Abstract

Electrical cross coupling is regarded as a major obstacle to achieving high-performance miniature fiber-optic gyroscopes (FOGs), because it can cause dead bands, which are critical errors in FOGs. Using a differential photodiode amplifier has proven to be effective in rejecting coupled interference. However, the conventional three-op-amp instrumentation amplifier cannot provide a miniature FOG’s bandwidth requirements, because of the large photodiode capacitance and parasitic capacitance. We present a high-performance, fully differential photodiode amplifier, where the bandwidth limitations are removed by applying a reverse bias to the photodiode and replacing the feedback resistor with a modified tee-network and a DC cancellation loop. For an experimental FOG with a 300 m fiber coil, we demonstrate a fully differential photodiode amplifier with 880 kΩ gain and 3.5 MHz bandwidth. In the FOG performance test, it not only reduces the angular random walk and bias drift, but also eliminates the approximately 1°/h dead band observed in the same FOG using a PINFET receiver, demonstrating its effectiveness in suppressing coupled interference.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photodiode preamplifier systems: low-noise positive-feedback

E. J. Fjarlie
Appl. Opt. 16(2) 385-392 (1977)

Low-noise extended-frequency response with cooled silicon photodiodes

Robert S. Neiswander and Gordon S. Plews
Appl. Opt. 14(11) 2720-2726 (1975)

An InSb charge amplifier for use in a spectrometer array

Don Hartill, Franco Lisi, and Andrea Bettarini
Appl. Opt. 25(10) 1701-1706 (1986)

