Abstract

We propose an on-chip mode converter via two cascaded Bragg reflection processes. A forward conversion between two guided modes can be achieved with the aid of an additional mode. The proposed structure is theoretically studied and simulated via the rigorous three-dimensional finite-difference time-domain (3D-FDTD) method. The bandwidth and central wavelength of the proposed mode converter can be adjusted according to our theoretical analysis and simulation results. By applying the similar design approaches as fiber Bragg gratings, conversion spectra with different shapes can be obtained. As an example, several mode converters with bandpass and sidelobe-reduced spectra are designed. We also investigate and verify the mode conversion by experiment. Therefore, the proposed method may pave a new path for the mode converters with desired conversion spectra.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-mode contra-directional coupler based on superposed grating

Xiangjie Zhao, Yuxi Wang, Qingzhong Huang, and Jinsong Xia
Opt. Express 25(3) 2654-2665 (2017)

Low-loss and broadband silicon mode filter using cascaded plasmonic BSWGs for on-chip mode division multiplexing

W. Jiang, J. Miao, T. Li, and L. Ma
Opt. Express 27(21) 30429-30440 (2019)

Ultra-broadband mode converters based on length-apodized long-period waveguide gratings

Wen Wang, Jieyun Wu, Kaixin Chen, Wei Jin, and Kin Seng Chiang
Opt. Express 25(13) 14341-14350 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
    [Crossref]
  2. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: Polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
    [Crossref]
  3. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  4. P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
    [Crossref] [PubMed]
  5. V. Liu, D. A. B. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20(27), 28388–28397 (2012).
    [Crossref] [PubMed]
  6. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  7. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  8. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [Crossref] [PubMed]
  9. D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express 23(9), 11152–11159 (2015).
    [Crossref] [PubMed]
  10. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
    [Crossref] [PubMed]
  11. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
    [Crossref] [PubMed]
  12. T. Shimizu, N. Hatori, Y. Urino, and T. Yamamoto, “Hybrid Integration Technology of Laser Source with Platform by Flip-chip Bon ding for Silicon Photonics,” IEEE Int. Conf. Gr. IV Photonics GFP 6–9 (2013).
  13. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [Crossref] [PubMed]
  14. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  15. W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, and J. Yang, “Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions,” Opt. Lett. 41(12), 2851–2854 (2016).
    [Crossref] [PubMed]
  16. Y. Huang, G. Xu, and S. T. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
    [Crossref]
  17. N. Erim, I. H. Giden, M. Turduev, and H. Kurt, “Efficient mode-order conversion using a photonic crystal structure with low symmetry,” J. Opt. Soc. Am. B 30(11), 3086–3094 (2013).
    [Crossref]
  18. L. H. Frandsen, Y. Elesin, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide,” 2013 IEEE Photonics Conf. IPC 201322(7), 333–334 (2013).
    [Crossref]
  19. D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
    [Crossref] [PubMed]
  20. M. Ono, H. Taniyama, H. Xu, M. Tsunekawa, E. Kuramochi, K. Nozaki, and M. Notomi, “Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide,” Optica 3(9), 999–1005 (2016).
    [Crossref]
  21. P. Wahl, T. Tanemura, N. Vermeulen, J. Van Erps, D. A. B. Miller, and H. Thienpont, “Design of large scale plasmonic nanoslit arrays for arbitrary mode conversion and demultiplexing,” Opt. Express 22(1), 646–660 (2014).
    [Crossref] [PubMed]
  22. D. Zhu, J. Zhang, H. Ye, Z. Yu, and Y. Liu, “Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching,” Opt. Commun. 418(March), 88–92 (2018).
    [Crossref]
  23. J. Kim, S.-Y. Lee, Y. Lee, H. Kim, and B. Lee, “Tunable asymmetric mode conversion using the dark-mode of three-mode waveguide system,” Opt. Express 22(23), 28683–28696 (2014).
    [Crossref] [PubMed]
  24. W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40(2), 237–240 (2015).
    [Crossref] [PubMed]
  25. Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
    [Crossref]
  26. H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41(11), 2450–2453 (2016).
    [Crossref] [PubMed]
  27. J. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11), 4180–4184 (2005).
    [Crossref] [PubMed]
  28. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45(6), 1236–1243 (2006).
    [Crossref] [PubMed]
  29. C. R. Giles, “Lightwave applications of fiber bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
    [Crossref]
  30. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  31. M. Li, L. Y. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photonics Technol. Lett. 23(5), 314–316 (2011).
    [Crossref]
  32. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
    [Crossref] [PubMed]
  33. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photonics Technol. Lett. 18(8), 941–943 (2006).
    [Crossref]
  34. M. Denni, Sullivian, Electromagnetic Simulation Using the Fdtd Method (Wiley, 2013).
  35. X. Wang, “Silicon Photonic Waveguide Bragg Gratings,” PhD Thesis, Univ. Br. Columbia (2013).
  36. Q. Liu, Z. Gu, J. S. Kee, and M. K. Park, “Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating,” Opt. Express 22(24), 29954–29963 (2014).
    [Crossref] [PubMed]
  37. R. R. Grote, J. B. Driscoll, C. G. Biris, N. C. Panoiu, and R. M. Osgood, “Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities,” Opt. Express 19(27), 26406–26415 (2011).
    [Crossref] [PubMed]
  38. H. Yun, Z. Chen, Y. Wang, J. Fluekiger, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Polarization-rotating, Bragg-grating filters on silicon-on-insulator strip waveguides using asymmetric periodic corner corrugations,” Opt. Lett. 40(23), 5578–5581 (2015).
    [Crossref] [PubMed]
  39. D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si(3)N(4) Bragg gratings,” Opt. Express 23(23), 30329–30336 (2015).
    [Crossref] [PubMed]
  40. S. Liu, Y. Shi, Y. Zhou, Y. Zhao, J. Zheng, J. Lu, and X. Chen, “Planar waveguide moiré grating,” Opt. Express 25(21), 24960–24973 (2017).
    [Crossref] [PubMed]
  41. B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
    [Crossref] [PubMed]
  42. L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051125 (2010).
    [PubMed]
  43. C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
    [Crossref]

