Abstract

A carbon dioxide (CO2) gas sensor based on a polyhexamethylene biguanide (PHMB)-coated whispering gallery mode (WGM) microbubble resonator is proposed and verified experimentally in this work. Microbubbles were fabricated using two reverse arc discharges focused on microcapillaries. The inner wall of the microbubble was coated with a layer of PHMB using a filling and sintering process. A significant WGM resonance was observed by coupling with a tapered fiber. The experimental results show that as the concentration of carbon dioxide increases, a blue shift appears in the spectrum. Addition, a high sensitivity (0.46 pm /ppm) and a good linear relationship were obtained in the measurement range of 200-700 ppm with a detection limit of 50 ppm. The sensor features include high sensitivity, simple structure, easy manufacture, and low cost.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rapid chemical-vapor sensing using optofluidic ring resonators

Yuze Sun, Siyka I. Shopova, Greg Frye-Mason, and Xudong Fan
Opt. Lett. 33(8) 788-790 (2008)

Ultra-sensitive biomolecular detection by external referencing optofluidic microbubble resonators

Zhihe Guo, Qijing Lu, Chenggang Zhu, Bowen Wang, Yi Zhou, and Xiang Wu
Opt. Express 27(9) 12424-12435 (2019)

High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing

Yong Yang, Sunny Saurabh, Jonathan M. Ward, and Síle Nic Chormaic
Opt. Express 24(1) 294-299 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renew. Sustain. Energy Rev. 39(6), 426–443 (2017).
  2. S. Wang, J. S. San, J. J. Yu, R. Lee, and N. Liu, “A downhole CO2 sensor to monitor CO2 movement in situ for geologic carbon storage,” Int. J. Greenh. Gas Control 55, 202–208 (2016).
    [Crossref]
  3. G. G. Mandayo, J. Herrán, I. Castro-Hurtado, and E. Castaño, “Performance of a CO2 impedimetric sensor prototype for air quality monitoring,” Sensors (Basel) 11(5), 5047–5057 (2011).
    [Crossref] [PubMed]
  4. J. Gong, M. Antonietti, and J. Yuan, “Poly (ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing,” Angew. Chem. Int. Ed. Engl. 56(26), 7557–7563 (2017).
    [Crossref] [PubMed]
  5. P. Suresh Kumar, A. V. Scaria, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Long-period grating in multimode fiber for ammonia gas detection,” Proc. SPIE 5279(1), 331–335 (2004).
    [Crossref]
  6. W. Cao and Y. Duan, “Optical fiber-based evanscent ammonia sensor,” Sens. Actuator B, Chem 110(2), 252–259 (2005).
  7. L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
    [Crossref]
  8. K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors (Basel) 15(12), 31888–31903 (2015).
    [Crossref] [PubMed]
  9. C.-W. Wu and C.-C. Chiang, “Sandwiched long-period fiber grating fabricated by MEMS process for CO2 gas detection,” Micromachines (Basel) 7(3), 35 (2016).
    [Crossref] [PubMed]
  10. G. Mi, C. Horvath, M. Aktary, and V. Van, “Silicon microring refractometric sensor for atmospheric CO2 gas monitoring,” Opt. Express 24(2), 1773–1780 (2016).
    [Crossref] [PubMed]
  11. J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
    [Crossref]
  12. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35(7), 898–900 (2010).
    [Crossref] [PubMed]
  13. A. Watkins, J. Ward, Y. Wu, and S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
    [Crossref] [PubMed]
  14. A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8(1), 1620 (2018).
    [Crossref] [PubMed]
  15. B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
    [Crossref] [PubMed]
  16. W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
    [Crossref]
  17. H. Y. Li, S. Hao, L. S. Qiang, J. Li, and Y. D. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
    [Crossref]
  18. S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
    [Crossref] [PubMed]
  19. A. Giannetti, S. Berneschi, F. Baldini, F. Cosi, G. N. Conti, and S. Soria, “Performance of Eudragit coated whispering gallery mode resonator-based immunosensors,” Sensors (Basel) 12(11), 14604–14611 (2012).
    [Crossref] [PubMed]
  20. A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
    [Crossref] [PubMed]
  21. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science 287(5459), 1801–1804 (2000).
    [Crossref] [PubMed]
  22. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semiconductive thin films,” Anal. Chem. 34(11), 1502–1503 (1962).
    [Crossref]
  23. Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
    [Crossref] [PubMed]
  24. S. Zhu, Y. Liu, L. Shi, X. Xu, and X. Zhang, “Extinction ratio and resonant wavelength tuning using three dimensions of silica microresonators,” Photon. Res. 4(5), 191–196 (2016).
    [Crossref]
  25. P. Zhao, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Compact in-line optical notch filter based on an asymmetric microfiber coupler,” Appl. Opt. 52(36), 8834–8839 (2013).
    [Crossref] [PubMed]
  26. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  27. M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
    [Crossref]