References

  • View by:
  • |
  • |
  • |

  1. H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 2014).
  2. G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” in Fiber Optic Sensors and Applications XIII, E. Udd, G. Pickrell, and H. H. Du, eds., Proc. SPIE 9852, 985207 (2016).
  3. I. R. Edu, R. Obreja, and T. L. Grigorie, “Current technologies and trends in the development of gyros used in navigation applications-a review,” in Proceedings of the 5th WSEAS International Conference on Communications and Information Technology, (World Scientific and Engineering Academy and Society, 2011), pp. 63–68.
  4. F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
    [Crossref]
  5. C. Zhang, S. Zhang, X. Pan, and J. Jin, “Six-state phase modulation for reduced crosstalk in a fiber optic gyroscope,” Opt. Express 26(8), 10535–10549 (2018).
    [Crossref] [PubMed]
  6. K.-H. Chong, W.-S. Choi, and K.-T. Chong, “Analysis of dead zone sources in a closed-loop fiber optic gyroscope,” Appl. Opt. 55(1), 165–170 (2016).
    [Crossref] [PubMed]
  7. D. A. Egorov, R. O. Olekhnovich, A. A. Untilov, A. S. Aleinik, G. B. Deineka, and V. E. Strigalev, “Study on dead zones of fiber-optic gyros,” Gyroscopy Navigation 2(4), 197–207 (2011).
    [Crossref]
  8. P. A. Ward, “Interferometric fiber optic gyroscope with off-frequency modulation signals,” 7,817,284. U.S. Patent. 2010 Oct 19.
  9. J. Jing, T. Hai-Ting, P. Xiong, and S. Ning-Fang, “Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro,” Chin. Phys. B 19(3), 030701 (2010).
    [Crossref]
  10. J. G. Mark, D. A. Tazartes, and A. Cordova, “Method and apparatus for overcoming cross-coupling in a fiber optic gyroscope employing overmodulation,” 5,682,241. U.S. Patent. 1997 Oct 28.
  11. G. Spahlinger, “Fiber optic Sagnac interferometer with digital phase ramp resetting via correlation-free demodulator control,” 5,123,741 A. U.S. Patent. 1992 Jun 23.
  12. P. Wright, K. B. Ozanyan, S. J. Carey, and H. McCann, “Design of high-performance photodiode receivers for optical tomography,” IEEE Sens. J. 5(2), 281–288 (2005).
    [Crossref]
  13. H. Song, Y. Park, H. Kim, and H. Ko, “Fully integrated biopotential acquisition analog front-end IC,” Sensors (Basel) 15(10), 25139–25156 (2015).
    [Crossref] [PubMed]
  14. R. Yun and V. M. Joyner, “A monolithically integrated phase-sensitive optical sensor for frequency-domain NIR spectroscopy,” IEEE Sens. J. 10(7), 1234–1242 (2010).
    [Crossref]
  15. D. A. Tazartes, J. E. Higbee, J. A. Tazartes, J. K. P. Flamm, and J. G. Mark, “Ultra low noise optical receiver,” 5,521,555A. U.S. Patent. 1996 May 28.
  16. R. A. Kovacs, “Fiber optic angular rate sensor including arrangement for reducing output signal distortion,” 5,430,545A. U.S. Patent. 1995 Jul 4.
  17. T. J. Bingel, D. E. Smith, S. J. Sanders, D. T. Vo, C. G. Ross, and D. Mead, “High-linearity signal-processing amplifier,” 8,680,911. U.S. Patent. 2014 Mar 25.
  18. J. Nayak, “Fiber-optic gyroscopes: from design to production,” Appl. Opt. 50(25), E152–E161 (2011).
    [Crossref]
  19. H. Medjadba, S. Lecler, L. M. Simohamed, A. Chakari, and N. Javahiraly, “Optimizing the optical components choice for performances improvement of multimode fiber gyroscope,” in Photonics in the Transportation Industry: Auto to Aerospace II, A. A. Kazemi, B. C. Kress, eds., Proc. SPIE 7314, 731408 (2009).
  20. M. Massarotto, A. Carlosena, and A. J. Lopez-Martin, “Two-stage differential charge and transresistance amplifiers,” IEEE Trans. Instrum. Meas. 57(2), 309–320 (2008).
    [Crossref]
  21. J. G. Graeme, Photodiode Amplifiers: Op Amp Solutions (McGraw-Hill, 1996).
  22. W. G. Jung, Op Amp Applications Handbook (Newnes, 2005).
  23. D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
    [Crossref]
  24. M. Johnson, Photodetection and Measurement: Maximizing Performance in Optical Systems (McGraw-Hill, 2003).
  25. S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits (McGraw-Hill, 2002).
  26. D. Nordin and K. Hyypp, “Single-stage photodiode op-amp solution suited for a self-mixing FMCW system,” IEEE Trans. Instrum. Meas. 52(6), 1820–1824 (2003).
    [Crossref]
  27. E. Bogatin, Signal and Power Integrity—Simplified, Second Edition (Prentice-Hall, 2010).

2018 (1)

2016 (1)

2015 (1)

H. Song, Y. Park, H. Kim, and H. Ko, “Fully integrated biopotential acquisition analog front-end IC,” Sensors (Basel) 15(10), 25139–25156 (2015).
[Crossref] [PubMed]

2014 (2)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
[Crossref]

2011 (2)

D. A. Egorov, R. O. Olekhnovich, A. A. Untilov, A. S. Aleinik, G. B. Deineka, and V. E. Strigalev, “Study on dead zones of fiber-optic gyros,” Gyroscopy Navigation 2(4), 197–207 (2011).
[Crossref]

J. Nayak, “Fiber-optic gyroscopes: from design to production,” Appl. Opt. 50(25), E152–E161 (2011).
[Crossref]

2010 (2)

J. Jing, T. Hai-Ting, P. Xiong, and S. Ning-Fang, “Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro,” Chin. Phys. B 19(3), 030701 (2010).
[Crossref]

R. Yun and V. M. Joyner, “A monolithically integrated phase-sensitive optical sensor for frequency-domain NIR spectroscopy,” IEEE Sens. J. 10(7), 1234–1242 (2010).
[Crossref]

2008 (1)

M. Massarotto, A. Carlosena, and A. J. Lopez-Martin, “Two-stage differential charge and transresistance amplifiers,” IEEE Trans. Instrum. Meas. 57(2), 309–320 (2008).
[Crossref]

2005 (1)

P. Wright, K. B. Ozanyan, S. J. Carey, and H. McCann, “Design of high-performance photodiode receivers for optical tomography,” IEEE Sens. J. 5(2), 281–288 (2005).
[Crossref]

2003 (1)

D. Nordin and K. Hyypp, “Single-stage photodiode op-amp solution suited for a self-mixing FMCW system,” IEEE Trans. Instrum. Meas. 52(6), 1820–1824 (2003).
[Crossref]

Aleinik, A. S.

