Abstract

We report on the fabrication of depressed cladding waveguides in periodically poled MgO doped LiTaO3 by using low-repetition-rate femtosecond laser writing, and their use for guided-wave second harmonic generation (SHG). The cladding waveguides exhibit different guiding performance along the extraordinary and ordinary polarizations. The temperature-dependent quasi-phase-matching (QPM) is realized to obtain SHG in the depressed cladding waveguides. The results show that the QPM temperature was dependent on the poling period and on the features of the cladding waveguides. The highest nonlinear conversion efficiency (0.74%W−1cm−2) was found in the waveguide fabricated with large scanning velocity (0.75 mm/s) and small radius (15 μm).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3

Kiminori Mizuuchi, Tomoya Sugita, Kazuhisa Yamamoto, Tatsuo Kawaguchi, Takeshi Yoshino, and Minoru Imaeda
Opt. Lett. 28(15) 1344-1346 (2003)

Multi-watt, broadband second-harmonic-generation in MgO:PPSLT waveguides fabricated with femtosecond laser micromachining

Mark Triplett, John Khaydarov, Xiaozhen Xu, Alireza Marandi, Gennady Imeshev, John Arntsen, Ajit Ninan, Gregory Miller, and Carsten Langrock
Opt. Express 27(15) 21102-21115 (2019)

31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode

Tomoya Sugita, Kiminori Mizuuchi, Yasuo Kitaoka, and Kazuhisa Yamamoto
Opt. Lett. 24(22) 1590-1592 (1999)

References

  • View by:
  • |
  • |
  • |

  1. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).
  2. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
    [Crossref] [PubMed]
  3. O. Toshiharu and S. Toshiaki, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8 mol % MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
    [Crossref]
  4. M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31(1), 83–85 (2006).
    [Crossref] [PubMed]
  5. M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
    [Crossref]
  6. K. Daneshvar, E. A. Giess, A. M. Bacon, D. G. Dawes, L. A. Gea, and L. A. Boatner, “Ion exchange in potassium titanyl phosphate,” Appl. Phys. Lett. 71(6), 756–758 (1997).
    [Crossref]
  7. L. Ma, O. Slattery, T. Chang, and X. Tang, “Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide,” Opt. Express 17(18), 15799–15807 (2009).
    [Crossref] [PubMed]
  8. F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  9. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
    [Crossref]
  10. H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
    [Crossref]
  11. R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]
  12. B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
    [PubMed]
  13. L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO(3) crystals,” Opt. Express 23(23), 30188–30194 (2015).
    [Crossref] [PubMed]
  14. G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3.,” Opt. Express 20(4), 4444–4453 (2012).
    [Crossref] [PubMed]
  15. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [Crossref]
  16. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
    [Crossref]
  17. J. R. Vázquez de Aldana, P. Moreno, and L. Roso, “Ultrafast lasers: A new frontier for optical materials processing,” Opt. Mater. 34(3), 572–578 (2012).
    [Crossref]
  18. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  19. H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett. 32(11), 1536–1538 (2007).
    [Crossref] [PubMed]
  20. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [Crossref] [PubMed]
  21. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008).
    [Crossref] [PubMed]
  22. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
    [Crossref]
  23. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [Crossref]
  24. Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
    [Crossref]
  25. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
    [Crossref]
  26. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
    [Crossref]
  27. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
    [Crossref]
  28. S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
    [Crossref]
  29. S. Bhardwaj, K. Mittholiya, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser,” Appl. Opt. 56(20), 5692–5697 (2017).
    [Crossref] [PubMed]
  30. M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
    [Crossref]
  31. N. Dong, Y. Tan, A. Benayas, J. V. de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
    [Crossref] [PubMed]
  32. S. L. Li, Y. K. Ye, and M. W. Wang, “Femtosecond laser written channel optical waveguide in Nd:YAG crystal,” Opt. Laser Technol. 58, 89–93 (2014).
    [Crossref]
  33. C. Cheng, Y. Jia, J. R. V. de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51(1), 190–193 (2016).
    [Crossref]
  34. B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
    [Crossref]
  35. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
    [Crossref] [PubMed]
  36. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
    [Crossref] [PubMed]
  37. S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22(19), 23339–23348 (2014).
    [Crossref] [PubMed]
  38. W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
    [Crossref] [PubMed]
  39. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
    [Crossref] [PubMed]
  40. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
    [Crossref] [PubMed]
  41. H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
    [Crossref] [PubMed]
  42. E. Kifle, P. Loiko, X. Mateos, J. R. Vázquez de Aldana, A. Ródenas, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written hexagonal cladding waveguide in Tm:KLu(WO4)2: μ-Raman study and laser operation,” Opt. Mater. Express 7(12), 4258–4268 (2017).
    [Crossref]
  43. E. Kifle, X. Mateos, J. R. V. de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42(6), 1169–1172 (2017).
    [Crossref] [PubMed]
  44. X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
    [Crossref]
  45. X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
    [Crossref] [PubMed]
  46. Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
    [Crossref]
  47. T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
    [Crossref]
  48. D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
    [Crossref]
  49. M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
    [Crossref]
  50. J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997).
    [Crossref] [PubMed]
  51. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO(3).,” Opt. Lett. 25(9), 651–653 (2000).
    [Crossref] [PubMed]
  52. A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
    [Crossref]
  53. Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
    [Crossref]
  54. X. P. Hu, P. Xu, and S. N. Zhu, “Engineered quasi-phase-matching for laser techniques,” Photon. Res. 1(4), 171–185 (2013).
    [Crossref]
  55. Y. Ishigame, T. Suhara, and H. Nishihara, “LiNbO(3) waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett. 16(6), 375–377 (1991).
    [Crossref] [PubMed]
  56. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
    [Crossref] [PubMed]
  57. H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0mol% Mg-Doped Stoichiometric Lithium Tantalate,” Jpn. J. Appl. Phys. 52(3), 032601 (2013).
    [Crossref]
  58. A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
    [Crossref]
  59. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28(16), 1433–1435 (2003).
    [Crossref] [PubMed]
  60. Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
    [PubMed]