2018 (1)

D. Zhu, J. Zhang, H. Ye, Z. Yu, and Y. Liu, “Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching,” Opt. Commun. 418(March), 88–92 (2018).
[Crossref]

2017 (1)

2016 (4)

2015 (4)

2014 (6)

2013 (4)

2012 (4)

2011 (3)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

R. R. Grote, J. B. Driscoll, C. G. Biris, N. C. Panoiu, and R. M. Osgood, “Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities,” Opt. Express 19(27), 26406–26415 (2011).
[Crossref] [PubMed]

M. Li, L. Y. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photonics Technol. Lett. 23(5), 314–316 (2011).
[Crossref]

2010 (1)

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051125 (2010).
[PubMed]

2009 (1)

2008 (1)

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

2006 (3)

J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45(6), 1236–1243 (2006).
[Crossref] [PubMed]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photonics Technol. Lett. 18(8), 941–943 (2006).
[Crossref]

Y. Huang, G. Xu, and S. T. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

2005 (1)

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

2003 (1)

2000 (1)

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

1997 (2)

C. R. Giles, “Lightwave applications of fiber bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Albert, J.

M. Li, L. Y. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photonics Technol. Lett. 23(5), 314–316 (2011).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[Crossref] [PubMed]

Baehr-Jones, T.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: Polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Biris, C. G.

Bowers, J. E.

Carcenac, F.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Castro, J.

Castro, J. M.

Caverley, M.

Chen, D.

Chen, W.

Chen, X.

S. Liu, Y. Shi, Y. Zhou, Y. Zhao, J. Zheng, J. Lu, and X. Chen, “Planar waveguide moiré grating,” Opt. Express 25(21), 24960–24973 (2017).
[Crossref] [PubMed]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photonics Technol. Lett. 18(8), 941–943 (2006).
[Crossref]

Chen, Y.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Chen, Z.

Chiang, K. S.

Cho, Y. B.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Chrostowski, L.

Cole, D. B.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Couraud, L.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Dadap, J. I.

Dai, D.

Dai, T.

Dai, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photonics Technol. Lett. 18(8), 941–943 (2006).
[Crossref]

Davenport, M.

Ding, Y.

L. H. Frandsen, Y. Elesin, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide,” 2013 IEEE Photonics Conf. IPC 201322(7), 333–334 (2013).
[Crossref]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Dorin, B. A.

Driscoll, J. B.

Elesin, Y.

L. H. Frandsen, Y. Elesin, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide,” 2013 IEEE Photonics Conf. IPC 201322(7), 333–334 (2013).
[Crossref]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Erim, N.

Fan, S.

Fluekiger, J.

Frandsen, L. H.

L. H. Frandsen, Y. Elesin, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide,” 2013 IEEE Photonics Conf. IPC 201322(7), 333–334 (2013).
[Crossref]

Geraghty, D. F.

Giden, I. H.

Giles, C. R.

C. R. Giles, “Lightwave applications of fiber bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[Crossref]

Greiner, C. M.

Grote, R. R.

Gu, Z.

Hawkins, A. R.