D. A. Egorov, R. O. Olekhnovich, A. A. Untilov, A. S. Aleinik, G. B. Deineka, and V. E. Strigalev, “Study on dead zones of fiber-optic gyros,” Gyroscopy Navigation 2(4), 197–207 (2011).
[Crossref]

Armenise, M. N.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

Baldi, D.

D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
[Crossref]

Carey, S. J.

P. Wright, K. B. Ozanyan, S. J. Carey, and H. McCann, “Design of high-performance photodiode receivers for optical tomography,” IEEE Sens. J. 5(2), 281–288 (2005).
[Crossref]

Carlosena, A.

M. Massarotto, A. Carlosena, and A. J. Lopez-Martin, “Two-stage differential charge and transresistance amplifiers,” IEEE Trans. Instrum. Meas. 57(2), 309–320 (2008).
[Crossref]

Choi, W.-S.

Chong, K.-H.

Chong, K.-T.

Ciminelli, C.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

Deineka, G. B.

D. A. Egorov, R. O. Olekhnovich, A. A. Untilov, A. S. Aleinik, G. B. Deineka, and V. E. Strigalev, “Study on dead zones of fiber-optic gyros,” Gyroscopy Navigation 2(4), 197–207 (2011).
[Crossref]

Dell’Olio, F.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

Egorov, D. A.

D. A. Egorov, R. O. Olekhnovich, A. A. Untilov, A. S. Aleinik, G. B. Deineka, and V. E. Strigalev, “Study on dead zones of fiber-optic gyros,” Gyroscopy Navigation 2(4), 197–207 (2011).
[Crossref]

Hai-Ting, T.

J. Jing, T. Hai-Ting, P. Xiong, and S. Ning-Fang, “Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro,” Chin. Phys. B 19(3), 030701 (2010).
[Crossref]

Hyypp, K.

D. Nordin and K. Hyypp, “Single-stage photodiode op-amp solution suited for a self-mixing FMCW system,” IEEE Trans. Instrum. Meas. 52(6), 1820–1824 (2003).
[Crossref]

Jin, J.

Jing, J.

J. Jing, T. Hai-Ting, P. Xiong, and S. Ning-Fang, “Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro,” Chin. Phys. B 19(3), 030701 (2010).
[Crossref]

Joyner, V. M.

R. Yun and V. M. Joyner, “A monolithically integrated phase-sensitive optical sensor for frequency-domain NIR spectroscopy,” IEEE Sens. J. 10(7), 1234–1242 (2010).
[Crossref]

Kim, H.

H. Song, Y. Park, H. Kim, and H. Ko, “Fully integrated biopotential acquisition analog front-end IC,” Sensors (Basel) 15(10), 25139–25156 (2015).
[Crossref] [PubMed]

Ko, H.

H. Song, Y. Park, H. Kim, and H. Ko, “Fully integrated biopotential acquisition analog front-end IC,” Sensors (Basel) 15(10), 25139–25156 (2015).
[Crossref] [PubMed]

Li, D.

D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
[Crossref]

Lopez-Martin, A. J.

M. Massarotto, A. Carlosena, and A. J. Lopez-Martin, “Two-stage differential charge and transresistance amplifiers,” IEEE Trans. Instrum. Meas. 57(2), 309–320 (2008).
[Crossref]

Massarotto, M.