2018 (3)

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

2017 (3)

2016 (2)

X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
[Crossref] [PubMed]

C. Cheng, Y. Jia, J. R. V. de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51(1), 190–193 (2016).
[Crossref]

2015 (4)

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

O. Toshiharu and S. Toshiaki, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8 mol % MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
[Crossref]

S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
[Crossref]

L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO(3) crystals,” Opt. Express 23(23), 30188–30194 (2015).
[Crossref] [PubMed]

2014 (4)

S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22(19), 23339–23348 (2014).
[Crossref] [PubMed]

S. L. Li, Y. K. Ye, and M. W. Wang, “Femtosecond laser written channel optical waveguide in Nd:YAG crystal,” Opt. Laser Technol. 58, 89–93 (2014).
[Crossref]

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

2013 (3)

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0mol% Mg-Doped Stoichiometric Lithium Tantalate,” Jpn. J. Appl. Phys. 52(3), 032601 (2013).
[Crossref]

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

X. P. Hu, P. Xu, and S. N. Zhu, “Engineered quasi-phase-matching for laser techniques,” Photon. Res. 1(4), 171–185 (2013).
[Crossref]

2012 (5)

2011 (1)

2010 (4)

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (2)

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008).
[Crossref] [PubMed]

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

2007 (4)

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett. 32(11), 1536–1538 (2007).
[Crossref] [PubMed]

2006 (5)

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31(1), 83–85 (2006).
[Crossref] [PubMed]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

2005 (1)

2004 (2)

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
[PubMed]

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
[Crossref]

2003 (2)

2002 (3)

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
[Crossref] [PubMed]

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

2000 (2)

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO(3).,” Opt. Lett. 25(9), 651–653 (2000).
[Crossref] [PubMed]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

1997 (3)

K. Daneshvar, E. A. Giess, A. M. Bacon, D. G. Dawes, L. A. Gea, and L. A. Boatner, “Ion exchange in potassium titanyl phosphate,” Appl. Phys. Lett. 71(6), 756–758 (1997).
[Crossref]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997).
[Crossref] [PubMed]

1996 (1)

1995 (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

1991 (1)

1985 (1)

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Aguiló, M.

