Abstract

Structured illumination microscopy (SIM) is a rapidly developing a super-resolution optical microscopy technique. With SIM, the grating is needed in order to rotate several angles for illuminating the sample in different directions. Multiple rotations reduce the imaging speed and grating rotation angle errors damage the image recovery quality. We introduce mirror transformation on one-dimension (1D) Fourier spectrum to SIM for resolving the problems of low imaging speed and severe impact on image reconstruction quality by grating rotation angle errors. When mirror operation and SIM are combined, the grating is placed at an orientation for obtaining three shadow images. The three shadow images are acquired by CCD at three different phase shift for a direction of grating. Thus, the SIM imaging speed is faster and the effect on image reconstruction quality by grating rotation angle errors is greatly reduced.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution scanning laser microscopy through virtually structured detection

Rong-Wen Lu, Ben-Quan Wang, Qiu-Xiang Zhang, and Xin-Cheng Yao
Biomed. Opt. Express 4(9) 1673-1682 (2013)

Rapid super-resolution line-scanning microscopy through virtually structured detection

Yanan Zhi, Rongwen Lu, Benquan Wang, Qiuxiang Zhang, and Xincheng Yao
Opt. Lett. 40(8) 1683-1686 (2015)

Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy

Wenjie Liu, Qiulan Liu, Zhimin Zhang, Yubing Han, Cuifang Kuang, Liang Xu, Hongqin Yang, and Xu Liu
Opt. Express 27(5) 7237-7248 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  2. C. Yuan, J. Ma, J. Dou, J. Wei, S. Feng, S. Nie, and C. Chang, “Resolution enhancement of the microscopic imaging by unknown sinusoidal structured illumination with iterative algorithm,” Appl. Opt. 56(13), F78–F83 (2017).
    [Crossref] [PubMed]
  3. F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
    [Crossref] [PubMed]
  4. A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
    [Crossref] [PubMed]
  5. Y. Ye, F. Xu, G. Wei, Y. Xu, D. Pu, L. Chen, and Z. Huang, “Scalable Fourier transform system for instantly structured illumination in lithography,” Opt. Lett. 42(10), 1978–1981 (2017).
    [Crossref] [PubMed]
  6. B. Masters, “Three-dimensional confocal microscopy of the living in situ rabbit cornea,” Opt. Express 3(9), 351–355 (1998).
    [Crossref] [PubMed]
  7. P. Meng, S. Pereira, and P. Urbach, “Confocal microscopy with a radially polarized focused beam,” Opt. Express 26(23), 29600–29613 (2018).
    [Crossref] [PubMed]
  8. H. Mikami, J. Harmon, H. Kobayashi, S. Hamad, Y. Wang, O. Iwata, K. Suzuki, T. Ito, Y. Aisaka, N. Kutsuna, K. Nagasawa, H. Watarai, Y. Ozeki, and K. Goda, “Ultrafast confocal fluorescence microscopy beyond the fluorescene lifetime limit,” Optica 5(2), 117–126 (2018).
    [Crossref]
  9. H. Ni, L. Zou, Q. Guo, and X. Ding, “Lateral resolution enhancement of confocal microscopy based on structured detection method with spatial light modulator,” Opt. Express 25(3), 2872–2882 (2017).
    [Crossref] [PubMed]
  10. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  11. W. S. Lee, G. Lim, W. C. Kim, G. J. Choi, H. W. Yi, and N. C. Park, “Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination,” Opt. Express 26(8), 9901–9919 (2018).
    [Crossref] [PubMed]
  12. B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016).
    [Crossref] [PubMed]
  13. D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for superresolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
    [Crossref]
  14. E. Berrocal, E. Kristensson, M. Richter, M. Linne, and M. Aldén, “Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays,” Opt. Express 16(22), 17870–17881 (2008).
    [Crossref] [PubMed]
  15. E. Kristensson, E. Berrocal, M. Richter, S. G. Pettersson, and M. Aldén, “High-speed structured planar laser illumination for contrast improvement of two-phase flow images,” Opt. Lett. 33(23), 2752–2754 (2008).
