Abstract

A method for suppressing sea surface clutter, based on the characteristics of sun glint, is proposed. The proposed method is built on an infrared polarization radiation model of the dynamic sea surface. Based on the time-domain polarization characteristics of sun glint in a dynamic sea scene, a method for taking linearly polarized images at different analyzer angles over fixed intervals is used to suppress sea clutter by using the minimum operation. Experimental results show that the proposed method can effectively improve the contrast between a target and its background. Following simplification, this method can also provide a streamlined sea clutter suppression method with obvious results.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Water surface-clutter suppression method based on infrared polarization information

Jian-An Liang, Xia Wang, Yu-Jie Fang, Jing-Jing Zhou, Si He, and Wei-Qi Jin
Appl. Opt. 57(16) 4649-4658 (2018)

Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint

Huijie Zhao, Zheng Ji, Ying Zhang, Xiaofeng Sun, Pengfei Song, and Yansong Li
Opt. Express 24(15) 16396-16409 (2016)

Adaptive enhancement of sea-surface targets in infrared images based on local frequency cues

A. Onur Karalı, O. Erman Okman, and Tayfun Aytaç
J. Opt. Soc. Am. A 27(3) 509-517 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 176–185 (1992).
    [Crossref]
  2. A.N. de Jong, B. Piet, W. Schwering, P. J. Fritz, and W. H. Gunter, “Optical characteristics of small surface targets, measured in the False Bay, South Africa,” in Proc. SPIE 2009 (2007), 7300: 730003.
  3. J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38(15), 3157–3165 (1999).
    [Crossref] [PubMed]
  4. A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid- and far-infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
    [Crossref]
  5. H. Zhao, Z. Ji, Y. Zhang, X. Sun, P. Song, and Y. Li, “Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint,” Opt. Express 24(15), 16396–16409 (2016).
    [Crossref] [PubMed]
  6. J. A. Liang, X. Wang, Y. J. Fang, J. J. Zhou, S. He, and W. Q. Jin, “Water surface-clutter suppression method based on infrared polarization information,” Appl. Opt. 57(16), 4649–4658 (2018).
    [Crossref] [PubMed]
  7. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition (Prentice Hall, 2003).
  8. Y. Xiong and P. Jiaxiong, “An Effective Method for Trajectory Detection of Moving Pixel-sized Target, in Proceed of IEEE Inter Confer on Systems,” Man and Cybernetics, Vancouver, Canada 3, 2570–2575 (1995).
  9. M. Diani, A. Baldacci, and G. Corsini, “Joint striping noise removal and background clutter cancellation in IR naval surveillance systems,” IEE P-Vis, Image Sign 148(6), 407–412 (2001).
    [Crossref]
  10. A. Tartakovsky and R. Blazek, “Effective adaptive spatial-temporal technique for clutter rejection in IRST,” Proc. SPIE 4048, 85–95 (2000).
    [Crossref]
  11. A. G. Tartakovsky and J. Brown, “Adaptive spatial-temporal filtering methods for clutter removal and target tracking,” IEEE T Aero Elec Sys 44(4), 1522–1537 (2008).
    [Crossref]
  12. S. Kim and J. Lee, “Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track,” Sensors (Basel) 14(7), 13210–13242 (2014).
    [Crossref] [PubMed]
  13. J. A. Shaw and M. Vollmer, “Blue sun glints on water viewed through a polarizer,” Appl. Opt. 56(19), G36–G41 (2017).
    [Crossref] [PubMed]
  14. M. Ottaviani, C. Merck, S. Long, J. Koskulics, K. Stamnes, W. Su, and W. Wiscombe, “Time-resolved polarimetry over water waves: relating glints and surface statistics,” Appl. Opt. 47(10), 1638–1648 (2008).
    [Crossref] [PubMed]
  15. D. K. Lynch, D. S. P. Dearborn, and J. A. Lock, “Glitter and glints on water,” Appl. Opt. 50(28), F39–F49 (2011).
    [Crossref] [PubMed]
  16. G. Wang, J. Wang, Z. Zhang, and B. Cui, “Performance of eliminating sun glints reflected off wave surface by polarization filtering under influence of waves,” Optik (Stuttg.) 127(5), 3143–3149 (2016).
    [Crossref]
  17. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [Crossref]
  18. C. Cox and W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps Inst Oceanogr Bull 6, 401–487 (1956).
  19. M. Ottaviani, C. Merck, S. Long, J. Koskulics, K. Stamnes, W. Su, and W. Wiscombe, “Time-resolved polarimetry over water waves: relating glints and surface statistics,” Appl. Opt. 47(10), 1638–1648 (2008).
    [Crossref] [PubMed]
  20. S. He, X. Wang, R. Xia, W. Jin, and J. Liang, “Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering,” Appl. Opt. 57(7), B150–B159 (2018).
    [Crossref] [PubMed]
  21. J. Tessendorf, “Simulating Ocean Water,” Presented at SIGGRAPH 2002 course “Simulating Nature,” Realistic and Interactive Techniques,” 21 July, 2002.
  22. V. Scholl and A. Gerace, “Removing glint with video processing to enhance underwater target detection,” Presented at 2013 IEEE Western Image Processing Workshop (WNYIPW), New York, 2013.
    [Crossref]
  23. D. Clarke and J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, 1971)
  24. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]

