Abstract

Efficient high-power continuous-wave Nd:YVO4 visible lasers at versatile wavelengths of 532 (green), 559 (lime), and 588 nm (yellow) are demonstrated to be achieved by using the identical cavity mirrors and gain medium. A dichroic coating is deposited on one end surface of the gain medium to gather the backward green-yellow emission. The green, lime, and yellow outputs are individually optimized by using different phase-matched lithium triborate (LBO) crystals for second harmonic generation (SHG) of the fundamental field, sum frequency generation (SFG) of the fundamental and the stimulated Raman fields, and SHG of the stimulated Raman field, respectively. At a pump power of 31.6 W, the output powers at 532, 559, and 588 nm can be up to 6.8, 5.4, and 3.1 W. The high efficient and compact Nd:YVO4 lasers at green-lime-yellow wavelengths can be potentially beneficial to future applications in retinal photocoagulation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient high-power dual-wavelength lime-green Nd:YVO4 lasers

Y. F. Chen, Y. C. Liu, Y. Y. Pan, D. Y. Gu, H. P. Cheng, C. H. Tsou, and H. C. Liang
Opt. Lett. 44(6) 1323-1326 (2019)

Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light

Haiyong Zhu, Yanmin Duan, Ge Zhang, Chenghui Huang, Yong Wei, Hongyuan Shen, Yiqun Zheng, Lingxiong Huang, and Zhenqiang Chen
Opt. Express 17(24) 21544-21550 (2009)

Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output

Jipeng Lin, Helen M. Pask, David J. Spence, Craig J. Hamilton, and Graeme P. A. Malcolm
Opt. Express 20(5) 5219-5224 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Moo-Young, “Lasers in ophthalmology,” West. J. Med. 143(6), 745–750 (1985).
    [PubMed]
  2. T. Desmettre, C. A. Maurage, and S. Mordon, “Transpupillary thermotherapy (TTT) with short duration laser exposures induce heat shock protein (HSP) hyperexpression on choroidoretinal layers,” Lasers Surg. Med. 33(2), 102–107 (2003).
    [Crossref] [PubMed]
  3. J. H. Lock and K. C. Fong, “Retinal laser photocoagulation,” Med. J. Malaysia 65(1), 88–94 (2010).
    [PubMed]
  4. J. H. Lock and K. C. Fong, “An update on retinal laser therapy,” Clin. Exp. Optom. 94(1), 43–51 (2011).
    [Crossref] [PubMed]
  5. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
    [Crossref] [PubMed]
  6. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, Y. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite,” Opt. Lett. 34(18), 2763–2765 (2009).
    [Crossref] [PubMed]
  7. Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
    [Crossref]
  8. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
    [Crossref] [PubMed]
  9. A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All‐solid‐state quasi‐CW yellow laser with intracavity self‐Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
    [Crossref]
  10. J. Lin and H. M. Pask, “Cascaded self-Raman lasers based on 382 cm-1 shift in Nd:GdVO4.,” Opt. Express 20(14), 15180–15185 (2012).
    [Crossref] [PubMed]
  11. X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, and D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express 20(17), 19305–19312 (2012).
    [Crossref] [PubMed]
  12. Y. F. Chen, “Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser,” Opt. Lett. 29(11), 1251–1253 (2004).
    [Crossref] [PubMed]
  13. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29(16), 1915–1917 (2004).
    [Crossref] [PubMed]
  14. Y. F. Chen, “Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal,” Opt. Lett. 29(18), 2172–2174 (2004).
    [Crossref] [PubMed]
  15. Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29(22), 2632–2634 (2004).
    [Crossref] [PubMed]
  16. X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, D. J. Spence, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
    [Crossref] [PubMed]
  17. H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
    [Crossref] [PubMed]
  18. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
    [Crossref] [PubMed]
  19. X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
    [Crossref] [PubMed]
  20. Y. T. Chang, H. L. Chang, K. W. Su, and Y. F. Chen, “High-efficiency Q-switched dual-wavelength emission at 1176 and 559 nm with intracavity Raman and sum-frequency generation,” Opt. Express 17(14), 11892–11897 (2009).
    [Crossref] [PubMed]
  21. M. T. Chang, T. L. Huang, H. C. Liang, K. W. Su, and Y. F. Chen, “Broad expansion of optical frequency combs by self-Raman scattering in coupled-cavity self-mode-locked monolithic lasers,” Opt. Express 25(7), 7627–7636 (2017).
    [Crossref] [PubMed]
  22. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer, Berlin (2005)

2017 (1)

2012 (2)

2011 (4)

2010 (5)