2018 (2)

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8(1), 1620 (2018).
[Crossref] [PubMed]

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

2017 (3)

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renew. Sustain. Energy Rev. 39(6), 426–443 (2017).

J. Gong, M. Antonietti, and J. Yuan, “Poly (ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing,” Angew. Chem. Int. Ed. Engl. 56(26), 7557–7563 (2017).
[Crossref] [PubMed]

2016 (4)

S. Wang, J. S. San, J. J. Yu, R. Lee, and N. Liu, “A downhole CO2 sensor to monitor CO2 movement in situ for geologic carbon storage,” Int. J. Greenh. Gas Control 55, 202–208 (2016).
[Crossref]

C.-W. Wu and C.-C. Chiang, “Sandwiched long-period fiber grating fabricated by MEMS process for CO2 gas detection,” Micromachines (Basel) 7(3), 35 (2016).
[Crossref] [PubMed]

G. Mi, C. Horvath, M. Aktary, and V. Van, “Silicon microring refractometric sensor for atmospheric CO2 gas monitoring,” Opt. Express 24(2), 1773–1780 (2016).
[Crossref] [PubMed]

S. Zhu, Y. Liu, L. Shi, X. Xu, and X. Zhang, “Extinction ratio and resonant wavelength tuning using three dimensions of silica microresonators,” Photon. Res. 4(5), 191–196 (2016).
[Crossref]

2015 (3)

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors (Basel) 15(12), 31888–31903 (2015).
[Crossref] [PubMed]

2014 (3)

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

2013 (2)

P. Zhao, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Compact in-line optical notch filter based on an asymmetric microfiber coupler,” Appl. Opt. 52(36), 8834–8839 (2013).
[Crossref] [PubMed]

H. Y. Li, S. Hao, L. S. Qiang, J. Li, and Y. D. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

2012 (1)

A. Giannetti, S. Berneschi, F. Baldini, F. Cosi, G. N. Conti, and S. Soria, “Performance of Eudragit coated whispering gallery mode resonator-based immunosensors,” Sensors (Basel) 12(11), 14604–14611 (2012).
[Crossref] [PubMed]

2011 (2)

A. Watkins, J. Ward, Y. Wu, and S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
[Crossref] [PubMed]

G. G. Mandayo, J. Herrán, I. Castro-Hurtado, and E. Castaño, “Performance of a CO2 impedimetric sensor prototype for air quality monitoring,” Sensors (Basel) 11(5), 5047–5057 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (1)

2005 (1)

W. Cao and Y. Duan, “Optical fiber-based evanscent ammonia sensor,” Sens. Actuator B, Chem 110(2), 252–259 (2005).

2004 (1)

P. Suresh Kumar, A. V. Scaria, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Long-period grating in multimode fiber for ammonia gas detection,” Proc. SPIE 5279(1), 331–335 (2004).
[Crossref]

2000 (1)

P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science 287(5459), 1801–1804 (2000).
[Crossref] [PubMed]

1962 (1)

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semiconductive thin films,” Anal. Chem. 34(11), 1502–1503 (1962).
[Crossref]

Aktary, M.