2018 (2)

2017 (1)

2016 (2)

G. Wang, J. Wang, Z. Zhang, and B. Cui, “Performance of eliminating sun glints reflected off wave surface by polarization filtering under influence of waves,” Optik (Stuttg.) 127(5), 3143–3149 (2016).
[Crossref]

H. Zhao, Z. Ji, Y. Zhang, X. Sun, P. Song, and Y. Li, “Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint,” Opt. Express 24(15), 16396–16409 (2016).
[Crossref] [PubMed]

2014 (1)

S. Kim and J. Lee, “Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track,” Sensors (Basel) 14(7), 13210–13242 (2014).
[Crossref] [PubMed]

2011 (1)

2008 (3)

2006 (1)

2001 (1)

M. Diani, A. Baldacci, and G. Corsini, “Joint striping noise removal and background clutter cancellation in IR naval surveillance systems,” IEE P-Vis, Image Sign 148(6), 407–412 (2001).
[Crossref]

2000 (1)

A. Tartakovsky and R. Blazek, “Effective adaptive spatial-temporal technique for clutter rejection in IRST,” Proc. SPIE 4048, 85–95 (2000).
[Crossref]

1999 (1)

1995 (1)

Y. Xiong and P. Jiaxiong, “An Effective Method for Trajectory Detection of Moving Pixel-sized Target, in Proceed of IEEE Inter Confer on Systems,” Man and Cybernetics, Vancouver, Canada 3, 2570–2575 (1995).

1992 (2)

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid- and far-infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 176–185 (1992).
[Crossref]

1956 (1)

C. Cox and W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps Inst Oceanogr Bull 6, 401–487 (1956).

1954 (1)

Baldacci, A.

M. Diani, A. Baldacci, and G. Corsini, “Joint striping noise removal and background clutter cancellation in IR naval surveillance systems,” IEE P-Vis, Image Sign 148(6), 407–412 (2001).
[Crossref]

Blazek, R.

A. Tartakovsky and R. Blazek, “Effective adaptive spatial-temporal technique for clutter rejection in IRST,” Proc. SPIE 4048, 85–95 (2000).
[Crossref]

Brown, J.

A. G. Tartakovsky and J. Brown, “Adaptive spatial-temporal filtering methods for clutter removal and target tracking,” IEEE T Aero Elec Sys 44(4), 1522–1537 (2008).
[Crossref]

Chenault, D. B.

Cooper, A. W.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 176–185 (1992).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid- and far-infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

Corsini, G.

