Abstract

Equivalence ratio is one of the most significant parameters in combustion flow fields. In this paper, femtosecond laser-induced plasma spectroscopy (FLIPS) technique for instantaneous one-dimensional local equivalence ratio measurements were performed. By measuring the spatially resolved spectra of FLIPS, we found that the spectral peak area ratios of CH (431 nm)/N2 (337 nm), CH (431 nm)/N2 (357 nm), and CH (431 nm)/O (777 nm) can be utilized to achieve one-dimensional local equivalence ratio measurements. Among them, the CH peak at ~431 nm and the O peak at ~777 nm are strong enough to be used to achieve single-shot measurements, which is important to turbulent flow fields. Furthermore, systematic experiments were performed by using FLIPS in both laminar and turbulent flow fields. The FLIPS technique features the abilities of instantaneous one-dimensional quantitative measurements, high spatial resolution, and no Bremsstrahlung interference.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser-induced plasma spectroscopy for combustion diagnostics in premixed ammonia/air flames

Dayuan Zhang, Qiang Gao, Bo Li, Jixu Liu, Yifu Tian, and Zhongshan Li
Appl. Opt. 58(28) 7810-7816 (2019)

Impact of plasma dynamics on equivalence ratio measurements by laser-induced breakdown spectroscopy

Johannes Kiefer, Bo Zhou, Zhongshan Li, and Marcus Aldén
Appl. Opt. 54(13) 4221-4226 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Hasse and N. Peters, “A two mixture fraction flamelet model applied to split injections in a DI diesel engine,” Proc. Combust. Inst. 30(2), 2755–2762 (2005).
    [Crossref]
  2. S. P. Malkeson and N. Chakraborty, “Statistical analysis of cross scalar dissipation rate transport in turbulent partially premixed flames: a direct numerical simulation study,” Flow Turbul. Combus. 87(2–3), 313–349 (2011).
    [Crossref]
  3. S. Mandai, N. Uda, and H. Nishida, “Premixed combustion models for gas turbine with stratified fueling systems,” JSME Int. J. B-Fluid. T. 46(1), 145–153 (2003).
    [Crossref]
  4. M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31(1), 99–124 (2007).
    [Crossref]
  5. F. Zhao, M. C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energ. Combust. 25(5), 437–562 (1999).
    [Crossref]
  6. H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
    [Crossref]
  7. F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7(6), 447–457 (2006).
    [Crossref]
  8. T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
    [Crossref]
  9. N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(10), 1085–1092 (2009).
    [Crossref]
  10. T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
    [Crossref]
  11. L. Merotto, M. Sirignano, M. Commodo, A. D’Anna, R. Dondè, and S. De Iuliis, “Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and laser-induced breakdown spectroscopy techniques,” Energy Fuels 31(3), 3227–3233 (2017).
    [Crossref]
  12. T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
    [Crossref]
  13. J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst. 28(2), 1757–1764 (2000).
    [Crossref]
  14. E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, and Y. Hamamoto, “In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method,” Proc. Combust. Inst. 29(1), 735–741 (2002).
    [Crossref]
  15. N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31(2), 3033–3040 (2007).
    [Crossref]
  16. R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
    [Crossref]
  17. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energ. Combust. 31(1), 75–121 (2005).
    [Crossref]
  18. J. A. Sutton and J. F. Driscoll, “Scalar dissipation rate measurements in flames: A method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29(2), 2727–2734 (2002).
    [Crossref]
  19. C. N. Markides and E. Mastorakos, “Measurements of scalar dissipation in a turbulent plume with planar laser-induced fluorescence of acetone,” Chem. Eng. Sci. 61(9), 2835–2842 (2006).
    [Crossref]
  20. J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, “Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering,” J. Raman Spectrosc. 39(6), 711–721 (2008).
    [Crossref]
  21. J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28(1), 1145–1152 (2000).
    [Crossref]
  22. P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38(9), 1714–1732 (1999).
    [Crossref] [PubMed]
  23. R. S. Barlow and P. C. Miles, “A shutter-based line-imaging system for single-shot Raman scattering measurements of gradients in mixture fraction,” Proc. Combust. Inst. 28(1), 269–277 (2000).
    [Crossref]
  24. M. S. Bak, S. K. Im, M. G. Mungal, and M. A. Cappelli, “Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas,” Combust. Flame 160(11), 2396–2403 (2013).
    [Crossref]
  25. H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
    [Crossref]
  26. M. Gragston, Y. Wu, Z. Zhang, P. S. Hsu, A. Patnaik, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative ns-LIBS-based fuel-air ratio measurements for high-pressure methane-air flames,” 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2007.
  27. F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
    [Crossref]
  28. J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
    [Crossref]
  29. M. Kotzagianni, R. Yuan, E. Mastorakos, and S. Couris, “Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme,” Combust. Flame 167, 72–85 (2016).
    [Crossref]
  30. T. W. Lee and N. Hegde, “Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature,” Combust. Flame 142(3), 314–316 (2005).
    [Crossref]
  31. H. Do and C. Carter, “Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma,” Combust. Flame 160(3), 601–609 (2013).
    [Crossref]
  32. Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
    [Crossref]
  33. L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
    [Crossref]
  34. M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, “A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames,” Fuel 106(2), 318–326 (2013).
    [Crossref]
  35. Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. Patnaik, S. Roy, and J. R. Gord, “1D Nanosecond-LIBS Measurements of Fuel/Air Ratios,” AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 2018.
  36. T. Agarwal, F. Richecoeur, and L. Zimmer, “Application of two dimensional laser induced plasma spectroscopy to the measurement of local composition in gaseous flow,” 15th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010.
  37. D. R. Richardson, N. Jiang, H. U. Stauffer, S. P. Kearney, S. Roy, and J. R. Gord, “Mixture-fraction imaging at 1 kHz using femtosecond laser-induced fluorescence of krypton,” Opt. Lett. 42(17), 3498–3501 (2017).
    [Crossref] [PubMed]
  38. M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Chem. Phys. Lett. 100(26), 264104 (2012).
  39. M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown spectroscopy of air-methane mixtures,” Chem. Phys. Lett. 561-562, 36–41 (2013).
    [Crossref]
  40. B. R. Halls, N. Jiang, J. R. Gord, P. M. Danehy, and S. Roy, “Mixture-fraction measurements with femtosecond-laser electronic-excitation tagging,” Appl. Opt. 56(11), E94–E98 (2017).
    [Crossref] [PubMed]
  41. H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82(4), 655–658 (2006).
    [Crossref]
  42. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2), 47–189 (2010).
  43. G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
    [Crossref]
  44. S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 5(76), 583–586 (2003).
    [Crossref]
  45. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20(1), 73–75 (1995).
    [Crossref] [PubMed]
  46. P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
    [Crossref]
  47. D. Zhang, B. Li, Q. Gao, and Z. Li, “Applicability of Femtosecond Laser Electronic Excitation Tagging in Combustion Flow Field Velocity Measurements,” Appl. Spectrosc. 72(12), 1807 (2018).
    [Crossref] [PubMed]
  48. B. Li, D. Zhang, M. Yao, and Z. Li, “Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence,” Proc. Combust. Inst. 36(3), 4487–4495 (2017).
    [Crossref]
  49. S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
    [Crossref]
  50. H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
    [Crossref]
  51. S. L. Chin, “From multiphoton to tunnel ionization,” in Advances in Multiphoton Processes and Spectroscoopy, S. H. Lin, A. A. Viallaeys, and Y. Fujimura, eds. (World Scientific, Singapore) 2004.