    [Crossref] [PubMed]
  16. K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination,” Biomed. Opt. Express 4(11), 2396–2410 (2013).
    [Crossref] [PubMed]
  17. L. C. Cheng, C. H. Lien, Y. Da Sie, Y. Y. Hu, C. Y. Lin, F. C. Chien, C. Xu, C. Y. Dong, and S. J. Chen, “Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device,” Biomed. Opt. Express 5(8), 2526–2536 (2014).
    [Crossref] [PubMed]
  18. L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express 19(18), 17439–17452 (2011).
    [Crossref] [PubMed]
  19. L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
    [Crossref] [PubMed]
  20. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
    [Crossref] [PubMed]
  21. J. H. Park, S. W. Lee, E. S. Lee, and J. Y. Lee, “A method for super-resolved CARS microscopy with structured illumination in two dimensions,” Opt. Express 22(8), 9854–9870 (2014).
    [Crossref] [PubMed]
  22. S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
    [Crossref] [PubMed]
  23. A. Neumann, Y. Kuznetsova, and S. R. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express 16(10), 6785–6793 (2008).
    [Crossref] [PubMed]
  24. F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
    [Crossref] [PubMed]
  25. L. Wang, M. C. Pitter, and M. G. Somekh, “Wide-field high-resolution structured illumination solid immersion fluorescence microscopy,” Opt. Lett. 36(15), 2794–2796 (2011).
    [Crossref] [PubMed]
  26. O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, and R. Heintzmann, “Line scan--structured illumination microscopy super-resolution imaging in thick fluorescent samples,” Opt. Express 20(22), 24167–24174 (2012).
    [Crossref] [PubMed]
  27. A. Classen, J. von Zanthier, and G. S. Agarwal, “Analysis of super-resolution via 3D structured illumination intensity correlation microscopy,” Opt. Express 26(21), 27492–27503 (2018).
    [Crossref] [PubMed]
  28. S. Wei, T. Lei, L. Du, C. Zhang, H. Chen, Y. Yang, S. W. Zhu, and X. C. Yuan, “Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting,” Opt. Express 23(23), 30143–30148 (2015).
    [Crossref] [PubMed]
  29. R. Cao, C. Kuang, Y. Liu, and X. Liu, “Superresolution via saturated virtual modulation microscopy,” Opt. Express 25(26), 32364–32379 (2017).
    [Crossref]
  30. R. W. Lu, B. Q. Wang, Q. X. Zhang, and X. C. Yao, “Super-resolution scanning laser microscopy through virtually structured detection,” Biomed. Opt. Express 4(9), 1673–1682 (2013).
    [Crossref] [PubMed]
  31. J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
    [Crossref] [PubMed]
  32. Y. Geng, J. Tan, C. Guo, C. Shen, W. Ding, S. Liu, and Z. Liu, “Computational coherent imaging by rotating a cylindrical lens,” Opt. Express 26(17), 22110–22122 (2018).
    [Crossref] [PubMed]
  33. C. Guo, Q. Li, J. Tan, S. Liu, and Z. Liu, “A method of solving tilt illumination for multiple distance phase retrieval,” Opt. Lasers Eng. 106, 17–23 (2018).
    [Crossref]
  34. K. Wicker, O. Mandula, G. Best, R. Fiolka, and R. Heintzmann, “Phase optimisation for structured illumination microscopy,” Opt. Express 21(2), 2032–2049 (2013).
    [Crossref] [PubMed]
  35. S. Dong, J. Liao, K. Guo, L. Bian, J. Suo, and G. Zheng, “Resolution doubling with a reduced number of image acquisitions,” Biomed. Opt. Express 6(8), 2946–2952 (2015).
    [Crossref] [PubMed]
  36. C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
    [Crossref] [PubMed]
  37. A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
    [Crossref] [PubMed]
  38. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
    [Crossref] [PubMed]
  39. http://biomicroscopy.bu.edu/resources/

2018 (7)

P. Meng, S. Pereira, and P. Urbach, “Confocal microscopy with a radially polarized focused beam,” Opt. Express 26(23), 29600–29613 (2018).
[Crossref] [PubMed]