J. H. Lock and K. C. Fong, “Retinal laser photocoagulation,” Med. J. Malaysia 65(1), 88–94 (2010).
[PubMed]

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[Crossref]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[Crossref] [PubMed]

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All‐solid‐state quasi‐CW yellow laser with intracavity self‐Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[Crossref]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (1)

2004 (4)

2003 (1)

T. Desmettre, C. A. Maurage, and S. Mordon, “Transpupillary thermotherapy (TTT) with short duration laser exposures induce heat shock protein (HSP) hyperexpression on choroidoretinal layers,” Lasers Surg. Med. 33(2), 102–107 (2003).
[Crossref] [PubMed]

1985 (1)

G. A. Moo-Young, “Lasers in ophthalmology,” West. J. Med. 143(6), 745–750 (1985).
[PubMed]

Chang, H. L.

Chang, M. T.

Chang, Y. T.

Chen, W.

Chen, Y. F.

Cheng, W. B.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[Crossref]

Danailov, M.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All‐solid‐state quasi‐CW yellow laser with intracavity self‐Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[Crossref]

Dekker, P.

Demidovich, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All‐solid‐state quasi‐CW yellow laser with intracavity self‐Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[Crossref]

Desmettre, T.

T. Desmettre, C. A. Maurage, and S. Mordon, “Transpupillary thermotherapy (TTT) with short duration laser exposures induce heat shock protein (HSP) hyperexpression on choroidoretinal layers,” Lasers Surg. Med. 33(2), 102–107 (2003).
[Crossref] [PubMed]

Duan, Y.

Fong, K. C.

J. H. Lock and K. C. Fong, “An update on retinal laser therapy,” Clin. Exp. Optom. 94(1), 43–51 (2011).
[Crossref] [PubMed]

J. H. Lock and K. C. Fong, “Retinal laser photocoagulation,” Med. J. Malaysia 65(1), 88–94 (2010).
[PubMed]

Grabtchikov, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All‐solid‐state quasi‐CW yellow laser with intracavity self‐Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[Crossref]

Huang, C.

Huang, T. L.

Huang, Y.

Huo, Y.

Jiang, M.

Kananovich, A.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All‐solid‐state quasi‐CW yellow laser with intracavity self‐Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[Crossref]

Lee, A. J.

Li, J.

Li, X.

Li, Z.

Liang, H. C.

Lin, J.

Lock, J. H.

J. H. Lock and K. C. Fong, “An update on retinal laser therapy,” Clin. Exp. Optom. 94(1), 43–51 (2011).
[Crossref] [PubMed]

J. H. Lock and K. C. Fong, “Retinal laser photocoagulation,” Med. J. Malaysia 65(1), 88–94 (2010).
[PubMed]

Lu, J.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[Crossref]

Lü, Y. F.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[Crossref]

Maurage, C. A.

T. Desmettre, C. A. Maurage, and S. Mordon, “Transpupillary thermotherapy (TTT) with short duration laser exposures induce heat shock protein (HSP) hyperexpression on choroidoretinal layers,” Lasers Surg. Med. 33(2), 102–107 (2003).
[Crossref] [PubMed]

Moo-Young, G. A.

G. A. Moo-Young, “Lasers in ophthalmology,” West. J. Med. 143(6), 745–750 (1985).
[PubMed]

Mordon, S.

T. Desmettre, C. A. Maurage, and S. Mordon, “Transpupillary thermotherapy (TTT) with short duration laser exposures induce heat shock protein (HSP) hyperexpression on choroidoretinal layers,” Lasers Surg. Med. 33(2), 102–107 (2003).
[Crossref] [PubMed]

Orlovich, V.

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All‐solid‐state quasi‐CW yellow laser with intracavity self‐Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[Crossref]

Pask, H. M.

J. Lin and H. M. Pask, “Cascaded self-Raman lasers based on 382 cm-1 shift in Nd:GdVO4.,” Opt. Express 20(14), 15180–15185 (2012).
[Crossref] [PubMed]

X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, and D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express 20(17), 19305–19312 (2012).
[Crossref] [PubMed]

H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
[Crossref] [PubMed]

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
[Crossref] [PubMed]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, D. J. Spence, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
[Crossref] [PubMed]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
[Crossref] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[Crossref] [PubMed]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[Crossref] [PubMed]

Piper, J. A.

X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, and D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express 20(17), 19305–19312 (2012).
[Crossref] [PubMed]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, D. J. Spence, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
[Crossref] [PubMed]

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
[Crossref] [PubMed]

H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
[Crossref] [PubMed]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
[Crossref] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[Crossref] [PubMed]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[Crossref] [PubMed]

Spence, D. J.

Su, K. W.

