Abstract

Dual-wavelength digital holographic phase and fluorescence microscopy (DW-DHPFM), combining with Raman spectroscopy, is designed to achieve the detection and analysis of biomolecules with a new dual-channel encoding method. This employs the Raman reporter molecules assembled micro-quartz pieces (MQPs) as microcarriers of suspension array (SA). The dual-wavelength digital holographic phase microscopy (DW-DHPM) and Raman spectroscopy are served as the decoding platforms, and the fluorescence microscopy is used to quantify target analytes. Considering the independence between encoding and label signal, the above two encoding channels could effectively avoid the crosstalk in immunoassay process, and the combination of two encoding methods expand the encoding capacity with a considerable magnitude. Accurate and stable decoding abilities are verified by multiplexed immunoassay experiment and the quantitative analysis of targets with high-sensitivity is confirmed by concentration gradient experiments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-wavelength digital holographic phase and fluorescence microscopy for an optical thickness encoded suspension array

Zhiyuan Shen, Yonghong He, Gong Zhang, Qinghua He, Dongmei Li, and Yanhong Ji
Opt. Lett. 43(4) 739-742 (2018)

Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering

Tae-Woong Koo, Selena Chan, and Andrew A. Berlin
Opt. Lett. 30(9) 1024-1026 (2005)