M. Diani, A. Baldacci, and G. Corsini, “Joint striping noise removal and background clutter cancellation in IR naval surveillance systems,” IEE P-Vis, Image Sign 148(6), 407–412 (2001).
[Crossref]

Cox, C.

C. Cox and W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps Inst Oceanogr Bull 6, 401–487 (1956).

C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
[Crossref]

Crittenden, E. C.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 176–185 (1992).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid- and far-infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

Cui, B.

G. Wang, J. Wang, Z. Zhang, and B. Cui, “Performance of eliminating sun glints reflected off wave surface by polarization filtering under influence of waves,” Optik (Stuttg.) 127(5), 3143–3149 (2016).
[Crossref]

Dearborn, D. S. P.

Diani, M.

M. Diani, A. Baldacci, and G. Corsini, “Joint striping noise removal and background clutter cancellation in IR naval surveillance systems,” IEE P-Vis, Image Sign 148(6), 407–412 (2001).
[Crossref]

Fang, Y. J.

Gerace, A.

V. Scholl and A. Gerace, “Removing glint with video processing to enhance underwater target detection,” Presented at 2013 IEEE Western Image Processing Workshop (WNYIPW), New York, 2013.
[Crossref]

Goldstein, D. L.

Gregoris, D. J.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 176–185 (1992).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid- and far-infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

He, S.

Ji, Z.

Jiaxiong, P.

Y. Xiong and P. Jiaxiong, “An Effective Method for Trajectory Detection of Moving Pixel-sized Target, in Proceed of IEEE Inter Confer on Systems,” Man and Cybernetics, Vancouver, Canada 3, 2570–2575 (1995).

Jin, W.

Jin, W. Q.

Kim, S.

S. Kim and J. Lee, “Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track,” Sensors (Basel) 14(7), 13210–13242 (2014).
[Crossref] [PubMed]

Koskulics, J.

Lee, J.

S. Kim and J. Lee, “Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track,” Sensors (Basel) 14(7), 13210–13242 (2014).
[Crossref] [PubMed]

Li, Y.

Liang, J.

Liang, J. A.

Lock, J. A.

Long, S.

Lynch, D. K.

Merck, C.

Milne, E. A.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid- and far-infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 176–185 (1992).
[Crossref]

Moss, E.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid- and far-infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 176–185 (1992).
[Crossref]

Munk, W.

Munk, W. H.

C. Cox and W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps Inst Oceanogr Bull 6, 401–487 (1956).

Ottaviani, M.

Scholl, V.

V. Scholl and A. Gerace, “Removing glint with video processing to enhance underwater target detection,” Presented at 2013 IEEE Western Image Processing Workshop (WNYIPW), New York, 2013.
[Crossref]

Shaw, J. A.

Song, P.

Stamnes, K.

Su, W.

Sun, X.

Tartakovsky, A.

A. Tartakovsky and R. Blazek, “Effective adaptive spatial-temporal technique for clutter rejection in IRST,” Proc. SPIE 4048, 85–95 (2000).
[Crossref]

Tartakovsky, A. G.

A. G. Tartakovsky and J. Brown, “Adaptive spatial-temporal filtering methods for clutter removal and target tracking,” IEEE T Aero Elec Sys 44(4), 1522–1537 (2008).
[Crossref]

Tyo, J. S.

Vollmer, M.

Walker, P. L.

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 176–185 (1992).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid- and far-infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

Wang, G.

G. Wang, J. Wang, Z. Zhang, and B. Cui, “Performance of eliminating sun glints reflected off wave surface by polarization filtering under influence of waves,” Optik (Stuttg.) 127(5), 3143–3149 (2016).
[Crossref]

Wang, J.

G. Wang, J. Wang, Z. Zhang, and B. Cui, “Performance of eliminating sun glints reflected off wave surface by polarization filtering under influence of waves,” Optik (Stuttg.) 127(5), 3143–3149 (2016).
[Crossref]

Wang, X.

