Abstract

A modification of the subhologram-based approach to the calculation of a computer generated display hologram of a 3-D scene is presented. The hologram area is split into subholograms. For each of them, a perspective image with depth coordinate is rendered and converted to a point cloud. These points are processed in a novel way and the optical field in the subhologram is calculated. The processing guarantees that the points used for the optical field calculation are the same for all subholograms (i.e., coherent). The coherence provides sharp hologram reconstruction. The parameters of the processing are designed to match the human vision requirements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Colour computer-generated holography for point clouds utilizing the Phong illumination model

Athanasia Symeonidou, David Blinder, and Peter Schelkens
Opt. Express 26(8) 10282-10298 (2018)

Multiple-camera holographic system featuring efficient depth grids for representation of real 3D objects

Yu Zhao, Munkh-Uchral Erdenebat, Md-Shahinur Alam, Mei-Lan Piao, Seok-Hee Jeon, and Nam Kim
Appl. Opt. 58(5) A242-A250 (2019)

Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Opt. Express 23(4) 3901-3913 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photon. 5, 456–535 (2013).
    [Crossref]
  2. J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2004), 3rd ed.
  3. S. A. Benton and V. M. Bove, Holographic Imaging (Wiley, 2008).
    [Crossref]
  4. H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography (Taylor & Francis, 2013).
    [Crossref]
  5. P. Lobaz, “Computer generated display holography,” in EG 2017 – Tutorials, A. Bousseau and D. Gutierrez, eds. (The Eurographics Association, 2017).
  6. G. Saxby and S. Zacharovas, Practical Holography (Taylor & Francis, 2015), 4th ed.
  7. K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
    [Crossref]
  8. K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
    [Crossref] [PubMed]
  9. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722–2729 (1976).
    [Crossref] [PubMed]
  10. M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
    [Crossref]
  11. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47, D44–D54 (2008).
    [Crossref] [PubMed]
  12. T. Ichikawa, K. Yamaguchi, and Y. Sakamoto, “Realistic expression for full-parallax computer-generated holograms with the ray-tracing method,” Appl. Opt. 52, A201–A209 (2013).
    [Crossref] [PubMed]
  13. K. Wakunami and M. Yamaguchi, “Calculation of computer-generated hologram for 3D display using light-ray sampling plane,” Proc. SPIE 7619, 76190A (2010).
    [Crossref]
  14. K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21, 21811–21822 (2013).
    [Crossref] [PubMed]
  15. S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient calculation method for realistic deep 3D scene hologram using orthographic projection,” Proc. SPIE 9771, 97710O (2016).
    [Crossref]
  16. S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion,” Opt. Express 26, 10773–10786 (2018).
    [Crossref] [PubMed]
  17. A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
    [Crossref]
  18. P. Lobaz, “Reference calculation of light propagation between parallel planes of different sizes and sampling rates,” Opt. Express 19, 32–39 (2011).
    [Crossref] [PubMed]
  19. P. Lobaz, “Memory-efficient reference calculation of light propagation using the convolution method,” Opt. Express 21, 2795–2806 (2013).
    [Crossref] [PubMed]

2018 (2)

2016 (1)

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient calculation method for realistic deep 3D scene hologram using orthographic projection,” Proc. SPIE 9771, 97710O (2016).
[Crossref]

2013 (4)

2011 (1)

2010 (1)

K. Wakunami and M. Yamaguchi, “Calculation of computer-generated hologram for 3D display using light-ray sampling plane,” Proc. SPIE 7619, 76190A (2010).
[Crossref]

2008 (1)

2004 (1)

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

1993 (1)

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

1982 (1)

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

1976 (1)

Benton, S. A.

S. A. Benton and V. M. Bove, Holographic Imaging (Wiley, 2008).
[Crossref]

Bjelkhagen, H.

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography (Taylor & Francis, 2013).
[Crossref]

Bove, V. M.

S. A. Benton and V. M. Bove, Holographic Imaging (Wiley, 2008).
[Crossref]

Brotherton-Ratcliffe, D.

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography (Taylor & Francis, 2013).
[Crossref]

Carpenter, L.

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

Fournier, A.