Antonietti, M.

J. Gong, M. Antonietti, and J. Yuan, “Poly (ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing,” Angew. Chem. Int. Ed. Engl. 56(26), 7557–7563 (2017).
[Crossref] [PubMed]

Baldini, F.

A. Giannetti, S. Berneschi, F. Baldini, F. Cosi, G. N. Conti, and S. Soria, “Performance of Eudragit coated whispering gallery mode resonator-based immunosensors,” Sensors (Basel) 12(11), 14604–14611 (2012).
[Crossref] [PubMed]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
[Crossref] [PubMed]

Berneschi, S.

A. Giannetti, S. Berneschi, F. Baldini, F. Cosi, G. N. Conti, and S. Soria, “Performance of Eudragit coated whispering gallery mode resonator-based immunosensors,” Sensors (Basel) 12(11), 14604–14611 (2012).
[Crossref] [PubMed]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
[Crossref] [PubMed]

Bradley, K.

P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science 287(5459), 1801–1804 (2000).
[Crossref] [PubMed]

Burton, G.

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Cao, W.

W. Cao and Y. Duan, “Optical fiber-based evanscent ammonia sensor,” Sens. Actuator B, Chem 110(2), 252–259 (2005).

Caramanna, G.

D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renew. Sustain. Energy Rev. 39(6), 426–443 (2017).

Castaño, E.

G. G. Mandayo, J. Herrán, I. Castro-Hurtado, and E. Castaño, “Performance of a CO2 impedimetric sensor prototype for air quality monitoring,” Sensors (Basel) 11(5), 5047–5057 (2011).
[Crossref] [PubMed]

Castro-Hurtado, I.

G. G. Mandayo, J. Herrán, I. Castro-Hurtado, and E. Castaño, “Performance of a CO2 impedimetric sensor prototype for air quality monitoring,” Sensors (Basel) 11(5), 5047–5057 (2011).
[Crossref] [PubMed]

Chen, Y.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Chiang, C.-C.

C.-W. Wu and C.-C. Chiang, “Sandwiched long-period fiber grating fabricated by MEMS process for CO2 gas detection,” Micromachines (Basel) 7(3), 35 (2016).
[Crossref] [PubMed]

Collins, P. G.

P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science 287(5459), 1801–1804 (2000).
[Crossref] [PubMed]

Conti, G. N.

A. Giannetti, S. Berneschi, F. Baldini, F. Cosi, G. N. Conti, and S. Soria, “Performance of Eudragit coated whispering gallery mode resonator-based immunosensors,” Sensors (Basel) 12(11), 14604–14611 (2012).
[Crossref] [PubMed]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
[Crossref] [PubMed]

Cosi, F.

A. Giannetti, S. Berneschi, F. Baldini, F. Cosi, G. N. Conti, and S. Soria, “Performance of Eudragit coated whispering gallery mode resonator-based immunosensors,” Sensors (Basel) 12(11), 14604–14611 (2012).
[Crossref] [PubMed]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
[Crossref] [PubMed]

Davies, B.

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Dhasmana, N.

J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

Duan, Y.

W. Cao and Y. Duan, “Optical fiber-based evanscent ammonia sensor,” Sens. Actuator B, Chem 110(2), 252–259 (2005).

Dulashko, Y.

Dumeige, Y.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

Eryürek, M.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Fan, X.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

Farrell, G.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8(1), 1620 (2018).
[Crossref] [PubMed]

Féron, P.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

Fujiishi, K.

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semiconductive thin films,” Anal. Chem. 34(11), 1502–1503 (1962).
[Crossref]

Giannetti, A.