2018 (3)

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

D. Zhang, B. Li, Q. Gao, and Z. Li, “Applicability of Femtosecond Laser Electronic Excitation Tagging in Combustion Flow Field Velocity Measurements,” Appl. Spectrosc. 72(12), 1807 (2018).
[Crossref] [PubMed]

2017 (4)

B. Li, D. Zhang, M. Yao, and Z. Li, “Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence,” Proc. Combust. Inst. 36(3), 4487–4495 (2017).
[Crossref]

B. R. Halls, N. Jiang, J. R. Gord, P. M. Danehy, and S. Roy, “Mixture-fraction measurements with femtosecond-laser electronic-excitation tagging,” Appl. Opt. 56(11), E94–E98 (2017).
[Crossref] [PubMed]

D. R. Richardson, N. Jiang, H. U. Stauffer, S. P. Kearney, S. Roy, and J. R. Gord, “Mixture-fraction imaging at 1 kHz using femtosecond laser-induced fluorescence of krypton,” Opt. Lett. 42(17), 3498–3501 (2017).
[Crossref] [PubMed]

L. Merotto, M. Sirignano, M. Commodo, A. D’Anna, R. Dondè, and S. De Iuliis, “Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and laser-induced breakdown spectroscopy techniques,” Energy Fuels 31(3), 3227–3233 (2017).
[Crossref]

2016 (1)

M. Kotzagianni, R. Yuan, E. Mastorakos, and S. Couris, “Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme,” Combust. Flame 167, 72–85 (2016).
[Crossref]

2015 (1)

H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
[Crossref]

2013 (4)

M. S. Bak, S. K. Im, M. G. Mungal, and M. A. Cappelli, “Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas,” Combust. Flame 160(11), 2396–2403 (2013).
[Crossref]

H. Do and C. Carter, “Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma,” Combust. Flame 160(3), 601–609 (2013).
[Crossref]

M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, “A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames,” Fuel 106(2), 318–326 (2013).
[Crossref]

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown spectroscopy of air-methane mixtures,” Chem. Phys. Lett. 561-562, 36–41 (2013).
[Crossref]

2012 (3)

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Chem. Phys. Lett. 100(26), 264104 (2012).

L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
[Crossref]

2011 (2)

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

S. P. Malkeson and N. Chakraborty, “Statistical analysis of cross scalar dissipation rate transport in turbulent partially premixed flames: a direct numerical simulation study,” Flow Turbul. Combus. 87(2–3), 313–349 (2011).
[Crossref]

2010 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2), 47–189 (2010).

2009 (3)

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[Crossref]

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(10), 1085–1092 (2009).
[Crossref]

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

2008 (1)

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, “Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering,” J. Raman Spectrosc. 39(6), 711–721 (2008).
[Crossref]

2007 (2)

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31(2), 3033–3040 (2007).
[Crossref]

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31(1), 99–124 (2007).
[Crossref]

2006 (4)

F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7(6), 447–457 (2006).
[Crossref]

C. N. Markides and E. Mastorakos, “Measurements of scalar dissipation in a turbulent plume with planar laser-induced fluorescence of acetone,” Chem. Eng. Sci. 61(9), 2835–2842 (2006).
[Crossref]

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
[Crossref]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82(4), 655–658 (2006).
[Crossref]

2005 (5)

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

T. W. Lee and N. Hegde, “Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature,” Combust. Flame 142(3), 314–316 (2005).
[Crossref]