H. Mikami, J. Harmon, H. Kobayashi, S. Hamad, Y. Wang, O. Iwata, K. Suzuki, T. Ito, Y. Aisaka, N. Kutsuna, K. Nagasawa, H. Watarai, Y. Ozeki, and K. Goda, “Ultrafast confocal fluorescence microscopy beyond the fluorescene lifetime limit,” Optica 5(2), 117–126 (2018).
[Crossref]

W. S. Lee, G. Lim, W. C. Kim, G. J. Choi, H. W. Yi, and N. C. Park, “Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination,” Opt. Express 26(8), 9901–9919 (2018).
[Crossref] [PubMed]

A. Classen, J. von Zanthier, and G. S. Agarwal, “Analysis of super-resolution via 3D structured illumination intensity correlation microscopy,” Opt. Express 26(21), 27492–27503 (2018).
[Crossref] [PubMed]

Y. Geng, J. Tan, C. Guo, C. Shen, W. Ding, S. Liu, and Z. Liu, “Computational coherent imaging by rotating a cylindrical lens,” Opt. Express 26(17), 22110–22122 (2018).
[Crossref] [PubMed]

C. Guo, Q. Li, J. Tan, S. Liu, and Z. Liu, “A method of solving tilt illumination for multiple distance phase retrieval,” Opt. Lasers Eng. 106, 17–23 (2018).
[Crossref]

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (2)

B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016).
[Crossref] [PubMed]

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (4)

J. H. Park, S. W. Lee, E. S. Lee, and J. Y. Lee, “A method for super-resolved CARS microscopy with structured illumination in two dimensions,” Opt. Express 22(8), 9854–9870 (2014).
[Crossref] [PubMed]

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for superresolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

L. C. Cheng, C. H. Lien, Y. Da Sie, Y. Y. Hu, C. Y. Lin, F. C. Chien, C. Xu, C. Y. Dong, and S. J. Chen, “Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device,” Biomed. Opt. Express 5(8), 2526–2536 (2014).
[Crossref] [PubMed]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, and R. Heintzmann, “Line scan--structured illumination microscopy super-resolution imaging in thick fluorescent samples,” Opt. Express 20(22), 24167–24174 (2012).
[Crossref] [PubMed]

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

2011 (5)

L. Wang, M. C. Pitter, and M. G. Somekh, “Wide-field high-resolution structured illumination solid immersion fluorescence microscopy,” Opt. Lett. 36(15), 2794–2796 (2011).
[Crossref] [PubMed]

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express 19(18), 17439–17452 (2011).
[Crossref] [PubMed]

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

2010 (1)

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

2009 (1)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

2008 (3)

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1998 (1)

1994 (1)

Agarwal, G. S.

Aisaka, Y.

Aldén, M.

Bedard, N.

Berrocal, E.

Best, G.

Bewersdorf, J.

Bian, L.

Booth, M. J.

Brueck, S. R.

Burke, D.

Cao, R.

Chang, C.

Chen, H.

Chen, L.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

Y. Ye, F. Xu, G. Wei, Y. Xu, D. Pu, L. Chen, and Z. Huang, “Scalable Fourier transform system for instantly structured illumination in lithography,” Opt. Lett. 42(10), 1978–1981 (2017).
[Crossref] [PubMed]

Chen, S. J.

Cheng, L. C.

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Chien, F. C.

Choi, G. J.

Classen, A.

Da Sie, Y.

Dan, D.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for superresolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

Ding, W.

Ding, X.

Dong, C. Y.

Dong, S.

Dou, J.

Du, L.

Dubertret, B.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

Fang, Y.

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

Feng, S.

Fiolka, R.

Gao, L.

Geng, Y.

Goda, K.

Gong, H.

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Gould, T. J.

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Guo, C.

C. Guo, Q. Li, J. Tan, S. Liu, and Z. Liu, “A method of solving tilt illumination for multiple distance phase retrieval,” Opt. Lasers Eng. 106, 17–23 (2018).
[Crossref]

Y. Geng, J. Tan, C. Guo, C. Shen, W. Ding, S. Liu, and Z. Liu, “Computational coherent imaging by rotating a cylindrical lens,” Opt. Express 26(17), 22110–22122 (2018).
[Crossref] [PubMed]

Guo, K.