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

Fussell, D.

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

Geng, J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2004), 3rd ed.

Honda, T.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Hoshino, H.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Ichikawa, T.

Igarashi, S.

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion,” Opt. Express 26, 10773–10786 (2018).
[Crossref] [PubMed]

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient calculation method for realistic deep 3D scene hologram using orthographic projection,” Proc. SPIE 9771, 97710O (2016).
[Crossref]

Kang, H.

Kondoh, A.

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

Lobaz, P.

Matsushima, K.

K. Matsushima and N. Sonobe, “Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects,” Appl. Opt. 57, A150–A156 (2018).
[Crossref] [PubMed]

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion,” Opt. Express 26, 10773–10786 (2018).
[Crossref] [PubMed]

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient calculation method for realistic deep 3D scene hologram using orthographic projection,” Proc. SPIE 9771, 97710O (2016).
[Crossref]

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

Nakamura, T.

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion,” Opt. Express 26, 10773–10786 (2018).
[Crossref] [PubMed]

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient calculation method for realistic deep 3D scene hologram using orthographic projection,” Proc. SPIE 9771, 97710O (2016).
[Crossref]

Ohyama, N.

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Sakamoto, Y.

Saxby, G.

G. Saxby and S. Zacharovas, Practical Holography (Taylor & Francis, 2015), 4th ed.

Sonobe, N.

Wakunami, K.

K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21, 21811–21822 (2013).
[Crossref] [PubMed]

K. Wakunami and M. Yamaguchi, “Calculation of computer-generated hologram for 3D display using light-ray sampling plane,” Proc. SPIE 7619, 76190A (2010).
[Crossref]

Yamaguchi, K.

Yamaguchi, M.

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion,” Opt. Express 26, 10773–10786 (2018).
[Crossref] [PubMed]

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient calculation method for realistic deep 3D scene hologram using orthographic projection,” Proc. SPIE 9771, 97710O (2016).
[Crossref]

K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21, 21811–21822 (2013).
[Crossref] [PubMed]

K. Wakunami and M. Yamaguchi, “Calculation of computer-generated hologram for 3D display using light-ray sampling plane,” Proc. SPIE 7619, 76190A (2010).
[Crossref]

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Yamaguchi, T.

Yamashita, H.

Yatagai, T.

Yoshikawa, H.

Zacharovas, S.

G. Saxby and S. Zacharovas, Practical Holography (Taylor & Francis, 2015), 4th ed.

Adv. Opt. Photon. (1)

Appl. Opt. (4)

Commun. ACM (1)

A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun. ACM 25, 371–384 (1982).
[Crossref]

Opt. Express (4)

Proc. SPIE (4)

K. Matsushima and A. Kondoh, “A wave-optical algorithm for hidden-surface removal in digitally synthetic full-parallax holograms for three-dimensional objects,” Proc. SPIE 5290, 90–97 (2004).
[Crossref]

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient calculation method for realistic deep 3D scene hologram using orthographic projection,” Proc. SPIE 9771, 97710O (2016).
[Crossref]

K. Wakunami and M. Yamaguchi, “Calculation of computer-generated hologram for 3D display using light-ray sampling plane,” Proc. SPIE 7619, 76190A (2010).
[Crossref]

M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, “Phase-added stereogram: calculation of hologram using computer graphics technique,” Proc. SPIE 1914, 25–31 (1993).
[Crossref]

Other (5)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2004), 3rd ed.

S. A. Benton and V. M. Bove, Holographic Imaging (Wiley, 2008).
[Crossref]

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography (Taylor & Francis, 2013).
[Crossref]

P. Lobaz, “Computer generated display holography,” in EG 2017 – Tutorials, A. Bousseau and D. Gutierrez, eds. (The Eurographics Association, 2017).