C. Hasse and N. Peters, “A two mixture fraction flamelet model applied to split injections in a DI diesel engine,” Proc. Combust. Inst. 30(2), 2755–2762 (2005).
[Crossref]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energ. Combust. 31(1), 75–121 (2005).
[Crossref]

T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
[Crossref]

2003 (3)

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

S. Mandai, N. Uda, and H. Nishida, “Premixed combustion models for gas turbine with stratified fueling systems,” JSME Int. J. B-Fluid. T. 46(1), 145–153 (2003).
[Crossref]

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 5(76), 583–586 (2003).
[Crossref]

2002 (4)

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

J. A. Sutton and J. F. Driscoll, “Scalar dissipation rate measurements in flames: A method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29(2), 2727–2734 (2002).
[Crossref]

E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, and Y. Hamamoto, “In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method,” Proc. Combust. Inst. 29(1), 735–741 (2002).
[Crossref]

2000 (3)

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst. 28(2), 1757–1764 (2000).
[Crossref]

R. S. Barlow and P. C. Miles, “A shutter-based line-imaging system for single-shot Raman scattering measurements of gradients in mixture fraction,” Proc. Combust. Inst. 28(1), 269–277 (2000).
[Crossref]

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28(1), 1145–1152 (2000).
[Crossref]

1999 (2)

P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38(9), 1714–1732 (1999).
[Crossref] [PubMed]

F. Zhao, M. C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energ. Combust. 25(5), 437–562 (1999).
[Crossref]

1995 (1)

Agarwal, T.

T. Agarwal, F. Richecoeur, and L. Zimmer, “Application of two dimensional laser induced plasma spectroscopy to the measurement of local composition in gaseous flow,” 15th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010.

Aldén, M.

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

André, S.

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Azarm, A.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[Crossref]

Bak, M. S.

M. S. Bak, S. K. Im, M. G. Mungal, and M. A. Cappelli, “Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas,” Combust. Flame 160(11), 2396–2403 (2013).
[Crossref]

Barlow, R. S.

R. S. Barlow and P. C. Miles, “A shutter-based line-imaging system for single-shot Raman scattering measurements of gradients in mixture fraction,” Proc. Combust. Inst. 28(1), 269–277 (2000).
[Crossref]

Bernhardt, J.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[Crossref]

Braun, A.

Buckley, S. G.

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
[Crossref]

F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7(6), 447–457 (2006).
[Crossref]

C.D’Amico, Y.-B.

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Cappelli, M. A.

M. S. Bak, S. K. Im, M. G. Mungal, and M. A. Cappelli, “Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas,” Combust. Flame 160(11), 2396–2403 (2013).
[Crossref]

Carter, C.

H. Do and C. Carter, “Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma,” Combust. Flame 160(3), 601–609 (2013).
[Crossref]

Carter, C. D.

H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
[Crossref]

Chakraborty, N.

S. P. Malkeson and N. Chakraborty, “Statistical analysis of cross scalar dissipation rate transport in turbulent partially premixed flames: a direct numerical simulation study,” Flow Turbul. Combus. 87(2–3), 313–349 (2011).
[Crossref]

Chen, Y. P.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Chin, S. L.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[Crossref]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82(4), 655–658 (2006).
[Crossref]

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 5(76), 583–586 (2003).
[Crossref]

Commodo, M.

L. Merotto, M. Sirignano, M. Commodo, A. D’Anna, R. Dondè, and S. De Iuliis, “Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and laser-induced breakdown spectroscopy techniques,” Energy Fuels 31(3), 3227–3233 (2017).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2), 47–189 (2010).

Couairon, E.

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Couris, S.

M. Kotzagianni, R. Yuan, E. Mastorakos, and S. Couris, “Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme,” Combust. Flame 167, 72–85 (2016).
[Crossref]

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown spectroscopy of air-methane mixtures,” Chem. Phys. Lett. 561-562, 36–41 (2013).
[Crossref]

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Chem. Phys. Lett. 100(26), 264104 (2012).

D’Anna, A.

L. Merotto, M. Sirignano, M. Commodo, A. D’Anna, R. Dondè, and S. De Iuliis, “Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and laser-induced breakdown spectroscopy techniques,” Energy Fuels 31(3), 3227–3233 (2017).
[Crossref]

Daigle, J. F.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82(4), 655–658 (2006).
[Crossref]

Danehy, P. M.

De Iuliis, S.

L. Merotto, M. Sirignano, M. Commodo, A. D’Anna, R. Dondè, and S. De Iuliis, “Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and laser-induced breakdown spectroscopy techniques,” Energy Fuels 31(3), 3227–3233 (2017).
[Crossref]

Do, H.

H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
[Crossref]

H. Do and C. Carter, “Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma,” Combust. Flame 160(3), 601–609 (2013).
[Crossref]

Dondè, R.

L. Merotto, M. Sirignano, M. Commodo, A. D’Anna, R. Dondè, and S. De Iuliis, “Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and laser-induced breakdown spectroscopy techniques,” Energy Fuels 31(3), 3227–3233 (2017).
[Crossref]

Drake, M. C.

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31(1), 99–124 (2007).
[Crossref]

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

Dreizler, A.

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

Driscoll, J. F.

J. A. Sutton and J. F. Driscoll, “Scalar dissipation rate measurements in flames: A method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29(2), 2727–2734 (2002).
[Crossref]

Du, D.

Egermann, J.

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28(1), 1145–1152 (2000).
[Crossref]

Estevadeordal, J.

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Fansler, T. D.

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

Ferioli, F.

F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7(6), 447–457 (2006).
[Crossref]

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
[Crossref]

Ferland, B.