Guo, Q.

Gustafsson, M. G.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Hagen, N.

Hamad, S.

Harmon, J.

He, J.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Heintzmann, R.

Hell, S. W.

Hu, Y. Y.

Huang, E.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Huang, X.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

Huang, Z.

Isobe, K.

Ito, T.

Iwata, O.

Jones, S. A.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Kannari, F.

Kawano, H.

Kester, R. T.

Kielhorn, M.

Kim, W. C.

Kleppe, I.

Kner, P.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Kobayashi, H.

Krampert, G.

Kristensson, E.

Kuang, C.

R. Cao, C. Kuang, Y. Liu, and X. Liu, “Superresolution via saturated virtual modulation microscopy,” Opt. Express 25(26), 32364–32379 (2017).
[Crossref]

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

Kumagai, A.

Kutsuna, N.

Kuznetsova, Y.

Lal, A.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

Lee, E. S.

Lee, J. Y.

Lee, S. W.

Lee, W. S.

Lei, M.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for superresolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

Lei, T.

Li, A.

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Li, Q.

C. Guo, Q. Li, J. Tan, S. Liu, and Z. Liu, “A method of solving tilt illumination for multiple distance phase retrieval,” Opt. Lasers Eng. 106, 17–23 (2018).
[Crossref]

Liao, J.

Lien, C. H.

Lim, G.

Lin, C. Y.

Linne, M.

Liu, Q.

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Liu, S.

C. Guo, Q. Li, J. Tan, S. Liu, and Z. Liu, “A method of solving tilt illumination for multiple distance phase retrieval,” Opt. Lasers Eng. 106, 17–23 (2018).
[Crossref]

Y. Geng, J. Tan, C. Guo, C. Shen, W. Ding, S. Liu, and Z. Liu, “Computational coherent imaging by rotating a cylindrical lens,” Opt. Express 26(17), 22110–22122 (2018).
[Crossref] [PubMed]

Liu, W.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

Liu, X.

R. Cao, C. Kuang, Y. Liu, and X. Liu, “Superresolution via saturated virtual modulation microscopy,” Opt. Express 25(26), 32364–32379 (2017).
[Crossref]

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

Y. Geng, J. Tan, C. Guo, C. Shen, W. Ding, S. Liu, and Z. Liu, “Computational coherent imaging by rotating a cylindrical lens,” Opt. Express 26(17), 22110–22122 (2018).
[Crossref] [PubMed]

C. Guo, Q. Li, J. Tan, S. Liu, and Z. Liu, “A method of solving tilt illumination for multiple distance phase retrieval,” Opt. Lasers Eng. 106, 17–23 (2018).
[Crossref]

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Loriette, V.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

Lu, D.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Lu, R. W.

Luo, Q.

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Ma, J.

Ma, Y.

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

Mandula, O.

Masters, B.

Meng, P.

Mertz, J.

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

Midorikawa, K.

Mikami, H.

Min, J.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Miyawaki, A.

Mochizuki, K.

Nagasawa, K.

Neumann, A.

Ni, H.

Nie, S.

Olivo-Marin, J. C.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

Orieux, F.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

Owald, D.

Ozeki, Y.

Park, J. H.

Park, N. C.

Patton, B. R.

Pereira, S.

Pettersson, S. G.

Pitter, M. C.

Ponsetto, J. L.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Pu, D.

Qian, J.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Rego, E. H.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Richter, M.

Sepulveda, E.

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

Shan, C.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

Shao, L.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Shen, C.

Shen, H.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Shim, S. H.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

So, P. T. C.

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

Somekh, M. G.

Song, Q.

Suda, A.

Suo, J.

Suzuki, K.

Takeda, T.

Tan, J.

C. Guo, Q. Li, J. Tan, S. Liu, and Z. Liu, “A method of solving tilt illumination for multiple distance phase retrieval,” Opt. Lasers Eng. 106, 17–23 (2018).
[Crossref]

Y. Geng, J. Tan, C. Guo, C. Shen, W. Ding, S. Liu, and Z. Liu, “Computational coherent imaging by rotating a cylindrical lens,” Opt. Express 26(17), 22110–22122 (2018).
[Crossref] [PubMed]

Tkaczyk, T. S.