A. Giannetti, S. Berneschi, F. Baldini, F. Cosi, G. N. Conti, and S. Soria, “Performance of Eudragit coated whispering gallery mode resonator-based immunosensors,” Sensors (Basel) 12(11), 14604–14611 (2012).
[Crossref] [PubMed]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
[Crossref] [PubMed]

Gong, J.

J. Gong, M. Antonietti, and J. Yuan, “Poly (ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing,” Angew. Chem. Int. Ed. Engl. 56(26), 7557–7563 (2017).
[Crossref] [PubMed]

Gong, Y.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Hao, S.

H. Y. Li, S. Hao, L. S. Qiang, J. Li, and Y. D. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

Herrán, J.

G. G. Mandayo, J. Herrán, I. Castro-Hurtado, and E. Castaño, “Performance of a CO2 impedimetric sensor prototype for air quality monitoring,” Sensors (Basel) 11(5), 5047–5057 (2011).
[Crossref] [PubMed]

Horvath, C.

Huang, S. W.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Huet, V.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

Ishigami, M.

P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science 287(5459), 1801–1804 (2000).
[Crossref] [PubMed]

Karadag, Y.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Kato, A.

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semiconductive thin films,” Anal. Chem. 34(11), 1502–1503 (1962).
[Crossref]

Kavungal, V.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8(1), 1620 (2018).
[Crossref] [PubMed]

Kilinç, N.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Kiraz, A.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Le Cren, E.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

Lee, R.

S. Wang, J. S. San, J. J. Yu, R. Lee, and N. Liu, “A downhole CO2 sensor to monitor CO2 movement in situ for geologic carbon storage,” Int. J. Greenh. Gas Control 55, 202–208 (2016).
[Crossref]

Leung, D. Y. C.

D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renew. Sustain. Energy Rev. 39(6), 426–443 (2017).

Li, H. Y.

H. Y. Li, S. Hao, L. S. Qiang, J. Li, and Y. D. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

Li, J.

H. Y. Li, S. Hao, L. S. Qiang, J. Li, and Y. D. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

Li, Y.

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Lipinski, S.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors (Basel) 15(12), 31888–31903 (2015).
[Crossref] [PubMed]

Liu, D.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8(1), 1620 (2018).
[Crossref] [PubMed]

Liu, N.

S. Wang, J. S. San, J. J. Yu, R. Lee, and N. Liu, “A downhole CO2 sensor to monitor CO2 movement in situ for geologic carbon storage,” Int. J. Greenh. Gas Control 55, 202–208 (2016).
[Crossref]

Liu, Y.

Ma, W.

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

Mallik, A. K.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8(1), 1620 (2018).
[Crossref] [PubMed]

Mandayo, G. G.

G. G. Mandayo, J. Herrán, I. Castro-Hurtado, and E. Castaño, “Performance of a CO2 impedimetric sensor prototype for air quality monitoring,” Sensors (Basel) 11(5), 5047–5057 (2011).
[Crossref] [PubMed]

Maroto-Valer, M. M.

D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renew. Sustain. Energy Rev. 39(6), 426–443 (2017).

Melo, L.

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Mi, G.

Michely, L.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

Mortier, M.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

Nagatani, M.

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semiconductive thin films,” Anal. Chem. 34(11), 1502–1503 (1962).
[Crossref]

Nampoori, V. P. N.

P. Suresh Kumar, A. V. Scaria, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Long-period grating in multimode fiber for ammonia gas detection,” Proc. SPIE 5279(1), 331–335 (2004).
[Crossref]

Napierala, M.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors (Basel) 15(12), 31888–31903 (2015).
[Crossref] [PubMed]

Nasilowski, T.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors (Basel) 15(12), 31888–31903 (2015).
[Crossref] [PubMed]

Nguyên, T. K. N.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

Nic Chormaic, S.

J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

A. Watkins, J. Ward, Y. Wu, and S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
[Crossref] [PubMed]

Pelli, S.

Pu, S.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Qiang, L. S.