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 5(76), 583–586 (2003).
[Crossref]

Franco, B.

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Gao, Q.

Gord, J. R.

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

D. R. Richardson, N. Jiang, H. U. Stauffer, S. P. Kearney, S. Roy, and J. R. Gord, “Mixture-fraction imaging at 1 kHz using femtosecond laser-induced fluorescence of krypton,” Opt. Lett. 42(17), 3498–3501 (2017).
[Crossref] [PubMed]

B. R. Halls, N. Jiang, J. R. Gord, P. M. Danehy, and S. Roy, “Mixture-fraction measurements with femtosecond-laser electronic-excitation tagging,” Appl. Opt. 56(11), E94–E98 (2017).
[Crossref] [PubMed]

M. Gragston, Y. Wu, Z. Zhang, P. S. Hsu, A. Patnaik, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative ns-LIBS-based fuel-air ratio measurements for high-pressure methane-air flames,” 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2007.

Gordon, R. L.

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

Gragston, M.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

M. Gragston, Y. Wu, Z. Zhang, P. S. Hsu, A. Patnaik, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative ns-LIBS-based fuel-air ratio measurements for high-pressure methane-air flames,” 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2007.

Halls, B. R.

Hamamoto, Y.

E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, and Y. Hamamoto, “In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method,” Proc. Combust. Inst. 29(1), 735–741 (2002).
[Crossref]

Hammack, S.

H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
[Crossref]

Harrington, D. L.

F. Zhao, M. C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energ. Combust. 25(5), 437–562 (1999).
[Crossref]

Hasse, C.

C. Hasse and N. Peters, “A two mixture fraction flamelet model applied to split injections in a DI diesel engine,” Proc. Combust. Inst. 30(2), 2755–2762 (2005).
[Crossref]

Haworth, D. C.

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31(1), 99–124 (2007).
[Crossref]

Hayashi, K.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31(2), 3033–3040 (2007).
[Crossref]

Heeger, C.

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

Hegde, N.

T. W. Lee and N. Hegde, “Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature,” Combust. Flame 142(3), 314–316 (2005).
[Crossref]

Hosseini, S. A.

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 5(76), 583–586 (2003).
[Crossref]

Hsu, K. Y.

H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
[Crossref]

Hsu, P. S.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

M. Gragston, Y. Wu, Z. Zhang, P. S. Hsu, A. Patnaik, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative ns-LIBS-based fuel-air ratio measurements for high-pressure methane-air flames,” 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2007.

Ikeda, Y.

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(10), 1085–1092 (2009).
[Crossref]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst. 28(2), 1757–1764 (2000).
[Crossref]

Im, S. K.

M. S. Bak, S. K. Im, M. G. Mungal, and M. A. Cappelli, “Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas,” Combust. Flame 160(11), 2396–2403 (2013).
[Crossref]

Ipp, W.

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28(1), 1145–1152 (2000).
[Crossref]

Itoh, T.

E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, and Y. Hamamoto, “In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method,” Proc. Combust. Inst. 29(1), 735–741 (2002).
[Crossref]

Iwai, K.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31(2), 3033–3040 (2007).
[Crossref]

Jiang, N.

Kagawa, R.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31(2), 3033–3040 (2007).
[Crossref]

Kakuho, A.

E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, and Y. Hamamoto, “In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method,” Proc. Combust. Inst. 29(1), 735–741 (2002).
[Crossref]

Kamali, Y.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[Crossref]

Kawahara, N.

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(10), 1085–1092 (2009).
[Crossref]

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31(2), 3033–3040 (2007).
[Crossref]

E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, and Y. Hamamoto, “In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method,” Proc. Combust. Inst. 29(1), 735–741 (2002).
[Crossref]

Kearney, S. P.

Kiefer, J.

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, “Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering,” J. Raman Spectrosc. 39(6), 711–721 (2008).
[Crossref]

Kim, B. H.

T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
[Crossref]

Koebcke, W.

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28(1), 1145–1152 (2000).
[Crossref]

Kojima, J.

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst. 28(2), 1757–1764 (2000).
[Crossref]

Kopecek, H.

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Korn, G.

Kosareva, O.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Kotzagianni, M.

M. Kotzagianni, R. Yuan, E. Mastorakos, and S. Couris, “Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme,” Combust. Flame 167, 72–85 (2016).
[Crossref]

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown spectroscopy of air-methane mixtures,” Chem. Phys. Lett. 561-562, 36–41 (2013).
[Crossref]

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Chem. Phys. Lett. 100(26), 264104 (2012).

Kozlov, D. N.

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, “Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering,” J. Raman Spectrosc. 39(6), 711–721 (2008).
[Crossref]

Krishnan, S. R.

M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, “A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames,” Fuel 106(2), 318–326 (2013).
[Crossref]

Lai, M. C.

F. Zhao, M. C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energ. Combust. 25(5), 437–562 (1999).
[Crossref]

Lee, T.

H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
[Crossref]

Lee, T. W.

T. W. Lee and N. Hegde, “Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature,” Combust. Flame 142(3), 314–316 (2005).
[Crossref]

Leipertz, A.

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, “Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering,” J. Raman Spectrosc. 39(6), 711–721 (2008).
[Crossref]

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28(1), 1145–1152 (2000).
[Crossref]

Li, B.