Urbach, P.

von Zanthier, J.

Wan, W.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Wang, B. Q.

Wang, L.

Wang, Q.

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Wang, Y.

Watarai, H.

Wei, F.

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Wei, G.

Wei, J.

Wei, S.

Wichmann, J.

Wicker, K.

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Wu, J.

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Xi, P.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

Xu, C.

Xu, F.

Xu, Y.

Y. Ye, F. Xu, G. Wei, Y. Xu, D. Pu, L. Chen, and Z. Huang, “Scalable Fourier transform system for instantly structured illumination in lithography,” Opt. Lett. 42(10), 1978–1981 (2017).
[Crossref] [PubMed]

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

Yan, C.

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Yan, S.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Yang, Y.

Yao, B.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for superresolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

Yao, X. C.

Ye, Y.

Yi, H. W.

Yu, X.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Yuan, C.

Yuan, X. C.

Zeng, S.

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Zhang, B.

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Zhang, C.

Zhang, Q. X.

Zhao, K.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

Zheng, G.

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

S. Dong, J. Liao, K. Guo, L. Bian, J. Suo, and G. Zheng, “Resolution doubling with a reduced number of image acquisitions,” Biomed. Opt. Express 6(8), 2946–2952 (2015).
[Crossref] [PubMed]

Zhou, R.

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

Zhou, X.

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Zhu, S. W.

Zhuang, X.

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

Zong, W.

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

Zou, L.

Appl. Opt. (1)

Biomed. Opt. Express (4)

Chin. Sci. Bull. (1)

D. Dan, B. Yao, and M. Lei, “Structured illumination microscopy for superresolution and optical sectioning,” Chin. Sci. Bull. 59(12), 1291–1307 (2014).
[Crossref]

IEEE Trans. Image Process. (2)

A. Lal, C. Shan, K. Zhao, W. Liu, X. Huang, W. Zong, L. Chen, and P. Xi, “A frequency domain SIM reconstruction algorithm using reduced number of images,” IEEE Trans. Image Process. 27(9), 4555–4570 (2018).
[Crossref] [PubMed]

F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J. C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Nano Lett. (1)

F. Wei, D. Lu, H. Shen, W. Wan, J. L. Ponsetto, E. Huang, and Z. Liu, “Wide field super-resolution surface imaging through plasmonic structured illumination microscopy,” Nano Lett. 14(8), 4634–4639 (2014).
[Crossref] [PubMed]

Nat. Methods (4)

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011).
[Crossref] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8(10), 811–819 (2011).
[Crossref] [PubMed]

Opt. Express (15)

Y. Geng, J. Tan, C. Guo, C. Shen, W. Ding, S. Liu, and Z. Liu, “Computational coherent imaging by rotating a cylindrical lens,” Opt. Express 26(17), 22110–22122 (2018).
[Crossref] [PubMed]

A. Neumann, Y. Kuznetsova, and S. R. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express 16(10), 6785–6793 (2008).
[Crossref] [PubMed]

O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, and R. Heintzmann, “Line scan--structured illumination microscopy super-resolution imaging in thick fluorescent samples,” Opt. Express 20(22), 24167–24174 (2012).
[Crossref] [PubMed]

A. Classen, J. von Zanthier, and G. S. Agarwal, “Analysis of super-resolution via 3D structured illumination intensity correlation microscopy,” Opt. Express 26(21), 27492–27503 (2018).
[Crossref] [PubMed]

S. Wei, T. Lei, L. Du, C. Zhang, H. Chen, Y. Yang, S. W. Zhu, and X. C. Yuan, “Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting,” Opt. Express 23(23), 30143–30148 (2015).
[Crossref] [PubMed]

R. Cao, C. Kuang, Y. Liu, and X. Liu, “Superresolution via saturated virtual modulation microscopy,” Opt. Express 25(26), 32364–32379 (2017).
[Crossref]

J. H. Park, S. W. Lee, E. S. Lee, and J. Y. Lee, “A method for super-resolved CARS microscopy with structured illumination in two dimensions,” Opt. Express 22(8), 9854–9870 (2014).
[Crossref] [PubMed]

