 439, 949–952 (2005).
[Crossref]

Belinskii, A. V.

A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffractlon, holography, and transformation of two-dimensional signals,” JETP 78, 259 (1994).

Bell, J. E. C.

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Berchera, I. R.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011).
[Crossref]

Beye, M.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Bierdz, P.

Bocklage, L.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Borish, V.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Bouchard, F.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Boyd, R. W.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Trans. R. Soc. Lond. 375, 20160233 (2017).
[Crossref]

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, and et al., “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2, 1049–1052 (2015).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

M. N. O’Sullivan, K. W. C. Chan, and R. W. Boyd, “Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging,” Phys. Rev. A 82, 053803 (2010).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Brenner, G.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Brida, G.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011).
[Crossref]

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227 (2010).
[Crossref]

Cai, Y.

Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[Crossref]

Cao, Y.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Cao, Z.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Chan, K. W. C.

M. N. O’Sullivan, K. W. C. Chan, and R. W. Boyd, “Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging,” Phys. Rev. A 82, 053803 (2010).
[Crossref]

Chekhova, M. V.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011).
[Crossref]

Chen, T.-Y.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Chen, Y.-A.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Classen, A.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Cohen, E.

A. C. Elitzur and E. Cohen, “Quantum oblivion: A master key for many quantum riddles,” Int. J. Quantum Inf. 12, 1560024 (2014).
[Crossref]

Cole, G. D.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

D’Angelo, M.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

David, C.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Deacon, K. S.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

Deng, H.

Deuretzbacher, F.

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

Dolev, S.

A. C. Elitzur and S. Dolev, “Nonlocal effects of partial measurements and quantum erasure,” Phys. Rev. A 63, 062109 (2001).
[Crossref]

Du, S.

D. Duan, S. Du, and Y. Xia, “Multiwavelength ghost imaging,” Phys. Rev. A 88, 053842 (2013).
[Crossref]

Duan, D.

D. Duan, S. Du, and Y. Xia, “Multiwavelength ghost imaging,” Phys. Rev. A 88, 053842 (2013).
[Crossref]

Dziarzhytski, S.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Elitzur, A. C.

A. C. Elitzur and E. Cohen, “Quantum oblivion: A master key for many quantum riddles,” Int. J. Quantum Inf. 12, 1560024 (2014).
[Crossref]

A. C. Elitzur and S. Dolev, “Nonlocal effects of partial measurements and quantum erasure,” Phys. Rev. A 63, 062109 (2001).
[Crossref]

A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measurements,” Foundations Phys. 23, 987–997 (1993).
[Crossref]

Emary, C.

C. Robens, W. Alt, C. Emary, D. Meschede, and A. Alberti, “Atomic “bomb testing”: the elitzur–vaidman experiment violates the leggett–garg inequality,” Appl. Phys. B 123, 12 (2016).
[Crossref]

Ertmer, W.

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Fickler, R.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Fornaro, G. A.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011).
[Crossref]

Franke-Arnold, S.

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

Gagnon-Bischoff, J.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Gelisio, L.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Gemmell, N. R.

Genovese, M.

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field micscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

M. Genovese, “Real applications of quantum imaging,” J. Opt. 18, 073002 (2016).
[Crossref]

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011).
[Crossref]

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227 (2010).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

Gorobtsov, O. Y.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Han, S.

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[Crossref]

Hardy, L.

L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett. 73, 2279–2283 (1994).
[Crossref]

Herzog, T.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref]

Hosten, O.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogationt,” Nature 439, 949–952 (2005).
[Crossref]

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

Huang, Y.-P.

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, and P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[Crossref]

Jack, B.

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

Karimi, E.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Kasevich, M. A.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref]

Khubbutdinov, R.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Kim, Y. Y.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Kirkwood, R. A.

Klempt, C.

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

Klyshko, D. N.

A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffractlon, holography, and transformation of two-dimensional signals,” JETP 78, 259 (1994).

Kowligy, A. S.

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, and P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[Crossref]

Kumar, P.

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, and P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[Crossref]

Kwiat, P.

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref]

Kwiat, P. G.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogationt,” Nature 439, 949–952 (2005).
[Crossref]

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[Crossref]

A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat, ““interaction-free” imaging,” Phys. Rev. A 58, 605–613 (1998).
[Crossref]

Lapkiewicz, R.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Larocque, H.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Lazarev, S.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Leach, J.

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

Lemos, G. B.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Li, H.-G.

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Li, Y.-H.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

Lopaeva, E. D.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011).
[Crossref]

Lücke, B.