D. Zhang, B. Li, Q. Gao, and Z. Li, “Applicability of Femtosecond Laser Electronic Excitation Tagging in Combustion Flow Field Velocity Measurements,” Appl. Spectrosc. 72(12), 1807 (2018).
[Crossref] [PubMed]

B. Li, D. Zhang, M. Yao, and Z. Li, “Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence,” Proc. Combust. Inst. 36(3), 4487–4495 (2017).
[Crossref]

Li, R.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Li, Z.

D. Zhang, B. Li, Q. Gao, and Z. Li, “Applicability of Femtosecond Laser Electronic Excitation Tagging in Combustion Flow Field Velocity Measurements,” Appl. Spectrosc. 72(12), 1807 (2018).
[Crossref] [PubMed]

B. Li, D. Zhang, M. Yao, and Z. Li, “Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence,” Proc. Combust. Inst. 36(3), 4487–4495 (2017).
[Crossref]

Li, Z. S.

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

Liu, J. S.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Liu, Q.

H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
[Crossref]

Liu, W. W.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Liu, X.

Luo, Q.

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82(4), 655–658 (2006).
[Crossref]

Maier, H.

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Malkeson, S. P.

S. P. Malkeson and N. Chakraborty, “Statistical analysis of cross scalar dissipation rate transport in turbulent partially premixed flames: a direct numerical simulation study,” Flow Turbul. Combus. 87(2–3), 313–349 (2011).
[Crossref]

Mandai, S.

S. Mandai, N. Uda, and H. Nishida, “Premixed combustion models for gas turbine with stratified fueling systems,” JSME Int. J. B-Fluid. T. 46(1), 145–153 (2003).
[Crossref]

Marceau, C.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Markides, C. N.

C. N. Markides and E. Mastorakos, “Measurements of scalar dissipation in a turbulent plume with planar laser-induced fluorescence of acetone,” Chem. Eng. Sci. 61(9), 2835–2842 (2006).
[Crossref]

Mastorakos, E.

M. Kotzagianni, R. Yuan, E. Mastorakos, and S. Couris, “Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme,” Combust. Flame 167, 72–85 (2016).
[Crossref]

C. N. Markides and E. Mastorakos, “Measurements of scalar dissipation in a turbulent plume with planar laser-induced fluorescence of acetone,” Chem. Eng. Sci. 61(9), 2835–2842 (2006).
[Crossref]

Méchain, G.

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Merotto, L.

L. Merotto, M. Sirignano, M. Commodo, A. D’Anna, R. Dondè, and S. De Iuliis, “Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and laser-induced breakdown spectroscopy techniques,” Energy Fuels 31(3), 3227–3233 (2017).
[Crossref]

Miles, P. C.

R. S. Barlow and P. C. Miles, “A shutter-based line-imaging system for single-shot Raman scattering measurements of gradients in mixture fraction,” Proc. Combust. Inst. 28(1), 269–277 (2000).
[Crossref]

P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38(9), 1714–1732 (1999).
[Crossref] [PubMed]

Morrell, M. R.

T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
[Crossref]

Mourou, G.

Mungal, M. G.

M. S. Bak, S. K. Im, M. G. Mungal, and M. A. Cappelli, “Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas,” Combust. Flame 160(11), 2396–2403 (2013).
[Crossref]

Muruganandam, T. M.

T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2), 47–189 (2010).

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Nakajima, T.

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst. 28(2), 1757–1764 (2000).
[Crossref]

Nishida, H.

S. Mandai, N. Uda, and H. Nishida, “Premixed combustion models for gas turbine with stratified fueling systems,” JSME Int. J. B-Fluid. T. 46(1), 145–153 (2003).
[Crossref]

Nori, V.

T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
[Crossref]

Ombrello, T. M.

H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
[Crossref]

Panov, N.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Patel, M.

T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
[Crossref]

Patnaik, A.

M. Gragston, Y. Wu, Z. Zhang, P. S. Hsu, A. Patnaik, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative ns-LIBS-based fuel-air ratio measurements for high-pressure methane-air flames,” 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2007.

Patnaik, A. K.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Peters, N.

C. Hasse and N. Peters, “A two mixture fraction flamelet model applied to split injections in a DI diesel engine,” Proc. Combust. Inst. 30(2), 2755–2762 (2005).
[Crossref]

Prade, A.

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Puzinauskas, P. V.

F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7(6), 447–457 (2006).
[Crossref]

Reider, G.

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Richardson, D. R.

Richardson, M.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Richecoeur, F.

T. Agarwal, F. Richecoeur, and L. Zimmer, “Application of two dimensional laser induced plasma spectroscopy to the measurement of local composition in gaseous flow,” 15th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010.

Romig, B. W.

T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
[Crossref]

Rosalik, M. E.

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

Roy, S.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

B. R. Halls, N. Jiang, J. R. Gord, P. M. Danehy, and S. Roy, “Mixture-fraction measurements with femtosecond-laser electronic-excitation tagging,” Appl. Opt. 56(11), E94–E98 (2017).
[Crossref] [PubMed]

D. R. Richardson, N. Jiang, H. U. Stauffer, S. P. Kearney, S. Roy, and J. R. Gord, “Mixture-fraction imaging at 1 kHz using femtosecond laser-induced fluorescence of krypton,” Opt. Lett. 42(17), 3498–3501 (2017).
[Crossref] [PubMed]

M. Gragston, Y. Wu, Z. Zhang, P. S. Hsu, A. Patnaik, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative ns-LIBS-based fuel-air ratio measurements for high-pressure methane-air flames,” 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2007.

Salmon,

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Sauerbrey, R.

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Schulz, C.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energ. Combust. 31(1), 75–121 (2005).
[Crossref]

Seeger, T.