L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express 19(18), 17439–17452 (2011).
[Crossref] [PubMed]

E. Berrocal, E. Kristensson, M. Richter, M. Linne, and M. Aldén, “Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays,” Opt. Express 16(22), 17870–17881 (2008).
[Crossref] [PubMed]

W. S. Lee, G. Lim, W. C. Kim, G. J. Choi, H. W. Yi, and N. C. Park, “Investigation on improvement of lateral resolution of continuous wave STED microscopy by standing wave illumination,” Opt. Express 26(8), 9901–9919 (2018).
[Crossref] [PubMed]

B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016).
[Crossref] [PubMed]

B. Masters, “Three-dimensional confocal microscopy of the living in situ rabbit cornea,” Opt. Express 3(9), 351–355 (1998).
[Crossref] [PubMed]

P. Meng, S. Pereira, and P. Urbach, “Confocal microscopy with a radially polarized focused beam,” Opt. Express 26(23), 29600–29613 (2018).
[Crossref] [PubMed]

H. Ni, L. Zou, Q. Guo, and X. Ding, “Lateral resolution enhancement of confocal microscopy based on structured detection method with spatial light modulator,” Opt. Express 25(3), 2872–2882 (2017).
[Crossref] [PubMed]

K. Wicker, O. Mandula, G. Best, R. Fiolka, and R. Heintzmann, “Phase optimisation for structured illumination microscopy,” Opt. Express 21(2), 2032–2049 (2013).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

C. Guo, Q. Li, J. Tan, S. Liu, and Z. Liu, “A method of solving tilt illumination for multiple distance phase retrieval,” Opt. Lasers Eng. 106, 17–23 (2018).
[Crossref]

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (1)

C. Kuang, Y. Ma, R. Zhou, G. Zheng, Y. Fang, Y. Xu, X. Liu, and P. T. C. So, “Virtual k-space modulation optical microscopy,” Phys. Rev. Lett. 117(2), 028102 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Qian, M. Lei, D. Dan, B. Yao, X. Zhou, Y. Yang, S. Yan, J. Min, and X. Yu, “Full-color structured illumination optical sectioning microscopy,” Sci. Rep. 5(1), 14513 (2015).
[Crossref] [PubMed]

Science (1)

A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010).
[Crossref] [PubMed]

Other (1)