H. Y. Li, S. Hao, L. S. Qiang, J. Li, and Y. D. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

Qiao, X.

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

Radhakrishnan, P.

P. Suresh Kumar, A. V. Scaria, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Long-period grating in multimode fiber for ammonia gas detection,” Proc. SPIE 5279(1), 331–335 (2004).
[Crossref]

Rao, Y.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Rasoloniaina, A.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

Righini, G. C.

Risk, D.

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Rong, Q.

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

San, J. S.

S. Wang, J. S. San, J. J. Yu, R. Lee, and N. Liu, “A downhole CO2 sensor to monitor CO2 movement in situ for geologic carbon storage,” Int. J. Greenh. Gas Control 55, 202–208 (2016).
[Crossref]

Scaria, A. V.

P. Suresh Kumar, A. V. Scaria, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Long-period grating in multimode fiber for ammonia gas detection,” Proc. SPIE 5279(1), 331–335 (2004).
[Crossref]

Seiyama, T.

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semiconductive thin films,” Anal. Chem. 34(11), 1502–1503 (1962).
[Crossref]

Semenova, Y.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8(1), 1620 (2018).
[Crossref] [PubMed]

Shi, L.

Soria, S.

A. Giannetti, S. Berneschi, F. Baldini, F. Cosi, G. N. Conti, and S. Soria, “Performance of Eudragit coated whispering gallery mode resonator-based immunosensors,” Sensors (Basel) 12(11), 14604–14611 (2012).
[Crossref] [PubMed]

S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. N. Conti, S. Pelli, G. C. Righini, and B. Tiribilli, “High-Q polymer-coated microspheres for immunosensing applications,” Opt. Express 17(17), 14694–14699 (2009).
[Crossref] [PubMed]

Stanczyk, T.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors (Basel) 15(12), 31888–31903 (2015).
[Crossref] [PubMed]

Sumetsky, M.

Suresh Kumar, P.

P. Suresh Kumar, A. V. Scaria, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Long-period grating in multimode fiber for ammonia gas detection,” Proc. SPIE 5279(1), 331–335 (2004).
[Crossref]

Tasaltin, N.

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Tiribilli, B.

Vallabhan, C. P. G.

P. Suresh Kumar, A. V. Scaria, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Long-period grating in multimode fiber for ammonia gas detection,” Proc. SPIE 5279(1), 331–335 (2004).
[Crossref]

Van, V.

Wang, R.

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

Wang, S.

S. Wang, J. S. San, J. J. Yu, R. Lee, and N. Liu, “A downhole CO2 sensor to monitor CO2 movement in situ for geologic carbon storage,” Int. J. Greenh. Gas Control 55, 202–208 (2016).
[Crossref]

Wang, Z.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

P. Zhao, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Compact in-line optical notch filter based on an asymmetric microfiber coupler,” Appl. Opt. 52(36), 8834–8839 (2013).
[Crossref] [PubMed]

Ward, J.

Ward, J. M.

J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

Watkins, A.

White, I. M.

Wild, P.

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

Windeler, R. S.

Wong, C. W.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Wu, C.-W.

C.-W. Wu and C.-C. Chiang, “Sandwiched long-period fiber grating fabricated by MEMS process for CO2 gas detection,” Micromachines (Basel) 7(3), 35 (2016).
[Crossref] [PubMed]

Wu, H.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Wu, Q.

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8(1), 1620 (2018).
[Crossref] [PubMed]

Wu, Y.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

A. Watkins, J. Ward, Y. Wu, and S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
[Crossref] [PubMed]

Wysokinski, K.

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors (Basel) 15(12), 31888–31903 (2015).
[Crossref] [PubMed]

Xing, J.

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

Xu, X.

S. Zhu, Y. Liu, L. Shi, X. Xu, and X. Zhang, “Extinction ratio and resonant wavelength tuning using three dimensions of silica microresonators,” Photon. Res. 4(5), 191–196 (2016).
[Crossref]

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Yao, B.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Yu, C.