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, “Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering,” J. Raman Spectrosc. 39(6), 711–721 (2008).
[Crossref]

Seideman, T.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Seitzman, J. M.

T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
[Crossref]

Sick, V.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energ. Combust. 31(1), 75–121 (2005).
[Crossref]

Singh, J. P.

M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, “A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames,” Fuel 106(2), 318–326 (2013).
[Crossref]

Sirignano, M.

L. Merotto, M. Sirignano, M. Commodo, A. D’Anna, R. Dondè, and S. De Iuliis, “Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and laser-induced breakdown spectroscopy techniques,” Energy Fuels 31(3), 3227–3233 (2017).
[Crossref]

Squier, J.

Srinivasan, K. K.

M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, “A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames,” Fuel 106(2), 318–326 (2013).
[Crossref]

Stauffer, H. U.

Stojkovic, B.

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

Stolt, A. J.

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Sutton, J. A.

J. A. Sutton and J. F. Driscoll, “Scalar dissipation rate measurements in flames: A method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29(2), 2727–2734 (2002).
[Crossref]

Tabata, M.

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31(2), 3033–3040 (2007).
[Crossref]

Takemoto, S.

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(10), 1085–1092 (2009).
[Crossref]

Tomita, E.

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(10), 1085–1092 (2009).
[Crossref]

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31(2), 3033–3040 (2007).
[Crossref]

E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, and Y. Hamamoto, “In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method,” Proc. Combust. Inst. 29(1), 735–741 (2002).
[Crossref]

Tripathi, M. M.

M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, “A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames,” Fuel 106(2), 318–326 (2013).
[Crossref]

Tröger, J. W.

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

Tzortzakis, M.

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Uda, N.

S. Mandai, N. Uda, and H. Nishida, “Premixed combustion models for gas turbine with stratified fueling systems,” JSME Int. J. B-Fluid. T. 46(1), 145–153 (2003).
[Crossref]

Wang, T. J.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Winter, F.

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Wintner, E.

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Wu, J.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Wu, Y.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

M. Gragston, Y. Wu, Z. Zhang, P. S. Hsu, A. Patnaik, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative ns-LIBS-based fuel-air ratio measurements for high-pressure methane-air flames,” 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2007.

Xu, H. L.

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[Crossref]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82(4), 655–658 (2006).
[Crossref]

Xu, Z. Z.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Yao, M.

B. Li, D. Zhang, M. Yao, and Z. Li, “Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence,” Proc. Combust. Inst. 36(3), 4487–4495 (2017).
[Crossref]

Yoshida, S.

L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
[Crossref]

Yoshiyama, S.

E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, and Y. Hamamoto, “In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method,” Proc. Combust. Inst. 29(1), 735–741 (2002).
[Crossref]

Yuan, R.

M. Kotzagianni, R. Yuan, E. Mastorakos, and S. Couris, “Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme,” Combust. Flame 167, 72–85 (2016).
[Crossref]

Yuan, S.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Yueh, F. Y.

M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, “A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames,” Fuel 106(2), 318–326 (2013).
[Crossref]

Zeng, H. P.

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Zhang, D.

D. Zhang, B. Li, Q. Gao, and Z. Li, “Applicability of Femtosecond Laser Electronic Excitation Tagging in Combustion Flow Field Velocity Measurements,” Appl. Spectrosc. 72(12), 1807 (2018).
[Crossref] [PubMed]

B. Li, D. Zhang, M. Yao, and Z. Li, “Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence,” Proc. Combust. Inst. 36(3), 4487–4495 (2017).
[Crossref]

Zhang, Z.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

M. Gragston, Y. Wu, Z. Zhang, P. S. Hsu, A. Patnaik, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative ns-LIBS-based fuel-air ratio measurements for high-pressure methane-air flames,” 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2007.

Zhao, F.

F. Zhao, M. C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energ. Combust. 25(5), 437–562 (1999).
[Crossref]

Zimmer, L.

L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
[Crossref]

T. Agarwal, F. Richecoeur, and L. Zimmer, “Application of two dimensional laser induced plasma spectroscopy to the measurement of local composition in gaseous flow,” 15th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010.

Appl. Opt. (2)

Appl. Phys. B (6)

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 5(76), 583–586 (2003).
[Crossref]

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

T. D. Fansler, B. Stojkovic, M. C. Drake, and M. E. Rosalik, “Local fuel concentration measurements in internal combustion engines using spark-emission spectroscopy,” Appl. Phys. B 75(4–5), 577–590 (2002).
[Crossref]

R. L. Gordon, C. Heeger, and A. Dreizler, “High-speed mixture fraction imaging,” Appl. Phys. B 96(4), 745–748 (2009).
[Crossref]

J. Kiefer, J. W. Tröger, Z. S. Li, and M. Aldén, “Laser-induced plasma in methane and dimethyl ether for flame ignition and combustion diagnostics,” Appl. Phys. B 103(1), 229–236 (2011).
[Crossref]

H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, “Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane,” Appl. Phys. B 82(4), 655–658 (2006).
[Crossref]

Appl. Phys. Lett. (1)

P. S. Hsu, A. K. Patnaik, A. J. Stolt, J. Estevadeordal, S. Roy, and J. R. Gord, “Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal,” Appl. Phys. Lett. 113(21), 214103 (2018).
[Crossref]

Appl. Spectrosc. (1)

Chem. Eng. Sci. (1)

C. N. Markides and E. Mastorakos, “Measurements of scalar dissipation in a turbulent plume with planar laser-induced fluorescence of acetone,” Chem. Eng. Sci. 61(9), 2835–2842 (2006).
[Crossref]

Chem. Phys. (1)

H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360(1–3), 171–175 (2009).
[Crossref]

Chem. Phys. Lett. (2)

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown for combustion diagnostics,” Chem. Phys. Lett. 100(26), 264104 (2012).