M. Massarotto, A. Carlosena, and A. J. Lopez-Martin, “Two-stage differential charge and transresistance amplifiers,” IEEE Trans. Instrum. Meas. 57(2), 309–320 (2008).
[Crossref]

Mazzanti, A.

D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
[Crossref]

McCann, H.

P. Wright, K. B. Ozanyan, S. J. Carey, and H. McCann, “Design of high-performance photodiode receivers for optical tomography,” IEEE Sens. J. 5(2), 281–288 (2005).
[Crossref]

Minoia, G.

D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
[Crossref]

Nayak, J.

Ning-Fang, S.

J. Jing, T. Hai-Ting, P. Xiong, and S. Ning-Fang, “Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro,” Chin. Phys. B 19(3), 030701 (2010).
[Crossref]

Nordin, D.

D. Nordin and K. Hyypp, “Single-stage photodiode op-amp solution suited for a self-mixing FMCW system,” IEEE Trans. Instrum. Meas. 52(6), 1820–1824 (2003).
[Crossref]

Olekhnovich, R. O.

D. A. Egorov, R. O. Olekhnovich, A. A. Untilov, A. S. Aleinik, G. B. Deineka, and V. E. Strigalev, “Study on dead zones of fiber-optic gyros,” Gyroscopy Navigation 2(4), 197–207 (2011).
[Crossref]

Ozanyan, K. B.

P. Wright, K. B. Ozanyan, S. J. Carey, and H. McCann, “Design of high-performance photodiode receivers for optical tomography,” IEEE Sens. J. 5(2), 281–288 (2005).
[Crossref]

Pan, X.

Park, Y.

H. Song, Y. Park, H. Kim, and H. Ko, “Fully integrated biopotential acquisition analog front-end IC,” Sensors (Basel) 15(10), 25139–25156 (2015).
[Crossref] [PubMed]

Repossi, M.

D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
[Crossref]

Song, H.

H. Song, Y. Park, H. Kim, and H. Ko, “Fully integrated biopotential acquisition analog front-end IC,” Sensors (Basel) 15(10), 25139–25156 (2015).
[Crossref] [PubMed]

Strigalev, V. E.

D. A. Egorov, R. O. Olekhnovich, A. A. Untilov, A. S. Aleinik, G. B. Deineka, and V. E. Strigalev, “Study on dead zones of fiber-optic gyros,” Gyroscopy Navigation 2(4), 197–207 (2011).
[Crossref]

Svelto, F.

D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
[Crossref]

Tatoli, T.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

Temporiti, E.

D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
[Crossref]

Untilov, A. A.

D. A. Egorov, R. O. Olekhnovich, A. A. Untilov, A. S. Aleinik, G. B. Deineka, and V. E. Strigalev, “Study on dead zones of fiber-optic gyros,” Gyroscopy Navigation 2(4), 197–207 (2011).
[Crossref]

Wright, P.

P. Wright, K. B. Ozanyan, S. J. Carey, and H. McCann, “Design of high-performance photodiode receivers for optical tomography,” IEEE Sens. J. 5(2), 281–288 (2005).
[Crossref]

Xiong, P.

J. Jing, T. Hai-Ting, P. Xiong, and S. Ning-Fang, “Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro,” Chin. Phys. B 19(3), 030701 (2010).
[Crossref]

Yun, R.

R. Yun and V. M. Joyner, “A monolithically integrated phase-sensitive optical sensor for frequency-domain NIR spectroscopy,” IEEE Sens. J. 10(7), 1234–1242 (2010).
[Crossref]

Zhang, C.

Zhang, S.