Albuquerque, A. A.

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

Aldana, J. R. V.

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Ams, M.

An, H.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Ancona, A.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Bacon, A. M.

K. Daneshvar, E. A. Giess, A. M. Bacon, D. G. Dawes, L. A. Gea, and L. A. Boatner, “Ion exchange in potassium titanyl phosphate,” Appl. Phys. Lett. 71(6), 756–758 (1997).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

Beecher, S.

Bellanca, G.

Benayas, A.

Bentini, G. G.

Bernard, R.

Bettiol, A. A.

Bhardwaj, S.

Bhatnagar, A.

Bi, Y.

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Bianconi, M.

Blau, P.

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Boatner, L. A.

K. Daneshvar, E. A. Giess, A. M. Bacon, D. G. Dawes, L. A. Gea, and L. A. Boatner, “Ion exchange in potassium titanyl phosphate,” Appl. Phys. Lett. 71(6), 756–758 (1997).
[Crossref]

Boes, A.

Bok Hyeon, K.

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Bookey, H. T.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Brown, G.

Bruner, A.

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
[Crossref]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[Crossref] [PubMed]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Chang, T.

Changsoo, J.

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Chen, F.

C. Cheng, Y. Jia, J. R. V. de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51(1), 190–193 (2016).
[Crossref]

L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO(3) crystals,” Opt. Express 23(23), 30188–30194 (2015).
[Crossref] [PubMed]

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

N. Dong, Y. Tan, A. Benayas, J. V. de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
[Crossref] [PubMed]

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

Chen, K. P.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Chen, X.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
[Crossref] [PubMed]

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Cheng, C.

C. Cheng, Y. Jia, J. R. V. de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51(1), 190–193 (2016).
[Crossref]

Cheng, Y.

Chiarini, M.

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Choi, S. Y.

Choi, S.-C.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Cianci, E.

Cojocaru, C.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Crespi, A.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

Cui, K.

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Daneshvar, K.

K. Daneshvar, E. A. Giess, A. M. Bacon, D. G. Dawes, L. A. Gea, and L. A. Boatner, “Ion exchange in potassium titanyl phosphate,” Appl. Phys. Lett. 71(6), 756–758 (1997).
[Crossref]

Daniell, G. J.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Das, B. K.

Davis, K. M.

Dawes, D. G.

K. Daneshvar, E. A. Giess, A. M. Bacon, D. G. Dawes, L. A. Gea, and L. A. Boatner, “Ion exchange in potassium titanyl phosphate,” Appl. Phys. Lett. 71(6), 756–758 (1997).
[Crossref]

de Aldana, J. R. V.

E. Kifle, X. Mateos, J. R. V. de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42(6), 1169–1172 (2017).
[Crossref] [PubMed]

C. Cheng, Y. Jia, J. R. V. de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51(1), 190–193 (2016).
[Crossref]

de Aldana, J. V.

De Nicola, P.

De Riedmatten, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

Dekker, P.

DeMicheli, M.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

Denz, C.

Dharmadhikari, A. K.

Dharmadhikari, J. A.

Díaz, F.

Do-Kyeong, K.

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Dong, N.

Dorofeev, V. V.

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

Drummond, M. V.

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Eason, R. W.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28(16), 1433–1435 (2003).
[Crossref] [PubMed]

Eger, D.

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
[Crossref]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[Crossref] [PubMed]

Fang, X.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Fejer, M. M.

Fleming, S.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Foglietti, V.

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Fujimura, M.

Furukawa, Y.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO(3).,” Opt. Lett. 25(9), 651–653 (2000).
[Crossref] [PubMed]

Gawith, C. B. E.

Gea, L. A.

K. Daneshvar, E. A. Giess, A. M. Bacon, D. G. Dawes, L. A. Gea, and L. A. Boatner, “Ion exchange in potassium titanyl phosphate,” Appl. Phys. Lett. 71(6), 756–758 (1997).
[Crossref]

Giess, E. A.