Ho, S. T.

Y. Huang, G. Xu, and S. T. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Hochberg, M.

Honkanen, S.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Huang, Y.

Y. Huang, G. Xu, and S. T. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Hvam, J. M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051125 (2010).
[PubMed]

Iazikov, D.

Jaeger, N. A. F.

Jiang, J.

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Jiang, X.

Jin, W.

Kee, J. S.

Khurgin, J.

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kim, H.

Kim, J.

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kühn, S.

Kuramochi, E.

Kurt, H.

Launois, H.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Lebib, A.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Lee, B.

Lee, J. H.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Lee, S.-Y.

Lee, Y.

Levy, U.

Li, M.

M. Li, L. Y. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photonics Technol. Lett. 23(5), 314–316 (2011).
[Crossref]

Lin, C.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[Crossref] [PubMed]

Liu, L.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051125 (2010).
[PubMed]

Liu, Q.

Liu, S.

Liu, V.

Liu, W.

Liu, Y.

D. Zhu, J. Zhang, H. Ye, Z. Yu, and Y. Liu, “Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching,” Opt. Commun. 418(March), 88–92 (2018).
[Crossref]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

Love, J. D.

Lu, J.

Lu, M.

Lunt, E. J.

Manin-Ferlazzo, L.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Measor, P.

Mejias, M.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Miller, D. A. B.

Morton, P. A.

Mossberg, T. W.

Notomi, M.

Nozaki, K.

Ohana, D.

Ono, M.

Osgood, R. M.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[Crossref] [PubMed]

Panoiu, N. C.

Park, M. K.

Pépin, A.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Phillips, B. S.

Pu, M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051125 (2010).
[PubMed]

Qiu, H.

Riesen, N.

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Schmidt, H.

Shao, L. Y.

M. Li, L. Y. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photonics Technol. Lett. 23(5), 314–316 (2011).
[Crossref]

Shi, W.

Shi, Y.

Shin, S. Y.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Sigmund, O.

L. H. Frandsen, Y. Elesin, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide,” 2013 IEEE Photonics Conf. IPC 201322(7), 333–334 (2013).
[Crossref]

Souhan, B.

Spencer, D. T.

Srinivasan, S.

Su, Z.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photonics Technol. Lett. 18(8), 941–943 (2006).
[Crossref]

Tanemura, T.

Tang, Y.

Taniyama, H.

Thienpont, H.

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Tsunekawa, M.

Turduev, M.

Van Erps, J.

Vermeulen, N.

Vieu, C.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Wahl, P.

Wang, G.

Wang, J.

Wang, L.

Wang, P.

Wang, X.

Wang, Y.

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Wu, H.

Xiao, X.

Xie, S.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photonics Technol. Lett. 18(8), 941–943 (2006).
[Crossref]

Xu, G.

Y. Huang, G. Xu, and S. T. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Xu, H.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Yang, B. K.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Yang, J.

Yang, Q.

Yang, T.

Yao, J.

M. Li, L. Y. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photonics Technol. Lett. 23(5), 314–316 (2011).
[Crossref]

Yao, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photonics Technol. Lett. 18(8), 941–943 (2006).
[Crossref]

Ye, H.

D. Zhu, J. Zhang, H. Ye, Z. Yu, and Y. Liu, “Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching,” Opt. Commun. 418(March), 88–92 (2018).
[Crossref]

Ye, W. N.

Yoon, J. B.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Yu, H.

Yu, P.

Yu, Y.

Yu, Z.

D. Zhu, J. Zhang, H. Ye, Z. Yu, and Y. Liu, “Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching,” Opt. Commun. 418(March), 88–92 (2018).
[Crossref]

Yun, H.

Yvind, K.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051125 (2010).
[PubMed]

L. H. Frandsen, Y. Elesin, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide,” 2013 IEEE Photonics Conf. IPC 201322(7), 333–334 (2013).
[Crossref]

Zhang, J.

D. Zhu, J. Zhang, H. Ye, Z. Yu, and Y. Liu, “Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching,” Opt. Commun. 418(March), 88–92 (2018).
[Crossref]

Zhang, Y.

Zhao, Y.

Zheng, J.

Zhou, L.

Zhou, Y.

Zhu, D.