Appl. Opt. (2)

Chin. Phys. B (1)

J. Jing, T. Hai-Ting, P. Xiong, and S. Ning-Fang, “Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro,” Chin. Phys. B 19(3), 030701 (2010).
[Crossref]

Gyroscopy Navigation (1)

D. A. Egorov, R. O. Olekhnovich, A. A. Untilov, A. S. Aleinik, G. B. Deineka, and V. E. Strigalev, “Study on dead zones of fiber-optic gyros,” Gyroscopy Navigation 2(4), 197–207 (2011).
[Crossref]

IEEE J. Solid-State Circuits (1)

D. Li, G. Minoia, M. Repossi, D. Baldi, E. Temporiti, A. Mazzanti, and F. Svelto, “A low-noise design technique for high-speed CMOS optical receivers,” IEEE J. Solid-State Circuits 49(6), 1437–1447 (2014).
[Crossref]

IEEE Sens. J. (2)

P. Wright, K. B. Ozanyan, S. J. Carey, and H. McCann, “Design of high-performance photodiode receivers for optical tomography,” IEEE Sens. J. 5(2), 281–288 (2005).
[Crossref]

R. Yun and V. M. Joyner, “A monolithically integrated phase-sensitive optical sensor for frequency-domain NIR spectroscopy,” IEEE Sens. J. 10(7), 1234–1242 (2010).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

M. Massarotto, A. Carlosena, and A. J. Lopez-Martin, “Two-stage differential charge and transresistance amplifiers,” IEEE Trans. Instrum. Meas. 57(2), 309–320 (2008).
[Crossref]

D. Nordin and K. Hyypp, “Single-stage photodiode op-amp solution suited for a self-mixing FMCW system,” IEEE Trans. Instrum. Meas. 52(6), 1820–1824 (2003).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. Rapid Publ. 9, 14013 (2014).
[Crossref]

Opt. Express (1)

Sensors (Basel) (1)

H. Song, Y. Park, H. Kim, and H. Ko, “Fully integrated biopotential acquisition analog front-end IC,” Sensors (Basel) 15(10), 25139–25156 (2015).
[Crossref] [PubMed]

Other (15)

H. Medjadba, S. Lecler, L. M. Simohamed, A. Chakari, and N. Javahiraly, “Optimizing the optical components choice for performances improvement of multimode fiber gyroscope,” in Photonics in the Transportation Industry: Auto to Aerospace II, A. A. Kazemi, B. C. Kress, eds., Proc. SPIE 7314, 731408 (2009).

D. A. Tazartes, J. E. Higbee, J. A. Tazartes, J. K. P. Flamm, and J. G. Mark, “Ultra low noise optical receiver,” 5,521,555A. U.S. Patent. 1996 May 28.

R. A. Kovacs, “Fiber optic angular rate sensor including arrangement for reducing output signal distortion,” 5,430,545A. U.S. Patent. 1995 Jul 4.

T. J. Bingel, D. E. Smith, S. J. Sanders, D. T. Vo, C. G. Ross, and D. Mead, “High-linearity signal-processing amplifier,” 8,680,911. U.S. Patent. 2014 Mar 25.

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 2014).

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” in Fiber Optic Sensors and Applications XIII, E. Udd, G. Pickrell, and H. H. Du, eds., Proc. SPIE 9852, 985207 (2016).

I. R. Edu, R. Obreja, and T. L. Grigorie, “Current technologies and trends in the development of gyros used in navigation applications-a review,” in Proceedings of the 5th WSEAS International Conference on Communications and Information Technology, (World Scientific and Engineering Academy and Society, 2011), pp. 63–68.

P. A. Ward, “Interferometric fiber optic gyroscope with off-frequency modulation signals,” 7,817,284. U.S. Patent. 2010 Oct 19.

J. G. Mark, D. A. Tazartes, and A. Cordova, “Method and apparatus for overcoming cross-coupling in a fiber optic gyroscope employing overmodulation,” 5,682,241. U.S. Patent. 1997 Oct 28.

G. Spahlinger, “Fiber optic Sagnac interferometer with digital phase ramp resetting via correlation-free demodulator control,” 5,123,741 A. U.S. Patent. 1992 Jun 23.