K. Daneshvar, E. A. Giess, A. M. Bacon, D. G. Dawes, L. A. Gea, and L. A. Boatner, “Ion exchange in potassium titanyl phosphate,” Appl. Phys. Lett. 71(6), 756–758 (1997).
[Crossref]

Gisin, N.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Griebner, U.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Hartwell, V.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Hatanaka, T.

Haunhorst, C. E.

He, F.

Heinrich, M.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

Herrmann, J.

Hirao, K.

Hirohashi, J.

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

Hoonsoo, K.

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Horn, W.

Hu, H.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

Hu, X.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Hu, X. P.

Hu, Y.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Imbrock, J.

Ishigame, Y.

Ito, H.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO(3).,” Opt. Lett. 25(9), 651–653 (2000).
[Crossref] [PubMed]

Jaque, D.

Jia, Y.

C. Cheng, Y. Jia, J. R. V. de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51(1), 190–193 (2016).
[Crossref]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Jung, C.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Kang, X.

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Kar, A. K.

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Karpinski, P.

X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
[Crossref] [PubMed]

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Katagai, T.

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0mol% Mg-Doped Stoichiometric Lithium Tantalate,” Jpn. J. Appl. Phys. 52(3), 032601 (2013).
[Crossref]

Katz, M.

Kenji, K.

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Kifle, E.

Kim, W.-K.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Kip, D.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Kitamura, K.

Ko, D.-K.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Koynov, K.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Kroesen, S.

Krolikowski, W.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
[Crossref] [PubMed]

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Kurimura, S.

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0mol% Mg-Doped Stoichiometric Lithium Tantalate,” Jpn. J. Appl. Phys. 52(3), 032601 (2013).
[Crossref]

Kurz, J. R.

Kyu-Sup, L.

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Lee, H.-M.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Lee, H.-Y.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Lee, Y. L.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Leng, Y.

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Li, J.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Li, S. L.

S. L. Li, Y. K. Ye, and M. W. Wang, “Femtosecond laser written channel optical waveguide in Nd:YAG crystal,” Opt. Laser Technol. 58, 89–93 (2014).
[Crossref]

Liao, Y.

Lim, H. H.

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0mol% Mg-Doped Stoichiometric Lithium Tantalate,” Jpn. J. Appl. Phys. 52(3), 032601 (2013).
[Crossref]

Liu, H.

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Liu, S.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31(1), 83–85 (2006).
[Crossref] [PubMed]

Loiko, P.

Lu, Q.

Ma, L.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Mailis, S.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28(16), 1433–1435 (2003).
[Crossref] [PubMed]

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31(1), 83–85 (2006).
[Crossref] [PubMed]

Marshall, G.

Marshall, G. D.

Martins Costa, M. F. P. C.

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

Mataloni, P.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

Mateos, X.

Mathur, D.

Matthews, J. C. F.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

McMillen, B.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Menin, A.

Meyn, J. P.

Midorikawa, K.

Mitchell, A.

Mittholiya, K.

Miura, K.

Moiseev, A. N.

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

Montanari, G. B.

Moreno, P.

J. R. Vázquez de Aldana, P. Moreno, and L. Roso, “Ultrafast lasers: A new frontier for optical materials processing,” Opt. Mater. 34(3), 572–578 (2012).
[Crossref]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Muir, A. C.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Myoung-Kyu, O.

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Nakamura, K.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO(3).,” Opt. Lett. 25(9), 651–653 (2000).
[Crossref] [PubMed]

Nakamura, M.

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31(1), 83–85 (2006).
[Crossref] [PubMed]

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Nan Ei, Y.

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Nishihara, H.

Nogueira, R. N.

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

Noh, Y.-C.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Nubile, A.

O’Brien, J. L.

Okhrimchuk, A. G.

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

Oron, M. B.

Osellame, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Ostrowsky, D. B.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

Parameswaran, K. R.

Parini, A.

Petrov, V.

Please, C. P.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

Politi, A.

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Psaila, N. D.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Puttnam, B. J.