M. Kotzagianni and S. Couris, “Femtosecond laser induced breakdown spectroscopy of air-methane mixtures,” Chem. Phys. Lett. 561-562, 36–41 (2013).
[Crossref]

Combust. Flame (6)

F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144(3), 435–447 (2006).
[Crossref]

M. S. Bak, S. K. Im, M. G. Mungal, and M. A. Cappelli, “Studies on the stability limit extension of premixed and jet diffusion flames of methane, ethane, and propane using nanosecond repetitive pulsed discharge plasmas,” Combust. Flame 160(11), 2396–2403 (2013).
[Crossref]

M. Kotzagianni, R. Yuan, E. Mastorakos, and S. Couris, “Laser-induced breakdown spectroscopy measurements of mean mixture fraction in turbulent methane flames with a novel calibration scheme,” Combust. Flame 167, 72–85 (2016).
[Crossref]

T. W. Lee and N. Hegde, “Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature,” Combust. Flame 142(3), 314–316 (2005).
[Crossref]

H. Do and C. Carter, “Hydrocarbon fuel concentration measurement in reacting flows using short-gated emission spectra of laser induced plasma,” Combust. Flame 160(3), 601–609 (2013).
[Crossref]

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. K. Patnaik, S. Roy, and J. R. Gord, “High-pressure 1D fuel/air-ratio measurements with LIBS,” Combust. Flame 198, 120–129 (2018).
[Crossref]

Energy Fuels (1)

L. Merotto, M. Sirignano, M. Commodo, A. D’Anna, R. Dondè, and S. De Iuliis, “Experimental characterization and modeling for equivalence ratio sensing in non-premixed flames using chemiluminescence and laser-induced breakdown spectroscopy techniques,” Energy Fuels 31(3), 3227–3233 (2017).
[Crossref]

Exp. Fluids (1)

L. Zimmer and S. Yoshida, “Feasibility of laser-induced plasma spectroscopy for measurements of equivalence ratio in high-pressure conditions,” Exp. Fluids 52(4), 891–904 (2012).
[Crossref]

Exp. Therm. Fluid Sci. (1)

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane-air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Flow Turbul. Combus. (1)

S. P. Malkeson and N. Chakraborty, “Statistical analysis of cross scalar dissipation rate transport in turbulent partially premixed flames: a direct numerical simulation study,” Flow Turbul. Combus. 87(2–3), 313–349 (2011).
[Crossref]

Fuel (1)

M. M. Tripathi, K. K. Srinivasan, S. R. Krishnan, F. Y. Yueh, and J. P. Singh, “A comparison of multivariate LIBS and chemiluminescence-based local equivalence ratio measurements in premixed atmospheric methane-air flames,” Fuel 106(2), 318–326 (2013).
[Crossref]

Int. J. Engine Res. (1)

F. Ferioli, S. G. Buckley, and P. V. Puzinauskas, “Real-time measurement of equivalence ratio using laser-induced breakdown spectroscopy,” Int. J. Engine Res. 7(6), 447–457 (2006).
[Crossref]

J. Raman Spectrosc. (1)

J. Kiefer, D. N. Kozlov, T. Seeger, and A. Leipertz, “Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering,” J. Raman Spectrosc. 39(6), 711–721 (2008).
[Crossref]

JSME Int. J. B-Fluid. T. (1)

S. Mandai, N. Uda, and H. Nishida, “Premixed combustion models for gas turbine with stratified fueling systems,” JSME Int. J. B-Fluid. T. 46(1), 145–153 (2003).
[Crossref]

Laser Phys. (1)

S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. F. Daigle, S. Yuan, A. Azarm, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Phys. 1(22), 1–53 (2012).
[Crossref]

Opt. Commun. (1)

G. Méchain, Y.-B. C.D’Amico, S. André, M. Tzortzakis, B. Franco, A. Prade, A. Mysyrowicz, E. Couairon, Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247(1-3), 171–180 (2005).
[Crossref]

Opt. Lett. (2)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2), 47–189 (2010).

Proc. Combust. Inst. (11)

H. Do, C. D. Carter, Q. Liu, T. M. Ombrello, S. Hammack, T. Lee, and K. Y. Hsu, “Simultaneous gas density and fuel concentration measurements in a supersonic combustor using laser induced breakdown,” Proc. Combust. Inst. 35(2), 2155–2162 (2015).
[Crossref]

J. Egermann, W. Koebcke, W. Ipp, and A. Leipertz, “Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28(1), 1145–1152 (2000).
[Crossref]

R. S. Barlow and P. C. Miles, “A shutter-based line-imaging system for single-shot Raman scattering measurements of gradients in mixture fraction,” Proc. Combust. Inst. 28(1), 269–277 (2000).
[Crossref]

M. C. Drake and D. C. Haworth, “Advanced gasoline engine development using optical diagnostics and numerical modeling,” Proc. Combust. Inst. 31(1), 99–124 (2007).
[Crossref]

T. M. Muruganandam, B. H. Kim, M. R. Morrell, V. Nori, M. Patel, B. W. Romig, and J. M. Seitzman, “Optical equivalence ratio sensors for gas turbine combustors,” Proc. Combust. Inst. 30(1), 1601–1609 (2005).
[Crossref]