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Lundeen, J. S.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161 (2004).
[Crossref]

Ma, X.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

McCusker, K. T.

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, and P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[Crossref]

Meda, A.

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field micscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

Mercurio, G.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Mertens, L.

Meschede, D.

C. Robens, W. Alt, C. Emary, D. Meschede, and A. Alberti, “Atomic “bomb testing”: the elitzur–vaidman experiment violates the leggett–garg inequality,” Appl. Phys. B 123, 12 (2016).
[Crossref]

Meyers, R.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

Mitchell, J. R.

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[Crossref]

A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat, ““interaction-free” imaging,” Phys. Rev. A 58, 605–613 (1998).
[Crossref]

Mitchell, M. W.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161 (2004).
[Crossref]

Morris, P. A.

Mukharamova, N.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Nairz, O.

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[Crossref]

A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat, ““interaction-free” imaging,” Phys. Rev. A 58, 605–613 (1998).
[Crossref]

O’Sullivan, M. N.

M. N. O’Sullivan, K. W. C. Chan, and R. W. Boyd, “Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging,” Phys. Rev. A 82, 053803 (2010).
[Crossref]

Obukhov, Y. N.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Padgett, M. J.

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Trans. R. Soc. Lond. 375, 20160233 (2017).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

Pan, J.-W.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Peise, J.

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

Peng, C.-Z.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Peters, N. A.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogationt,” Nature 439, 949–952 (2005).
[Crossref]

Pezzé, L.

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Qiu, H.-C.

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Rakher, M. T.

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogationt,” Nature 439, 949–952 (2005).
[Crossref]

Ramelow, S.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Ritsch-Marte, M.

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

Robens, C.

C. Robens, W. Alt, C. Emary, D. Meschede, and A. Alberti, “Atomic “bomb testing”: the elitzur–vaidman experiment violates the leggett–garg inequality,” Appl. Phys. B 123, 12 (2016).
[Crossref]

Roehlsberger, R.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Roesner, B.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Romero, J.

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

Rubin, M. H.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

Ruggeri, A.

Ruo Berchera, I.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227 (2010).
[Crossref]

Ruo-Berchera, I.

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field micscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

Samantaray, N.

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field micscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

Santos, L.

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

Schlage, K.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Schori, A.

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Shapiro, J. H.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

Shih, Y.

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Shwartz, S.

Smerzi, A.

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

Steinberg, A. M.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161 (2004).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Tang, Q.

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Tanner, M. G.

Tasca, D. S.

Tosi, A.

Upham, J.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

Vaidman, L.

A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measurements,” Foundations Phys. 23, 987–997 (1993).
[Crossref]

Valencia, A.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

Vartanyants, I. A.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

von Zanthier, J.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Wang, H.-B.

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Wang, K.

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Weihs, G.

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[Crossref]

Weinfurter, H.

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[Crossref]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref]

White, A. G.

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[Crossref]

A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat, ““interaction-free” imaging,” Phys. Rev. A 58, 605–613 (1998).
[Crossref]

Wu, T.-F.

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Wurth, W.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Xia, Y.

D. Duan, S. Du, and Y. Xia, “Multiwavelength ghost imaging,” Phys. Rev. A 88, 053842 (2013).
[Crossref]

Xiong, J.

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Xu, D.-Q.

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Yin, H.-L.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Yin, J.

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Zalushnyy, I. A.

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Zeilinger, A.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[Crossref]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref]

Zhang, D.-J.

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Zhu, S.-Y.

Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[Crossref]

Appl. Phys. B (1)

C. Robens, W. Alt, C. Emary, D. Meschede, and A. Alberti, “Atomic “bomb testing”: the elitzur–vaidman experiment violates the leggett–garg inequality,” Appl. Phys. B 123, 12 (2016).
[Crossref]

Appl. Phys. Lett. (1)

D.-J. Zhang, Q. Tang, T.-F. Wu, H.-C. Qiu, D.-Q. Xu, H.-G. Li, H.-B. Wang, J. Xiong, and K. Wang, “Lensless ghost imaging of a phase object with pseudo-thermal light,” Appl. Phys. Lett. 104, 121113 (2014).
[Crossref]

Foundations Phys. (1)

A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measurements,” Foundations Phys. 23, 987–997 (1993).
[Crossref]

Int. J. Quantum Inf. (1)

A. C. Elitzur and E. Cohen, “Quantum oblivion: A master key for many quantum riddles,” Int. J. Quantum Inf. 12, 1560024 (2014).
[Crossref]

J. Opt. (2)

M. Genovese, “Real applications of quantum imaging,” J. Opt. 18, 073002 (2016).
[Crossref]

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18, 124002 (2016).
[Crossref]

JETP (1)

A. V. Belinskii and D. N. Klyshko, “Two-photon optics: diffractlon, holography, and transformation of two-dimensional signals,” JETP 78, 259 (1994).