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

Qin, X.

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Quiring, V.

Ramponi, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31(1), 83–85 (2006).
[Crossref] [PubMed]

Regener, R.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Ren, Y.

Ricken, R.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
[PubMed]

Riziotis, C.

Rodenas, A.

Ródenas, A.

Romero, C.

Roso, L.

J. R. Vázquez de Aldana, P. Moreno, and L. Roso, “Ultrafast lasers: A new frontier for optical materials processing,” Opt. Mater. 34(3), 572–578 (2012).
[Crossref]

Rotermund, F.

Roussev, R. V.

Route, R. K.

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Ruschin, S.

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
[Crossref]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[Crossref] [PubMed]

Sang, Y.

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

Sciarrino, F.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

Sheng, Y.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
[Crossref] [PubMed]

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Shinada, S.

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

Shoji, I.

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0mol% Mg-Doped Stoichiometric Lithium Tantalate,” Jpn. J. Appl. Phys. 52(3), 032601 (2013).
[Crossref]

Shunji, T.

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Shvedov, V.

X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
[Crossref] [PubMed]

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Slattery, O.

Smayev, M. P.

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

Smith, P. G. R.

Snoke, D.

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Sohler, W.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
[PubMed]

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Sohn, I.-B.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Song, J.

Spence, D.

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Suche, H.

Sugimoto, N.

Sugioka, K.

Sugliani, S.

Suhara, T.

Sun, D.

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Sun, H.

Switkowski, K.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

Takekawa, S.

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31(1), 83–85 (2006).
[Crossref] [PubMed]

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Tan, Y.

Tang, X.

Taniuchi, T.

Tanzilli, S.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

Tekce, K.

S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
[Crossref]

Terabe, K.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Thomas, J.

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

Thomson, R. R.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

Tittel, W.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

Toshiaki, S.

O. Toshiharu and S. Toshiaki, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8 mol % MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
[Crossref]

Toshiharu, O.

O. Toshiharu and S. Toshiaki, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8 mol % MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
[Crossref]

Trull, J.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Usami, T.

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

Vázquez de Aldana, J. R.

Volk, M. F.

Wada, N.

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

Wan Hairul Anuar, B. K.

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Wang, B.

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

Wang, C.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Wang, H.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Wang, J.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

Wang, L.

Wang, M. W.

S. L. Li, Y. K. Ye, and M. W. Wang, “Femtosecond laser written channel optical waveguide in Nd:YAG crystal,” Opt. Laser Technol. 58, 89–93 (2014).
[Crossref]

Wang, X.

Wei, D.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Wei, Z. D.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Wellington, I. T.

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28(16), 1433–1435 (2003).
[Crossref] [PubMed]

Withford, M.

Withford, M. J.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Wu, D.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Xiao, M.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Xu, J.

Xu, P.

Xu, T. T.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

Xu, Z.

Yang, W.-S.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Yao, Y.

Ye, Y. K.

S. L. Li, Y. K. Ye, and M. W. Wang, “Femtosecond laser written channel optical waveguide in Nd:YAG crystal,” Opt. Laser Technol. 58, 89–93 (2014).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

Yu, B.-A.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Yu, H. H.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

Yu, N. E.

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Zbinden, H.

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

Zhang, J. H.

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

Zhang, Y.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Zhou, Z.

Zhu, N. S.

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Zhu, S. N.

Appl. Opt. (1)

Appl. Phys. B (2)

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B 98(4), 677–679 (2010).
[Crossref]

R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Express (1)

Y. Nan Ei, O. Myoung-Kyu, K. Hoonsoo, J. Changsoo, K. Bok Hyeon, L. Kyu-Sup, K. Do-Kyeong, T. Shunji, and K. Kenji, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Appl. Phys. Lett. (9)

X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, “Ferroelectric domain engineering by focused infrared femtosecond pulses,” Appl. Phys. Lett. 107(14), 141102 (2015).
[Crossref]