E. Bogatin, Signal and Power Integrity—Simplified, Second Edition (Prentice-Hall, 2010).

J. G. Graeme, Photodiode Amplifiers: Op Amp Solutions (McGraw-Hill, 1996).

W. G. Jung, Op Amp Applications Handbook (Newnes, 2005).

M. Johnson, Photodetection and Measurement: Maximizing Performance in Optical Systems (McGraw-Hill, 2003).

S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits (McGraw-Hill, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Schematic of a closed-loop fiber optic gyroscope (FOG) showing the electrical cross-coupling path from the modulation voltage to the photodiode current. The FOG consists of a Sagnac interferometer (including a light source, coupler, phase modulator, and fiber coil) and electronic components (including a photodiode, preamplifier, analog/digital converter, logic processor, digital/analog converter, and buffer amplifier) mounted on a common circuit board.
Fig. 2
Fig. 2 Photodiode response to the applied phase modulation ± φm when the FOG is at rest or is subjected to rotation. ΔφR denotes the Sagnac phase caused by the rotation rate.
Fig. 3
Fig. 3 Conventional differential photodiode amplifiers: (a) simpler topology, (b) three-op-amp instrumentation amplifier. Both of them are subjected to a common-mode interfering signal ee and produce two equal noise currents ine that are then cancelled out by a differential amplifier.
Fig. 4
Fig. 4 (a) Circuit model and (b) noise-gain plot of a classic transimpedance amplifier (TIA) for the bandwidth analysis of the three-op-amp instrumentation amplifier.
Fig. 5
Fig. 5 Tee-network intended to reduce the effect of parasitic capacitances. The bias voltage VB at the non-inverting input is also amplified by the tee-network to produce a large output offset.
Fig. 6
Fig. 6 Basic structure of the modified TIA with a DC cancellation loop.
Fig. 7
Fig. 7 Complete circuit schematic of the proposed fully differential photodiode amplifier, consisting of two matching modified TIAs shown in Fig. 6 and a fully differential amplifier A5.
Fig. 8
Fig. 8 SPICE simulated transfer functions of the fully differential photodiode amplifier and three-op-amp instrumentation amplifier, along with the simulation parameters used.
Fig. 9
Fig. 9 (a) Noise equivalent model for the modified TIA in Fig. 6, where enINT denotes the noise effect of the Deboo integrator; (b) noise equivalent model for the Deboo integrator.
Fig. 10
Fig. 10 SPICE simulated (a) noise gains and (b) output noise densities of the classic TIA in Fig. 4(a) and the modified TIA in Fig. 6. The simulation parameters are listed in Fig. 10(a).
Fig. 11
Fig. 11 Photograph of the proposed fully differential photodiode amplifier: (a) front, (b) back.
Fig. 12
Fig. 12 Time-domain response of the modified circuit to a square wave with an amplitude of 800 mV. The rise time is 97.5 ns, indicating a bandwidth of ~3.5 MHz.
Fig. 13
Fig. 13 Measured frequency spectra of the single-ended output port eOP in Fig. 7 and the differential output port VOP in Fig. 7.
Fig. 14
Fig. 14 Measured Allan deviation of a 300 m FOG using a PINFET receiver or the proposed fully differential photodiode amplifier.
Fig. 15
Fig. 15 Averaged bias data of the FOG using (a) the PINFET receiver or (b) the proposed fully differential photodiode amplifier.
Fig. 16
Fig. 16 Dead band measurement result of the FOG using (a) the PINFET receiver or (b) the proposed fully differential photodiode amplifier.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C f = C i 2π R f f c .
e O = i P (1+ R 1 / R 2 ) R fT + (1+ R 1 / R 2 ) V B ( R 1 / R 2 ) V T DCoffset .
H(s)= 1 RCs ,
e O =(1+A)( i P R fT + V B ) A RCs e O ,
e O =(1+A)( i P R fT + V B ) RCs A+RCs .
V O,dm i P =2 R 4 R 3 (1+A) R fT 1+ R fT C f s RCs/A 1+ RCs/A ,
A neT (1+A) 1+ R fT ( C i + C f )s 1+ R fT C f s .
SNR= R feq (1+A) 4kT R fT = R feq 4kT(1+A) = R fT 4kT ,

Metrics