http://biomicroscopy.bu.edu/resources/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The SIM needs the grating to rotate at multiple angles while MTSIM only needs the grating in one orientation: (a) The VSD experimental setup. L1, L2, L3: lens; BS: beam splitter; CO: collimator; OB: objective. (b) The SIM needs the grating to rotate at multiple angles and there is an angle error in each rotation. (c) The MTSIM only needs the grating in one orientation.
Fig. 2
Fig. 2 The real part of the 1D arbitrary real-valued signal Fourier transform is even: (a) The blue curve represents an arbitrary 1D time domain real-valued signal while the red curve stands for the real part of its Fourier transform spectrum. (b) The imaginary part of the 1D signal Fourier transform spectrum.
Fig. 3
Fig. 3 The grating rotates at 45°, and the sample spectrum is expanded by using the mirror operation based on the symmetry of the real part of 1D Fourier transform spectrum: (a1) The 1024 × 1024 sample image, (a2) The sample spectrum corresponding to 0 order diffraction light at 45° rotation of grating, (b1) The sample spectrum in the first quadrant corresponding to 1 order diffraction light at 45° rotation of grating, (b2) The sample spectrum in the second quadrant, (b3) The sample spectrum in the third quadrant corresponding to −1 order diffraction light at 45° rotation of grating, (b4) The sample spectrum in the fourth quadrant. The 2D Fourier spectrum in the second and fourth quadrants are expanded by those in the first and third quadrants by applying the mirror operation based on the symmetry of the real part of 1D Fourier transform.
Fig. 4
Fig. 4 Expanding the 2D sample Fourier spectrum in the first quadrant to the second quadrant by applying the mirror operation based on the symmetry of the real part of 1D Fourier transform. S1: the 2D sample Fourier spectrum in the first quadrant; P1X: obtained by 1D inverse Fourier transformation of S1 in the direction of X; P1Y: obtained by 1D inverse Fourier transformation of S1 in the direction of Y; M1X: obtained by applying mirror transformation to P1X; M1Y: obtained by applying mirror transformation to P1Y;F2: the 2D sample Fourier spectrum in the second quadrant by multiplying the results of 1D Fourier transformation for M1X and M1Y. F2 and S2 are symmetric along the Y axis.
Fig. 5
Fig. 5 MTSIM can indeed enhance the retrieval image resolution: (a) the sample spectrum corresponding to 0 order diffraction light at 45° rotation of grating, (b) the sample spectrum of the retrieval image by MTSIM.
Fig. 6
Fig. 6 The image reconstruction result: (a) the result of SIM with NCC = 0.9995; (b) the result of MTSIM with NCC = 0.9991. SIM requires the grating to rotate at 0°, 45°, 90° and 135° with the optical axis as the centre while MTSIM only uses the grating once with the angle between the grating and the optical axis being 45°.
Fig. 7
Fig. 7 The robustness on angular error and shot noise: (a) MSE curves between sample image and the retrieval result by SIM and MTSIM with the grating rotation angle error varying from −1.5° to 1.5°. The theoretical values for SIM are 0°, 45°, 90° and 135°. The theoretical values for MSIM is 45°. (b) Robustness result for shot noise.
Fig. 8
Fig. 8 The super-resolution ability proof of MTSIM on the resolution test target: (a) Super-resolution recovery image of the test target acquired by VSD; (b) Super-resolution recovery image of the test target acquired by MTSIM; (c) Normalized intensity curves along x axis. The purple curve is normalized intensity along x direction of the area specified by purple line in (a). The green curve is normalized intensity along x direction of the area specified by green line in (b); (d) Normalized intensity curves along y axis. The blue curve is normalized intensity along y direction of the area specified by blue line in (a). The red curve is normalized intensity along y direction of the area specified by red line in (b).
Fig. 9
Fig. 9 The biological sample experiment: (a) Super-resolution recovery image of the freshly isolated frog retina acquired by VSD. (b) Super-resolution recovery image of the retina acquired by MTSIM. (c) Reflectance profiles of the green and red line areas in (a) and (b). The green and red curves are normalized intensity profiles along the green line in (a) and the red line in (b) respectively.
Fig. 10
Fig. 10 The biological sample (the mouse cortex slice) experiment by SIM and MTSIM: (a) Super-resolution recovery image of the mouse cortex slice acquired by SIM. (b) Super-resolution recovery image of the mouse cortex slice acquired by MTSIM. The green and red curves are normalized intensity profiles along the green line in (a) and the red line in (b) respectively. By applying the mirror operation based on the symmetry of the real part of 1D Fourier transform, MTSIM is able to achieve the image reconstruction with approximate super-resolution ability under the condition that the grating is only used once compared with SIM.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

m(x,y)=cos[ 2π k 0 (xcosθ+ysinθ)+ϕ ],
[ I 1 I 2 I 3 ]( k )=[ 1 1 2 e i ϕ 1 1 2 e i ϕ 1 1 1 2 e i ϕ 2 1 2 e i ϕ 2 1 1 2 e i ϕ 3 1 2 e i ϕ 3 ][ H 0 0 0 H 0 0 0 H ][ S( k ) S( k + k 0 ) S( k k 0 ) ],
S Re ( x,y )={ S Re ( x,y ), if x>0 and y>0, S Re ( x,y ), if x>0 and y0, S Re ( x,y ), if x0 and y>0, S Re ( x,y ), if x0 and y0,
MSE= 1 M×N n=0 N1 m=0 M1 [ f obj ( m,n ) f re ( m,n ) ] 2 ,
SNR=10× log 10 n=0 N1 m=0 M1 f true 2 (m,n) n=0 N1 m=0 M1 [ f true (m,n) f noi (m,n) ] 2 .
m(x,y)=cos{ 2π f 0 [ xcos(θ+Δθ)+ycos(θ+Δθ) ]+ϕ },

Metrics