K. Daneshvar, E. A. Giess, A. M. Bacon, D. G. Dawes, L. A. Gea, and L. A. Boatner, “Ion exchange in potassium titanyl phosphate,” Appl. Phys. Lett. 71(6), 756–758 (1997).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim, and H.-Y. Lee, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[Crossref]

J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tünnermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
[Crossref]

B. McMillen, K. P. Chen, H. An, S. Fleming, V. Hartwell, and D. Snoke, “Waveguiding and nonlinear optical properties of three-dimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser,” Appl. Phys. Lett. 93(11), 111106 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[Crossref]

A. C. Muir, G. J. Daniell, C. P. Please, I. T. Wellington, S. Mailis, and R. W. Eason, “Modelling the formation of optical waveguides produced in LiNbO3 by laser induced thermal diffusion of lithium ions,” Appl. Phys., A Mater. Sci. Process. 83(3), 389–396 (2006).
[Crossref]

CrystEngComm (1)

D. Sun, Y. Leng, Y. Sang, X. Kang, S. Liu, X. Qin, K. Cui, B. K. Wan Hairul Anuar, H. Liu, and Y. Bi, “Nd:MgO:LiTaO3 crystal for self-doubling laser applications: growth, structure, thermal and laser properties,” CrystEngComm 15(37), 7468–7474 (2013).
[Crossref]

Ferroelectrics (1)

M. Nakamura, S. Takekawa, K. Terabe, K. Kitamura, T. Usami, K. Nakamura, H. Ito, and Y. Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices,” Ferroelectrics 273(1), 199–204 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A Review of Lithium Niobate Modulators for Fiber-Optic Communications Systems,” IEEE J. Sel. Top. Quant. 6(1), 69–82 (2000).
[Crossref]

J. Appl. Phys. (1)

A. Bruner, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys. 96(12), 7445–7449 (2004).
[Crossref]

J. Non-Cryst. Solids (1)

M. P. Smayev, V. V. Dorofeev, A. N. Moiseev, and A. G. Okhrimchuk, “Femtosecond laser writing of a depressed cladding single mode channel waveguide in high-purity tellurite glass,” J. Non-Cryst. Solids 480, 100–106 (2018).
[Crossref]

Jpn. J. Appl. Phys. (2)

O. Toshiharu and S. Toshiaki, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8 mol % MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
[Crossref]

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0mol% Mg-Doped Stoichiometric Lithium Tantalate,” Jpn. J. Appl. Phys. 52(3), 032601 (2013).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Nat. Photonics (2)

Z. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, N. S. Zhu, and M. Xiao, “Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

T. T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. H. Yu, J. H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, “Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate,” Nat. Photonics 12(10), 591–595 (2018).
[Crossref]

Opt. Commun. (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[Crossref]

Opt. Express (10)

L. Wang, C. E. Haunhorst, M. F. Volk, F. Chen, and D. Kip, “Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO(3) crystals,” Opt. Express 23(23), 30188–30194 (2015).
[Crossref] [PubMed]

G. B. Montanari, P. De Nicola, S. Sugliani, A. Menin, A. Parini, A. Nubile, G. Bellanca, M. Chiarini, M. Bianconi, and G. G. Bentini, “Step-index optical waveguide produced by multi-step ion implantation in LiNbO3.,” Opt. Express 20(4), 4444–4453 (2012).
[Crossref] [PubMed]

L. Ma, O. Slattery, T. Chang, and X. Tang, “Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide,” Opt. Express 17(18), 15799–15807 (2009).
[Crossref] [PubMed]

M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
[Crossref] [PubMed]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[Crossref] [PubMed]

S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22(19), 23339–23348 (2014).
[Crossref] [PubMed]

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
[Crossref] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[Crossref] [PubMed]

H. Liu, Y. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance,” Opt. Express 20(17), 18620–18629 (2012).
[Crossref] [PubMed]

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[PubMed]

Opt. Laser Technol. (1)

S. L. Li, Y. K. Ye, and M. W. Wang, “Femtosecond laser written channel optical waveguide in Nd:YAG crystal,” Opt. Laser Technol. 58, 89–93 (2014).
[Crossref]

Opt. Lett. (15)