Wiscombe, W.

Xia, R.

Xiong, Y.

Y. Xiong and P. Jiaxiong, “An Effective Method for Trajectory Detection of Moving Pixel-sized Target, in Proceed of IEEE Inter Confer on Systems,” Man and Cybernetics, Vancouver, Canada 3, 2570–2575 (1995).

Zhang, Y.

Zhang, Z.

G. Wang, J. Wang, Z. Zhang, and B. Cui, “Performance of eliminating sun glints reflected off wave surface by polarization filtering under influence of waves,” Optik (Stuttg.) 127(5), 3143–3149 (2016).
[Crossref]

Zhao, H.

Zhou, J. J.

Appl. Opt. (8)

J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38(15), 3157–3165 (1999).
[Crossref] [PubMed]

J. A. Liang, X. Wang, Y. J. Fang, J. J. Zhou, S. He, and W. Q. Jin, “Water surface-clutter suppression method based on infrared polarization information,” Appl. Opt. 57(16), 4649–4658 (2018).
[Crossref] [PubMed]

J. A. Shaw and M. Vollmer, “Blue sun glints on water viewed through a polarizer,” Appl. Opt. 56(19), G36–G41 (2017).
[Crossref] [PubMed]

M. Ottaviani, C. Merck, S. Long, J. Koskulics, K. Stamnes, W. Su, and W. Wiscombe, “Time-resolved polarimetry over water waves: relating glints and surface statistics,” Appl. Opt. 47(10), 1638–1648 (2008).
[Crossref] [PubMed]

D. K. Lynch, D. S. P. Dearborn, and J. A. Lock, “Glitter and glints on water,” Appl. Opt. 50(28), F39–F49 (2011).
[Crossref] [PubMed]

M. Ottaviani, C. Merck, S. Long, J. Koskulics, K. Stamnes, W. Su, and W. Wiscombe, “Time-resolved polarimetry over water waves: relating glints and surface statistics,” Appl. Opt. 47(10), 1638–1648 (2008).
[Crossref] [PubMed]

S. He, X. Wang, R. Xia, W. Jin, and J. Liang, “Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering,” Appl. Opt. 57(7), B150–B159 (2018).
[Crossref] [PubMed]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
[Crossref] [PubMed]

IEE P-Vis, Image Sign (1)

M. Diani, A. Baldacci, and G. Corsini, “Joint striping noise removal and background clutter cancellation in IR naval surveillance systems,” IEE P-Vis, Image Sign 148(6), 407–412 (2001).
[Crossref]

IEEE T Aero Elec Sys (1)

A. G. Tartakovsky and J. Brown, “Adaptive spatial-temporal filtering methods for clutter removal and target tracking,” IEEE T Aero Elec Sys 44(4), 1522–1537 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

Man and Cybernetics, Vancouver, Canada (1)

Y. Xiong and P. Jiaxiong, “An Effective Method for Trajectory Detection of Moving Pixel-sized Target, in Proceed of IEEE Inter Confer on Systems,” Man and Cybernetics, Vancouver, Canada 3, 2570–2575 (1995).

Opt. Express (1)

Optik (Stuttg.) (1)

G. Wang, J. Wang, Z. Zhang, and B. Cui, “Performance of eliminating sun glints reflected off wave surface by polarization filtering under influence of waves,” Optik (Stuttg.) 127(5), 3143–3149 (2016).
[Crossref]

Proc. SPIE (3)

A. Tartakovsky and R. Blazek, “Effective adaptive spatial-temporal technique for clutter rejection in IRST,” Proc. SPIE 4048, 85–95 (2000).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Mid- and far-infrared measurements of sun glint from the sea surface,” Proc. SPIE 1749, 176–185 (1992).
[Crossref]

A. W. Cooper, E. C. Crittenden, E. A. Milne, P. L. Walker, E. Moss, and D. J. Gregoris, “Dual-band infrared polarization measurements of sun glint from the sea surface,” Proc. SPIE 1687, 176–185 (1992).
[Crossref]

Scripps Inst Oceanogr Bull (1)

C. Cox and W. H. Munk, “Slopes of the sea surface deduced from photographs of sun glitter,” Scripps Inst Oceanogr Bull 6, 401–487 (1956).