Light. Sci. & Appl. (1)

N. Samantaray, I. Ruo-Berchera, A. Meda, and M. Genovese, “Realization of the first sub-shot-noise wide field micscope,” Light. Sci. & Appl. 6, e17005 (2017).
[Crossref]

Nat. Commun. (2)

J. Peise, B. Lücke, L. Pezzé, F. Deuretzbacher, W. Ertmer, J. Arlt, A. Smerzi, L. Santos, and C. Klempt, “Interaction-free measurements by quantum zeno stabilization of ultracold atoms,” Nat. Commun. 6, 6811 (2015).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. C. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref]

Nat. Photonics (2)

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227 (2010).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

Nature (3)

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161 (2004).
[Crossref]

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, and P. G. Kwiat, “Counterfactual quantum computation through quantum interrogationt,” Nature 439, 949–952 (2005).
[Crossref]

New J. Phys. (1)

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “Epr-based ghost imaging using a single-photon-sensitive camera,” New J. Phys. 15, 073032 (2013).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. A (9)

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

A. G. White, J. R. Mitchell, O. Nairz, and P. G. Kwiat, ““interaction-free” imaging,” Phys. Rev. A 58, 605–613 (1998).
[Crossref]

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72, 013810 (2005).
[Crossref]

A. C. Elitzur and S. Dolev, “Nonlocal effects of partial measurements and quantum erasure,” Phys. Rev. A 63, 062109 (2001).
[Crossref]

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A 83, 063807 (2011).
[Crossref]

M. N. O’Sullivan, K. W. C. Chan, and R. W. Boyd, “Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging,” Phys. Rev. A 82, 053803 (2010).
[Crossref]

D. Duan, S. Du, and Y. Xia, “Multiwavelength ghost imaging,” Phys. Rev. A 88, 053842 (2013).
[Crossref]

Y. Bai and S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76, 043828 (2007).
[Crossref]

Phys. Rev. E (1)

Y. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[Crossref]

Phys. Rev. Lett. (8)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[Crossref]

B. Jack, J. Leach, J. Romero, S. Franke-Arnold, M. Ritsch-Marte, S. M. Barnett, and M. J. Padgett, “Holographic ghost imaging and the violation of a bell inequality,” Phys. Rev. Lett. 103, 083602 (2009).
[Crossref] [PubMed]

L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett. 73, 2279–2283 (1994).
[Crossref]

P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich, “Interaction-free measurement,” Phys. Rev. Lett. 74, 4763–4766 (1995).
[Crossref]

P. G. Kwiat, A. G. White, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter, and A. Zeilinger, “High-efficiency quantum interrogation measurements via the quantum zeno effect,” Phys. Rev. Lett. 83, 4725–4728 (1999).
[Crossref]

K. T. McCusker, Y.-P. Huang, A. S. Kowligy, and P. Kumar, “Experimental demonstration of interaction-free all-optical switching via the quantum zeno effect,” Phys. Rev. Lett. 110, 240403 (2013).
[Crossref]

Proc. Natl. Acad. Sci. (1)

Y. Cao, Y.-H. Li, Z. Cao, J. Yin, Y.-A. Chen, H.-L. Yin, T.-Y. Chen, X. Ma, C.-Z. Peng, and J.-W. Pan, “Direct counterfactual communication via quantum zeno effect,” Proc. Natl. Acad. Sci. 114, 4920–4924 (2017).
[Crossref]

Quantum Inf. Process. (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

Trans. R. Soc. Lond. (1)

M. J. Padgett and R. W. Boyd, “An introduction to ghost imaging: quantum and classical,” Trans. R. Soc. Lond. 375, 20160233 (2017).
[Crossref]

Other (1)