D. Zhu, J. Zhang, H. Ye, Z. Yu, and Y. Liu, “Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching,” Opt. Commun. 418(March), 88–92 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, “High-efficiency, large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96(5), 051125 (2010).
[PubMed]

Appl. Surf. Sci. (1)

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: Resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (4)

Y. Huang, G. Xu, and S. T. Ho, “An ultracompact optical mode order converter,” IEEE Photonics Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” IEEE Photonics Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

M. Li, L. Y. Shao, J. Albert, and J. Yao, “Tilted fiber bragg grating for chirped microwave waveform generation,” IEEE Photonics Technol. Lett. 23(5), 314–316 (2011).
[Crossref]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dispersion compensation based on sampled fiber bragg gratings fabricated with reconstruction equivalent-chirp method,” IEEE Photonics Technol. Lett. 18(8), 941–943 (2006).
[Crossref]

J. Lightwave Technol. (2)

C. R. Giles, “Lightwave applications of fiber bragg gratings,” J. Lightwave Technol. 15(8), 1391–1404 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: Polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).
[Crossref]

Nat. Photonics (1)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

D. Zhu, J. Zhang, H. Ye, Z. Yu, and Y. Liu, “Design of a broadband reciprocal optical diode in multimode silicon waveguide by partial depth etching,” Opt. Commun. 418(March), 88–92 (2018).
[Crossref]

Opt. Express (14)

J. Kim, S.-Y. Lee, Y. Lee, H. Kim, and B. Lee, “Tunable asymmetric mode conversion using the dark-mode of three-mode waveguide system,” Opt. Express 22(23), 28683–28696 (2014).
[Crossref] [PubMed]

P. Wahl, T. Tanemura, N. Vermeulen, J. Van Erps, D. A. B. Miller, and H. Thienpont, “Design of large scale plasmonic nanoslit arrays for arbitrary mode conversion and demultiplexing,” Opt. Express 22(1), 646–660 (2014).
[Crossref] [PubMed]

J. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11), 4180–4184 (2005).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

Q. Liu, Z. Gu, J. S. Kee, and M. K. Park, “Silicon waveguide filter based on cladding modulated anti-symmetric long-period grating,” Opt. Express 22(24), 29954–29963 (2014).
[Crossref] [PubMed]

R. R. Grote, J. B. Driscoll, C. G. Biris, N. C. Panoiu, and R. M. Osgood, “Weakly modulated silicon-dioxide-cladding gratings for silicon waveguide Fabry-Pérot cavities,” Opt. Express 19(27), 26406–26415 (2011).
[Crossref] [PubMed]

D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si(3)N(4) Bragg gratings,” Opt. Express 23(23), 30329–30336 (2015).
[Crossref] [PubMed]

S. Liu, Y. Shi, Y. Zhou, Y. Zhao, J. Zheng, J. Lu, and X. Chen, “Planar waveguide moiré grating,” Opt. Express 25(21), 24960–24973 (2017).
[Crossref] [PubMed]

B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
[Crossref] [PubMed]

D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
[Crossref] [PubMed]

P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing,” Opt. Express 17(26), 24342–24348 (2009).
[Crossref] [PubMed]

V. Liu, D. A. B. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20(27), 28388–28397 (2012).
[Crossref] [PubMed]

D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express 23(9), 11152–11159 (2015).
[Crossref] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

Opt. Lett. (8)

D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
[Crossref] [PubMed]

D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
[Crossref] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[Crossref] [PubMed]

J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
[Crossref] [PubMed]

W. Chen, P. Wang, T. Yang, G. Wang, T. Dai, Y. Zhang, L. Zhou, X. Jiang, and J. Yang, “Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions,” Opt. Lett. 41(12), 2851–2854 (2016).
[Crossref] [PubMed]

H. Yun, Z. Chen, Y. Wang, J. Fluekiger, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Polarization-rotating, Bragg-grating filters on silicon-on-insulator strip waveguides using asymmetric periodic corner corrugations,” Opt. Lett. 40(23), 5578–5581 (2015).
[Crossref] [PubMed]

W. Jin and K. S. Chiang, “Mode switch based on electro-optic long-period waveguide grating in lithium niobate,” Opt. Lett. 40(2), 237–240 (2015).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41(11), 2450–2453 (2016).
[Crossref] [PubMed]

Optica (1)

Other (4)

L. H. Frandsen, Y. Elesin, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide,” 2013 IEEE Photonics Conf. IPC 201322(7), 333–334 (2013).
[Crossref]

T. Shimizu, N. Hatori, Y. Urino, and T. Yamamoto, “Hybrid Integration Technology of Laser Source with Platform by Flip-chip Bon ding for Silicon Photonics,” IEEE Int. Conf. Gr. IV Photonics GFP 6–9 (2013).