G. Saxby and S. Zacharovas, Practical Holography (Taylor & Francis, 2015), 4th ed.

Supplementary Material (2)

NameDescription
» Visualization 1       Simulation of computer generated display hologram. Subhologram size 256x256 um. Other details: Hologram size 20x20 mm, pixel pitch 1 um, reconstruction wavelength 532 nm, designEyeDetail 0.3 mm/m. Simulated camera located 250 mm in front of the holo
» Visualization 2       Simulation of computer generated display hologram. Subhologram size 1024x1024 um. Other details: Hologram size 20x20 mm, pixel pitch 1 um, reconstruction wavelength 532 nm, designEyeDetail 0.3 mm/m. Simulated camera located 250 mm in front of the ho

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Global buffer and the scene geometry. (b) Position of the global buffer camera for gBufferEyeZdesignEyeZ. (c) For gBufferEyeZdesignEyeZ.
Fig. 2
Fig. 2 (a) Rendering of the perspective image. (b) Simple order of subholograms calculation. (c) Diamond-square order of subholograms calculation.
Fig. 3
Fig. 3 (a) Rendering of a flat patch for subholograms A and B. (b) Errors in the approximation of the surface.
Fig. 4
Fig. 4 Numbers of samples (elements) of the global buffer and the perspective images.
Fig. 5
Fig. 5 The complex hologram of a single point (real part) and its real image reconstruction.
Fig. 6
Fig. 6 Reconstructions of holograms of resolution targets, designEyeDetail = 0.3 mm/m.
Fig. 7
Fig. 7 Reconstructions of holograms of resolution targets, designEyeDetail = 0.1 mm/m.
Fig. 8
Fig. 8 Virtual image reconstruction. Left: subhologram size 256 × 256 μm, see also Visualization 1. Right: subhologram size 1024 × 1024 μm, see also Visualization 2. The blurred border of the image is the out-of-focus border of the hologram. Note there is no significant difference between the results.

Tables (1)

Tables Icon

Table 1 Parameters used for the examples in Sec. 3.3

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

U ( x ) = i = 1 N A i | x x i | exp [ j ( 2 π | x x i | / λ + ϕ i ] ,
designDeltaXNear = ( designEyeZ sceneZMax ) × designEyeDetail ,
designDeltaXFar = ( designEyeZ sceneZMin ) × designEyeDetail .
gBufferSamplesXPreV 1 = sceneSizeX designDeltaXNear ,
gBufferDeltaXNearV 2 = designDeltaXFar × gBufferEyeZ sceneZMax gBufferEyeZ sceneZMin
gBufferSamplesXPreV 2 = sceneSizeX gBufferDeltaNearV 2 .
gBufferSamplesX = ceiling ( gBufferSamplesXPreV 1 ) + 3 ,
globalDeltaXNear = sceneSizeX gBufferSamplesX 3 ,
globalDeltaXFar = globalDeltaXNear × gBufferEyeZ sceneZMin gBufferEyeZ sceneZMax .
partSizeX = Δ H × ( partSamplesX 1 ) ,
renderEyeZ = partSizeX 2 tan ( maxDiffractionAngleX ) + hologramZ ,
maxDiffractionAngleX asin [ min ( 1 , λ 2 Δ H ) ] .
renderSizeFarX = partSizeX × renderEyeZ sceneZMin renderEyeZ hologramZ
renderSamplesX = ceiling ( renderSizeFarX globalDeltaXFar ) + 1
gBufferSamplesX = 575 renderSamplesX = 798
gBufferSamplesX = 575 renderSamplesX = 1716
gBufferSamplesX sceneSizeX designEyeDetail × ( gBufferEyeZ sceneZMax ) .
renderSamplesX λ × sceneZMin holoSamplingDistance X 2 × partSamplesX holoSamplingDistanceX × designEyeDetail × ( sceneZMin designEyeZ ) .
renderSamplesX 2 maxDiffractionAngleX × sceneZMin designEyeDetail × ( sceneZmin designEyeZ ) .
lim sceneZMin renederSamplesX 2 maxDiffractionAngleX / designEyeDetail ,
g A g B = Δ S 1 ( gBufferZ gBufferEyeZ ) ( z 0 renderEyeZ ) Δ G ( hologramZ renderEyeZ ) ( z gBufferEyeZ ) + 2
g A g B ( designEyeZ sceneZMin ) ( renderEyeZ z 0 ) ( renderEyeZ sceneZMin ) ( designEyeZ z 0 ) + 1 .

Metrics