Y. Y. Kim, L. Gelisio, G. Mercurio, S. Dziarzhytski, M. Beye, L. Bocklage, A. Classen, C. David, O. Y. Gorobtsov, R. Khubbutdinov, S. Lazarev, N. Mukharamova, Y. N. Obukhov, B. Roesner, K. Schlage, I. A. Zalushnyy, G. Brenner, R. Roehlsberger, J. von Zanthier, W. Wurth, and I. A. Vartanyants, “Ghost imaging at an xuv free-electron laser,” arXiv p. 1811.06855 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Simplified schematic of the experimental setup for IFGI. Entangled photon pairs are generated at a nonlinear crystal (BiBO). One photon is sent into an interferometer with the object to be interrogated; the second photon is sent to a camera through a image preserving delay line where the image of the object is formed. Imaging lenses are not shown in the schematic. Figure legends: BiBO - 0.5 mm thick bismuth triborate crystal; LPF - Long-Pass Filter; BS - Beam Splitter; HWP - Half-wave plate; PBS - polarizing beam splitter; BF - Bandpass Filter; MMF - Multi-Mode Fibre; SPAD - Single Photon Avalanche Diode; ICCD - Intensified CCD camera.
Fig. 2
Fig. 2 Video frames taken with CGI (VBS adjusted to have R = 0) of an “UO” sign moved into the beam path. The integration time for each frame is 1 second.
Fig. 3
Fig. 3 Generation of an IFGI image. The final IFGI image (c) is obtained by subtracting the image of destructive interference (b) from constructive interference (a). Here, the VBS is set to 50:50 and the integration time is 150 s.
Fig. 4
Fig. 4 Image of a metallic “UO” sign taken with CGI. (a) shows the imaged laser cut metallic sign of the letters “UO”, with ∼2 mm diameter. (b) shows its image taken using CGI with tint = 150 s. By recording the average photons/pixel and corresponding standard deviation in the regions enclosed by the red squares then using Eq. (1), the SNR of the image is calculated to be 7.28.
Fig. 5
Fig. 5 Ratio between the SNR obtained using IFGI and that of CGI as a function of the VBS reflectivity R. The oe-27-3-2212-i001 are the experimental data for when tint remains the same between IFGI and CGI, and the blue line is the corresponding theoretical prediction given by Eq. (4). The oe-27-3-2212-i002 are the experimental data for when Nint remains the same between IFGI and CGI; this is achieved by increasing tint of IFGI by a factor of 1/(1 − R). The orange line is the corresponding theoretical prediction given by Eq. (5). The insets are images taken with IFGI to determine the SNR at the indicated data points. The SNRs are determined from the same regions in the images as that indicated in Fig. 4(b). See the Appendix for the corresponding images of all the data points.
Fig. 6
Fig. 6 Comparison between CGI and IFGI when imaging a phase-only and a birefringent object. A 0.15-mm-thick glass shard (a) is imaged with CGI (b) and IFGI (c). A polarization dependant “bomb” pattern imprinted on a liquid crystal device (d) imaged with CGI (e) and IFGI (f). The VBS is adjusted to 50:50 when taking the IFGI images and tint = 300s for all images.
Fig. 7
Fig. 7 Diagram depicting the average number of photons that will be detected at each detector in an interaction free measurement before (a) and after (b) an object is placed inside one arm of the interferometer.
Fig. 8
Fig. 8 Background subtraction in ghost imaging. Final image (c) is obtained by subtracting from the raw image (a), taken when the shutter of the camera is adjusted to coincide with the arrival of an entangled photon, from the background/accidental events (b), taken when the shutter is delayed by one laser pulse (10 ns) such that all coincidence events detected are due to the background/accidentals. Integration time is 150s.
Fig. 9
Fig. 9 Images taken with IFGI and their corresponding SNR at various VBS R:T ratios for tint = 150 s.
Fig. 10
Fig. 10 Images taken with IFGI and their corresponding SNR at various VBS R:T ratios for tint = 150/(1 − R) s allowing Nint to be the same in all cases.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

SNR = 1 σ | I ¯ in I ¯ out | ,
SNR CGI = N ¯ N ¯ = N ¯ .
Δ N IFGI = N ¯ ( 2 R 2 R 1 ) .
SNR IFGI = | 2 R 2 R 1 | 1 + R SNR CGI , for equal t int .
SNR IFGI = | 2 R 2 R 1 | 1 + R 2 SNR CGI , for equal N int .
Δ N IFGI = Δ N C Δ N D = N ˜ ( 2 R 2 R 1 )
σ 2 ( Δ N IFGI ) = σ 2 ( Δ N C ) + σ 2 ( Δ N D ) = N ¯ ( R + 1 ) .
SNR IFGI = | Δ N IFGI | σ ( Δ N IFGI ) | 2 R 2 R 1 | 1 + R 2 N ¯ .
SNR IFGI = | 2 R 2 R 1 | 1 + R N ¯ = | 2 R 2 R 1 | 1 + R 2 N ¯ .

Metrics