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Yu, J. J.

S. Wang, J. S. San, J. J. Yu, R. Lee, and N. Liu, “A downhole CO2 sensor to monitor CO2 movement in situ for geologic carbon storage,” Int. J. Greenh. Gas Control 55, 202–208 (2016).
[Crossref]

Yuan, J.

J. Gong, M. Antonietti, and J. Yuan, “Poly (ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing,” Angew. Chem. Int. Ed. Engl. 56(26), 7557–7563 (2017).
[Crossref] [PubMed]

Zettl, A.

P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science 287(5459), 1801–1804 (2000).
[Crossref] [PubMed]

Zhang, J.

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

Zhang, W.

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

Zhang, X.

Zhang, Y. D.

H. Y. Li, S. Hao, L. S. Qiang, J. Li, and Y. D. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

Zhao, P.

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

P. Zhao, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Compact in-line optical notch filter based on an asymmetric microfiber coupler,” Appl. Opt. 52(36), 8834–8839 (2013).
[Crossref] [PubMed]

Zhu, S.

Anal. Chem. (1)

T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A new detector for gaseous components using semiconductive thin films,” Anal. Chem. 34(11), 1502–1503 (1962).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

J. Gong, M. Antonietti, and J. Yuan, “Poly (ionic liquid)-derived carbon with site-specific N-doping and biphasic heterojunction for enhanced CO2 capture and sensing,” Angew. Chem. Int. Ed. Engl. 56(26), 7557–7563 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Y. Li, S. Hao, L. S. Qiang, J. Li, and Y. D. Zhang, “Observation of whispering gallery modes in microtube-microspheres system,” Appl. Phys. Lett. 102(23), 231908 (2013).
[Crossref]

Eur. Phys. J. Spec. Top. (1)

J. M. Ward, N. Dhasmana, and S. Nic Chormaic, “Hollow core, whispering gallery resonator sensors,” Eur. Phys. J. Spec. Top. 223(10), 1917–1935 (2014).
[Crossref]

IEEE Sens. J. (1)

W. Ma, J. Xing, R. Wang, Q. Rong, W. Zhang, Y. Li, J. Zhang, and X. Qiao, “Optical fiber Fabry-Perot interferometric CO2 gas sensor using Guanidine derivative polymer functionalized layer,” IEEE Sens. J. 18(5), 1924–1929 (2018).
[Crossref]

Int. J. Greenh. Gas Control (1)

S. Wang, J. S. San, J. J. Yu, R. Lee, and N. Liu, “A downhole CO2 sensor to monitor CO2 movement in situ for geologic carbon storage,” Int. J. Greenh. Gas Control 55, 202–208 (2016).
[Crossref]

Lab Chip (1)

Y. Liu, L. Shi, X. Xu, P. Zhao, Z. Wang, S. Pu, and X. Zhang, “All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator,” Lab Chip 14(16), 3004–3010 (2014).
[Crossref] [PubMed]

Micromachines (Basel) (1)

C.-W. Wu and C.-C. Chiang, “Sandwiched long-period fiber grating fabricated by MEMS process for CO2 gas detection,” Micromachines (Basel) 7(3), 35 (2016).
[Crossref] [PubMed]

Nano Lett. (1)

B. Yao, C. Yu, Y. Wu, S. W. Huang, H. Wu, Y. Gong, Y. Chen, Y. Li, C. W. Wong, X. Fan, and Y. Rao, “Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection,” Nano Lett. 17(8), 4996–5002 (2017).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Photon. Res. (1)

Proc. SPIE (1)

P. Suresh Kumar, A. V. Scaria, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, “Long-period grating in multimode fiber for ammonia gas detection,” Proc. SPIE 5279(1), 331–335 (2004).
[Crossref]

Renew. Sustain. Energy Rev. (1)

D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renew. Sustain. Energy Rev. 39(6), 426–443 (2017).