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37(16), 3339–3341 (2012).
[Crossref] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett. 33(19), 2281–2283 (2008).
[Crossref] [PubMed]

N. Dong, Y. Tan, A. Benayas, J. V. de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
[Crossref] [PubMed]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31(1), 83–85 (2006).
[Crossref] [PubMed]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27(3), 179–181 (2002).
[Crossref] [PubMed]

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29(2), 165–167 (2004).
[PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref] [PubMed]

H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett. 32(11), 1536–1538 (2007).
[Crossref] [PubMed]

S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28(16), 1433–1435 (2003).
[Crossref] [PubMed]

E. Kifle, X. Mateos, J. R. V. de Aldana, A. Ródenas, P. Loiko, S. Y. Choi, F. Rotermund, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers,” Opt. Lett. 42(6), 1169–1172 (2017).
[Crossref] [PubMed]

X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, “Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides,” Opt. Lett. 41(11), 2410–2413 (2016).
[Crossref] [PubMed]

J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997).
[Crossref] [PubMed]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO(3).,” Opt. Lett. 25(9), 651–653 (2000).
[Crossref] [PubMed]

Y. Ishigame, T. Suhara, and H. Nishihara, “LiNbO(3) waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett. 16(6), 375–377 (1991).
[Crossref] [PubMed]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
[Crossref] [PubMed]

Opt. Mater. (2)

J. R. Vázquez de Aldana, P. Moreno, and L. Roso, “Ultrafast lasers: A new frontier for optical materials processing,” Opt. Mater. 34(3), 572–578 (2012).
[Crossref]

C. Cheng, Y. Jia, J. R. V. de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51(1), 190–193 (2016).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. Lett. (1)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

The European Physical Journal D-Atomic, Molecular and Optical Physics (1)

S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. DeMicheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” The European Physical Journal D-Atomic, Molecular and Optical Physics 18, 155–160 (2002).

Other (1)

M. F. P. C. Martins Costa, R. N. Nogueira, A. A. Albuquerque, B. J. Puttnam, J. Hirohashi, M. V. Drummond, S. Shinada, R. N. Nogueira, and N. Wada, “Investigation of PPSLT waveguides for applications in optical communication systems,” in Second International Conference on Applications of Optics and Photonics(2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The schematic illustration of fan-out pattern on MgO:PPSLT sample and the FLW process. (b) The microscopic picture of waveguide WG1-WG4. (c) The setup of the end face coupling measurements.
Fig. 2
Fig. 2 (a) The QPM period (μm) of MgO doped SLT bulk versus the wavelength at different temperatures. Different lines present different temperatures. (b) Black line, the QPM period (μm) at wavelength of 1064 nm versus different temperature. Red line, the calculated QPM period of WG3 cladding waveguide versus temperature. The three blue circles denote the QPM temperatures of the three cladding waveguides (WG1-WG3).
Fig. 3
Fig. 3 The angular dependence of output power (transmission) of WG1-WG4 waveguides at wavelength 1064 nm.
Fig. 4
Fig. 4 (a) The temperature dependence of SHG power of WG1 waveguide. (b) The temperature dependence of SHG power of WG2 waveguide. Inset figures are the mode profiles of 1064/532nm at both QPM temperatures.
Fig. 5
Fig. 5 The temperature dependence of SHG power of WG3 waveguide. The inset figures are the mode profiles at 1064/532nm at the QPM temperature points.

Tables (2)

Tables Icon

Table 1 Fabrication details of WG1-WG4

Tables Icon

Table 2 Calculated effective interaction areas of WG1, WG2 and WG3 waveguides.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Λ 0 =λ/ 2( n 2ω n ω )
Δ= 4π λ ω [ n 2ω (T) n ω (T) ] 2π Λ 0
η= P SHG ( P pump L) 2 = 8 π 2 d QPM 2 c ε 0 n ω 2 n 2ω λ ω 2 A eff
A eff = [ E 2 Nor E 1 Nor E 2 Nor dxdy ] 2
Δ n e sin 2 θ m 2 n e

Metrics