J. Kojima, Y. Ikeda, and T. Nakajima, “Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames,” Proc. Combust. Inst. 28(2), 1757–1764 (2000).
[Crossref]

E. Tomita, N. Kawahara, S. Yoshiyama, A. Kakuho, T. Itoh, and Y. Hamamoto, “In situ fuel concentration measurement near spark plug in spark-ignition engines by 3.39 μm infrared laser absorption method,” Proc. Combust. Inst. 29(1), 735–741 (2002).
[Crossref]

N. Kawahara, E. Tomita, K. Hayashi, M. Tabata, K. Iwai, and R. Kagawa, “Cycle-resolved measurements of the fuel concentration near a spark plug in a rotary engine using an in situ laser absorption method,” Proc. Combust. Inst. 31(2), 3033–3040 (2007).
[Crossref]

C. Hasse and N. Peters, “A two mixture fraction flamelet model applied to split injections in a DI diesel engine,” Proc. Combust. Inst. 30(2), 2755–2762 (2005).
[Crossref]

J. A. Sutton and J. F. Driscoll, “Scalar dissipation rate measurements in flames: A method to improve spatial resolution by using nitric oxide PLIF,” Proc. Combust. Inst. 29(2), 2727–2734 (2002).
[Crossref]

B. Li, D. Zhang, M. Yao, and Z. Li, “Strategy for single-shot CH3 imaging in premixed methane/air flames using photofragmentation laser-induced fluorescence,” Proc. Combust. Inst. 36(3), 4487–4495 (2017).
[Crossref]

Prog. Energ. Combust. (2)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energ. Combust. 31(1), 75–121 (2005).
[Crossref]

F. Zhao, M. C. Lai, and D. L. Harrington, “Automotive spark-ignited direct-injection gasoline engines,” Prog. Energ. Combust. 25(5), 437–562 (1999).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (1)

N. Kawahara, E. Tomita, S. Takemoto, and Y. Ikeda, “Fuel concentration measurement of premixed mixture using spark-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(10), 1085–1092 (2009).
[Crossref]

Other (4)

M. Gragston, Y. Wu, Z. Zhang, P. S. Hsu, A. Patnaik, S. Roy, and J. R. Gord, “Sensitivity, stability, and precision of quantitative ns-LIBS-based fuel-air ratio measurements for high-pressure methane-air flames,” 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2007.

Y. Wu, M. Gragston, Z. Zhang, P. S. Hsu, N. Jiang, A. Patnaik, S. Roy, and J. R. Gord, “1D Nanosecond-LIBS Measurements of Fuel/Air Ratios,” AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 2018.

T. Agarwal, F. Richecoeur, and L. Zimmer, “Application of two dimensional laser induced plasma spectroscopy to the measurement of local composition in gaseous flow,” 15th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010.

S. L. Chin, “From multiphoton to tunnel ionization,” in Advances in Multiphoton Processes and Spectroscoopy, S. H. Lin, A. A. Viallaeys, and Y. Fujimura, eds. (World Scientific, Singapore) 2004.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) A standard McKenna burner was used to generate homogeneous laminar flow fields where the spectra measurements and the calibration were performed in room-temperature. The burner was supplied with premixed CH4/air mixtures of known equivalence ratio ranging from 0.6 to 1.6. (b) A co-flow piloted jet was used to generate inhomogeneous room-temperature flow fields where instantaneous one-dimensional equivalence ratio measurements were performed. The jet consists of two coaxial tubes that were supplied with premixed CH4/air mixtures of different equivalence ratios. Under laminar conditions, the gas supply rate of the jet was 2.5 m/s with its Reynolds number of 1460. When under turbulent conditions, the gas supply rate was 50 m/s with its Reynolds number of ~6500.
Fig. 2
Fig. 2 Schematic of the experimental setups. (a) The setup used for spectra measurements. (b) The setup used for calibration and instantaneous one-dimensional equivalence ratio measurements. A femtosecond laser was used as light source with a pulse energy of 4 mJ, a pulse duration of ~45 fs and a repetition rate of 1 kHz.
Fig. 3
Fig. 3 FLIPS spectrum in non-reacting premixed CH4/air mixture with equivalence ratio of 1.0. The top part is the spatially resolved spectral graph whose abscissa and ordinate represent the wavelength and spatial position, respectively. The bottom part is the spectral curve obtained from the accumulation of the spectral graph.
Fig. 4
Fig. 4 The relationship between the spectral peak area ratios of CH/N2 (337 nm), CH/N2 (357 nm) and CH/O and the equivalence ratio at four positions (labelled as P1-P4 in the inset) of the plasma. The scatters are the experimental data P1 (square), P2 (circle), P3 (triangle), P4 (diamond). The solid lines in (a)-(c) are the linear fittings of the relevant experimental data and the dashed lines in (d)-(f) are the linear fitting of all experimental data regardless of their positions using the least-squares method.
Fig. 5
Fig. 5 Calibration curve for the ratio of CH/O as a function of equivalence ratio obtained by two ICCD cameras. The scatters are the experimental data at four different positions of the plasma channel (as indicated in the inset): P1 (square), P2 (circle), P3 (triangle), P4 (diamond). The solid lines in (a) are the linear fittings of the relevant experimental data, and the dashed line in (b) is the linear fitting of all experimental data regardless of their positions using least-squares method.
Fig. 6
Fig. 6 One-dimensional equivalence ratio distribution in laminar (a) and turbulent (b) flow field. The images are the single shots of CH emission and O emission from the plasma channel.

Metrics