M. Denni, Sullivian, Electromagnetic Simulation Using the Fdtd Method (Wiley, 2013).

X. Wang, “Silicon Photonic Waveguide Bragg Gratings,” PhD Thesis, Univ. Br. Columbia (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Schematic principle of the proposed mode converter. Symbols i, j and m denote the mode i, j, and m, respectively.
Fig. 2
Fig. 2 Schematic of (a) the proposed device structure for conversion from the TE1 to TE2, (b) a cross-section view of the waveguide of the G02, and (c) the overall phase matching condition.
Fig. 3
Fig. 3 (a) Top view of the schematic of the G01 (red color corresponds to etched region). (b) The x-component of electric amplitudes of the TE0 and TE1. (c) Calculated coupling coefficients when the cross point between section I and II is moved from the left to right facet, i.e., t/w is varied from 0 to 1.0.
Fig. 4
Fig. 4 (a) Top view of the schematic of the G02 (red color corresponds to etched region). (b) The x-component of electric amplitudes of the TE0 and TE2. (c) Calculated coupling coefficients when the cross point between section I and II is moved from the left to middle of the waveguide, i.e., t/w is varied from 0 to 0.5.
Fig. 5
Fig. 5 (a) Top view of the schematic of the G12 (red color corresponds to etched region). (b) The x-component of electric amplitudes of the TE1 and TE2. (c) Calculated coupling coefficients when the cross point between section I and II is moved from the left to middle of the waveguide, i.e., t/w is varied from 0 to 0.5.
Fig. 6
Fig. 6 (a) The simulated reflection spectra of G01 when the κ and L are varied. (b) The full bandwidth of G01 with respect to the κ and L when the product κL is fixed at the value of 1.0, 3.0, 7.0, and 10.0.
Fig. 7
Fig. 7 (a) Top view of the schematic of the TFF and LFF in G01 (red color corresponds to etched region). (b) The coupling coefficient with respect to the TFF and LFF. (c) An apodization of grating when the LFF is changed from 0 to 1.0 along the position.
Fig. 8
Fig. 8 Modal analyses of (a) reflection spectra of G01 with the TE0 incident, (b) transmission spectra of G01 with the TE2 incident, (c) reflection spectra of G02 with incident TE0, (d) transmission spectra of G02 with the TE1 incident, (e) reflection spectra of G12 with the TE1 incident, and (d) transmission spectra of G12 with incident TE0.
Fig. 9
Fig. 9 (a) Simulated x-component intensity of electric field at the wavelength of 1,550.0 nm, and (b) modal analyses of the transmission spectra with the TE2 incident in the structure of G01-G12.
Fig. 10
Fig. 10 (a) Simulated x-component intensity of electric field at the wavelength of 1,550.0 nm, and (b) modal analyses of the transmission spectra with incident TE0 in the G12-G02.
Fig. 11
Fig. 11 (a) Simulated x-component intensity of electric field at the wavelength of 1,550.0 nm, and (b) modal analyses of the transmission spectra with the TE1 incident in the G02-G01.
Fig. 12
Fig. 12 SEM images of (a) the proposed whole device, (b) the ADC01, (c) the waveguides of the ADC01, and (d) the grating coupler.
Fig. 13
Fig. 13 SEM images of the apodized (a-c) G01 and (d-f) G02 by linearly changing the LFF from 0 to 1.0.
Fig. 14
Fig. 14 Schematic diagram of the measurement setup. ASE, amplified spontaneous emission; Pol, Polarizer; PC, Polarization controller; OSA, Optical spectrum analyzer.
Fig. 15
Fig. 15 Measured spectra of (a) T00 and T11, and (b) T22 and T21.
Fig. 16
Fig. 16 (a) Measured spectra of the T21 with and without gratings. (b) Schematic diagram of the optical paths of two TE1s.
Fig. 17
Fig. 17 (a) Schematic of the proposed converter with a uniform G12 and a π-phase-shifted G02. Calculated spectra of the transmission of (b) the TE0 and TE1 with incident TE0.
Fig. 18
Fig. 18 Conversion wavelength shifts caused by the error of waveguide (a) width and (b) height. (c) Coupling coefficients and (d) full bandwidths variations with respect to alignment errors. The inset in (d) illustrates the schematic of the alignment error in G01.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β i + β m K i m = 0 ,
λ i m = ( n i + n m ) Λ i m .
β j = β i + K m j K i m .
κ i j = ω 4 E i ( x , y ) ε ( x , y ) E j ( x , y ) d x d y .
Ω i j = 2 λ 0 2 π 2 + κ i j 2 L i j 2 π L i j ( n g , i + n g , j ) ,
Δ φ ( λ ) = β 0 L 2 + β 2 ( L 0 + L 1 + L 2 ) + φ 02 ( λ ) + φ 01 ( λ ) β 1 ( L 0 + L 1 ) ,

Metrics