Sun, G. C.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[Crossref]

Wang, J.

Wei, Y.

Xiong, Z.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[Crossref]

Xu, L. J.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[Crossref]

Ye, N.

Yu, H.

Zhang, G.

Zhang, H.

Zhao, Z. M.

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[Crossref]

Zhu, H.

Clin. Exp. Optom. (1)

J. H. Lock and K. C. Fong, “An update on retinal laser therapy,” Clin. Exp. Optom. 94(1), 43–51 (2011).
[Crossref] [PubMed]

Laser Phys. Lett. (2)

A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All‐solid‐state quasi‐CW yellow laser with intracavity self‐Raman conversion and sum frequency generation,” Laser Phys. Lett. 7(8), 573–578 (2010).
[Crossref]

Y. F. Lü, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum‐frequency mixing in a self‐Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[Crossref]

Lasers Surg. Med. (1)

T. Desmettre, C. A. Maurage, and S. Mordon, “Transpupillary thermotherapy (TTT) with short duration laser exposures induce heat shock protein (HSP) hyperexpression on choroidoretinal layers,” Lasers Surg. Med. 33(2), 102–107 (2003).
[Crossref] [PubMed]

Med. J. Malaysia (1)

J. H. Lock and K. C. Fong, “Retinal laser photocoagulation,” Med. J. Malaysia 65(1), 88–94 (2010).
[PubMed]

Opt. Express (7)

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[Crossref] [PubMed]

J. Lin and H. M. Pask, “Cascaded self-Raman lasers based on 382 cm-1 shift in Nd:GdVO4.,” Opt. Express 20(14), 15180–15185 (2012).
[Crossref] [PubMed]

X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, and D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express 20(17), 19305–19312 (2012).
[Crossref] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[Crossref] [PubMed]

Y. T. Chang, H. L. Chang, K. W. Su, and Y. F. Chen, “High-efficiency Q-switched dual-wavelength emission at 1176 and 559 nm with intracavity Raman and sum-frequency generation,” Opt. Express 17(14), 11892–11897 (2009).
[Crossref] [PubMed]

M. T. Chang, T. L. Huang, H. C. Liang, K. W. Su, and Y. F. Chen, “Broad expansion of optical frequency combs by self-Raman scattering in coupled-cavity self-mode-locked monolithic lasers,” Opt. Express 25(7), 7627–7636 (2017).
[Crossref] [PubMed]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, D. J. Spence, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
[Crossref] [PubMed]

Opt. Lett. (8)

H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
[Crossref] [PubMed]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
[Crossref] [PubMed]

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
[Crossref] [PubMed]

Y. F. Chen, “Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser,” Opt. Lett. 29(11), 1251–1253 (2004).
[Crossref] [PubMed]

Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29(16), 1915–1917 (2004).
[Crossref] [PubMed]

Y. F. Chen, “Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal,” Opt. Lett. 29(18), 2172–2174 (2004).
[Crossref] [PubMed]

Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett. 29(22), 2632–2634 (2004).
[Crossref] [PubMed]

H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, Y. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite,” Opt. Lett. 34(18), 2763–2765 (2009).
[Crossref] [PubMed]

West. J. Med. (1)

G. A. Moo-Young, “Lasers in ophthalmology,” West. J. Med. 143(6), 745–750 (1985).
[PubMed]

Other (1)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer, Berlin (2005)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Measured single-pass absorption of the Nd:YVO4 crystal in the range of 480-600 nm.
Fig. 2
Fig. 2 Measured reflectance of the dichroic coating on the end surface of the Nd:YVO4 crystal.
Fig. 3
Fig. 3 Experimental setup of the diode-end-pumped Nd:YVO4/LBO green-lime-yellow lasers with (a) antireflection-coated Nd:YVO4 crystal and (b) dichroic-coated Nd:YVO4 crystal.
Fig. 4
Fig. 4 Theoretical calculations of the phase-matching cutting angles for the lasing wavelength located at 532, 559, and 588 nm.
Fig. 5
Fig. 5 Output powers versus incident pump power at 532 nm with antireflection-coated and dichroic-coated Nd:YVO4 crystals.
Fig. 6
Fig. 6 Output powers versus incident pump power at 559 nm with antireflection-coated and dichroic-coated Nd:YVO4 crystals.
Fig. 7
Fig. 7 Output powers versus incident pump power at 588 nm with antireflection-coated and dichroic-coated Nd:YVO4 crystals.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P th = A e g R L cry λ F λ P ( T F + γ F )( T S + γ S ) 2 ,
Δk= n o λ 1 + n o λ 2 n e (ϕ) λ 3

Metrics