Sci. Rep. (2)

A. K. Mallik, G. Farrell, D. Liu, V. Kavungal, Q. Wu, and Y. Semenova, “Silica gel coated spherical micro resonator for ultra-high sensitivity detection of ammonia gas concentration in air,” Sci. Rep. 8(1), 1620 (2018).
[Crossref] [PubMed]

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref] [PubMed]

Science (1)

P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science 287(5459), 1801–1804 (2000).
[Crossref] [PubMed]

Sens. Actuator B, Chem (1)

W. Cao and Y. Duan, “Optical fiber-based evanscent ammonia sensor,” Sens. Actuator B, Chem 110(2), 252–259 (2005).

Sens. Actuators B Chem. (2)

L. Melo, G. Burton, B. Davies, D. Risk, and P. Wild, “Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure,” Sens. Actuators B Chem. 202, 294–300 (2014).
[Crossref]

M. Eryürek, Y. Karadag, N. Taşaltın, N. Kılınç, and A. Kiraz, “Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator,” Sens. Actuators B Chem. 212, 78–83 (2015).
[Crossref]

Sensors (Basel) (3)

K. Wysokiński, M. Napierała, T. Stańczyk, S. Lipiński, and T. Nasiłowski, “Study on the sensing coating of the optical fibre CO2 sensor,” Sensors (Basel) 15(12), 31888–31903 (2015).
[Crossref] [PubMed]

G. G. Mandayo, J. Herrán, I. Castro-Hurtado, and E. Castaño, “Performance of a CO2 impedimetric sensor prototype for air quality monitoring,” Sensors (Basel) 11(5), 5047–5057 (2011).
[Crossref] [PubMed]

A. Giannetti, S. Berneschi, F. Baldini, F. Cosi, G. N. Conti, and S. Soria, “Performance of Eudragit coated whispering gallery mode resonator-based immunosensors,” Sensors (Basel) 12(11), 14604–14611 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the fabrication process for a PHMB coated microbubble using a fiber splicer. (b) Microscopic image of microbubbles used in the sensing experiments, the diameter is 320μm. (c) Scanning electron microscope (SEM) image of cross section of microbubbles coated with PHMB.
Fig. 2
Fig. 2 Chemical structure of PHMB and reactions between CO2 and amide-bearing functional groups.
Fig. 3
Fig. 3 Schematic diagram of the experimental setup. T.L.: tunable laser; MFC: mass flow controllers; PD: photo detector; OSC: oscilloscope; OSA: optical spectrum analyzer. The inset shows a microscopic image of the PHMB coated microbubble.
Fig. 4
Fig. 4 (a) Transmission spectra of the microbubble before and after coating with PHMB. Q factor estimates for the 320μm diameter microbubble (b) before and (c) after its coating with PHMB.
Fig. 5
Fig. 5 (a) WGM spectral shift during sensor’s exposure to different concentrations of CO2 ranging from 200 ppm to 700 ppm. (b) Sensor’s response as a function of CO2 concentration (microbubble wall thickness is about 11 μm). (c) WGM spectral shift during sensor’s exposure to different concentrations of CO2 ranging from 200 ppm to 700 ppm. (d) Sensor’s response as a function of CO2 concentration (microbubble wall thickness is about 4 μm).
Fig. 6
Fig. 6 Electric field distribution in the microbubble with wall thickness of (a) 11 μm and (b) about 4 μm.
Fig. 7
Fig. 7 Dynamic response of the microbubble CO2 sensor.
Fig. 8
Fig. 8 Relative wavelength shifts of the transmission spectrum of the microbubble for carbon dioxide, nitrogen, hydrogen and argon.
Fig. 9
Fig. 9 Time responses of the sensor to 400 ppm CO2 during three consecutive tests at 10-day intervals at constant humidity and temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ= λ res n eff Δ n eff ,

Metrics