Sensors (Basel) (1)

S. Kim and J. Lee, “Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track,” Sensors (Basel) 14(7), 13210–13242 (2014).
[Crossref] [PubMed]

Other (5)

A.N. de Jong, B. Piet, W. Schwering, P. J. Fritz, and W. H. Gunter, “Optical characteristics of small surface targets, measured in the False Bay, South Africa,” in Proc. SPIE 2009 (2007), 7300: 730003.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition (Prentice Hall, 2003).

J. Tessendorf, “Simulating Ocean Water,” Presented at SIGGRAPH 2002 course “Simulating Nature,” Realistic and Interactive Techniques,” 21 July, 2002.

V. Scholl and A. Gerace, “Removing glint with video processing to enhance underwater target detection,” Presented at 2013 IEEE Western Image Processing Workshop (WNYIPW), New York, 2013.
[Crossref]

D. Clarke and J. F. Grainger, Polarized Light and Optical Measurement (Pergamon, 1971)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 I, DOLP, and AOP simulation images at three different instants in (a) scene one and (b) scene two.
Fig. 2
Fig. 2 Number of sun glints appearing in scenes one (left) and two (right) as functions of time.
Fig. 3
Fig. 3 Statistics on the number of sun glints occurring over time at each pixel position in scenes one (left) and two (right) over the modeling period. The occurrence frequencies of each pixel are color coded.
Fig. 4
Fig. 4 I and DOLP mean values of sun glint and non-glint regions in (a) scene one and (b) scene two over time.
Fig. 5
Fig. 5 Schematic of sea clutter suppression method data processing approach.
Fig. 6
Fig. 6 Light intensity at detector as a continuous function of analyzer angle (∂ = 0°)
Fig. 7
Fig. 7 I(θ)/I as a function of θ and DOLP
Fig. 8
Fig. 8 Clutter scene image and clutter suppression images from the sea surface buoy experiment. (a) Clutter scene image. (b) Clutter suppression image obtained using complete method. (c) Clutter suppression image obtained using simplified method
Fig. 9
Fig. 9 Metal cylinder experiment linearly polarized and clutter suppression images.

Tables (5)

Tables Icon

Table 1 Statistics on sun glint recurrence at pixel positions in scenes one and two over the modeling period

Tables Icon

Table 2 Ranges of intensity (I) and DOLP mean values of sun glint and non-glint regions in scenes one and two changing over time

Tables Icon

Table 3 SCR and STD of preliminary clutter suppression image at each fixed analyzer angle produced by complete method.

Tables Icon

Table 4 SCR and STD of the final clutter suppression images processed by the complete and simplified methods.

Tables Icon

Table 5 SCRs and STDs of the images in Fig. 9.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H( x,t )= k H ˜ ( k,t )exp( ikx ) ,
H ˜ ( k,t )= H ˜ 0 ( k )exp[ iω( k )t ]+ H ˜ 0 * ( k )exp[ iω( k )t ]
H ˜ 0 ( k )= 1 2 ( ξ r +i ξ i ) Ψ h ( k )Δ k x Δ k z ,
ω 2 ( k )=gk,
f θ n ( x,y )=min{ f θ n ( x,y,t ) }, θ n+1 θ n = 180 /N,
F( x,y )=min{ f θ n ( x,y ) }
I( θ )= I pol ( θ )+ 1 2 I n = I pol cos 2 ( θ )+ 1 2 I n ,
I( θ )=I[ DOLP cos 2 ( θ )+ 1 2 1 2 DOLP ],
I( θ ) I =DOLP cos 2 ( θ )+ 1 2 1 2 DOLP.

Metrics