Wide-field in situ multiplexed Raman imaging with superresolution

Houkai Chen, Xiaojing Wu, Yuquan Zhang, Yong Yang, Changjun Min, Siwei Zhu, Xiaocong Yuan, Qiaoliang Bao, and Jing Bu
Photon. Res. 6(6) 530-534 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Miccio, M. Paturzo, A. Finizio, G. D. Caprio, G. Coppola, P. Ferraro, R. Puglisi, D. Balduzzi, and A. Galli, “Quantitative phase contrast in holographic microscopy through the numerical manipulation of the retrieved wavefronts, ” in Coherent Light Microscopy, P. Ferraro, ed. (Springer, 2011).
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [Crossref] [PubMed]
  3. T. S. Huang, “Digital holography,” Proc. IEEE 59(9), 1335–1346 (1971).
    [Crossref]
  4. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
    [Crossref] [PubMed]
  5. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref] [PubMed]
  6. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [Crossref] [PubMed]
  7. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
    [Crossref] [PubMed]
  8. D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
    [Crossref] [PubMed]
  9. B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
    [Crossref] [PubMed]
  10. G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
    [Crossref] [PubMed]
  11. H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
    [Crossref] [PubMed]
  12. S. W. Han, E. Jang, and W.-G. Koh, “Microfluidic-based multiplex immunoassay system integrated with an array of QD-encoded microbeads,” Sens. Actuators B Chem. 209, 242–251 (2015).
    [Crossref]
  13. S. Rauf, A. Glidle, and J. M. Cooper, “Production of quantum dot barcodes using biological self-assembly,” Adv. Mater. 21(40), 4020–4024 (2009).
    [Crossref]
  14. Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
    [Crossref] [PubMed]
  15. S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
    [Crossref] [PubMed]
  16. D. C. Pregibon, M. Toner, and P. S. Doyle, “Multifunctional encoded particles for high-throughput biomolecule analysis,” Science 315(5817), 1393–1396 (2007).
    [Crossref] [PubMed]
  17. D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
    [Crossref]
  18. Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
    [Crossref] [PubMed]
  19. B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
    [Crossref] [PubMed]
  20. S. A. Dunbar and J. W. Jacobson, “Quantitative, multiplexed detection of Salmonella and other pathogens by Luminex xMAP suspension array,” Methods Mol. Biol. 394, 1–19 (2007).
    [Crossref] [PubMed]
  21. Y. Liu, L. Liu, Y. He, Q. He, and H. Ma, “Quantum-dots-encoded-microbeads based molecularly imprinted polymer,” Biosens. Bioelectron. 77, 886–893 (2016).
    [Crossref] [PubMed]
  22. L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
    [Crossref] [PubMed]
  23. X. Gao and S. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76(8), 2406–2410 (2004).
    [Crossref] [PubMed]
  24. L. L. del Mercato, A. Z. Abbasi, M. Ochs, and W. J. Parak, “Multiplexed sensing of ions with barcoded polyelectrolyte capsules,” ACS Nano 5(12), 9668–9674 (2011).
    [Crossref] [PubMed]
  25. S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
    [Crossref] [PubMed]
  26. Z. Shen, Y. He, G. Zhang, Q. He, D. Li, and Y. Ji, “Dual-wavelength digital holographic phase and fluorescence microscopy for an optical thickness encoded suspension array,” Opt. Lett. 43(4), 739–742 (2018).
    [Crossref] [PubMed]
  27. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
    [Crossref] [PubMed]
  28. K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, “Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): a study using Rhodamine 6G on colloidal silver,” Appl. Spectrosc. 49(6), 780–784 (1995).
    [Crossref]
  29. O. Tzang, D. Azoury, and O. Cheshnovsky, “Super resolution methodology based on temperature dependent Raman scattering,” Opt. Express 23(14), 17929–17940 (2015).
    [Crossref] [PubMed]
  30. H. Liu, X. Zhang, and T. Zhai, “Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms,” Opt. Express 21(13), 15314–15322 (2013).
    [Crossref] [PubMed]
  31. J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
    [Crossref] [PubMed]
  32. J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
    [Crossref] [PubMed]
  33. J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
    [Crossref]
  34. L. Jiang, Y. Shen, K. Zheng, and J. Li, “Rapid and multiplex microRNA detection on graphically encoded silica suspension array,” Biosens. Bioelectron. 61, 222–226 (2014).
    [Crossref] [PubMed]
  35. Y. Liu, L. Liu, Y. He, L. Zhu, and H. Ma, “Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method,” Anal. Chem. 87(10), 5286–5293 (2015).
    [Crossref] [PubMed]
  36. J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
    [Crossref]
  37. Y. Lai, S. Sun, T. He, S. Schlücker, and Y. Wang, “Raman-encoded microbeads for spectral multiplexing with SERS detection,” RSC Advances 5(18), 13762–13767 (2015).
    [Crossref]
  38. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74(3), 504–509 (2002).
    [Crossref] [PubMed]
  39. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
    [Crossref] [PubMed]
  40. A. Khmaladze, A. Restrepo-Martínez, M. Kim, R. Castañeda, and A. Blandón, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47(17), 3203–3210 (2008).
    [Crossref] [PubMed]
  41. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2pi ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
    [Crossref] [PubMed]
  42. D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50(19), 3360–3368 (2011).
    [Crossref] [PubMed]
  43. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref] [PubMed]
  44. A. Khmaladze, R. L. Matz, C. Zhang, T. Wang, M. M. Banaszak Holl, and Z. Chen, “Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells,” Opt. Lett. 36(6), 912–914 (2011).
    [Crossref] [PubMed]
  45. V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, “Electrostatic deposition of polyionic monolayers on charged surfaces,” Macromolecules 30(21), 6615–6625 (1997).
    [Crossref]
  46. Q. Gu and X. Cheng, “Tribological behaviors of self-assembled 3-aminopropyltriethoxysilane films on silicon,” Curr. Appl. Phys. 8(5), 583–588 (2008).
    [Crossref]

2018 (1)

2017 (1)

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

2016 (4)

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Y. Liu, L. Liu, Y. He, Q. He, and H. Ma, “Quantum-dots-encoded-microbeads based molecularly imprinted polymer,” Biosens. Bioelectron. 77, 886–893 (2016).
[Crossref] [PubMed]

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

2015 (5)

O. Tzang, D. Azoury, and O. Cheshnovsky, “Super resolution methodology based on temperature dependent Raman scattering,” Opt. Express 23(14), 17929–17940 (2015).
[Crossref] [PubMed]

Y. Liu, L. Liu, Y. He, L. Zhu, and H. Ma, “Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method,” Anal. Chem. 87(10), 5286–5293 (2015).
[Crossref] [PubMed]

Y. Lai, S. Sun, T. He, S. Schlücker, and Y. Wang, “Raman-encoded microbeads for spectral multiplexing with SERS detection,” RSC Advances 5(18), 13762–13767 (2015).
[Crossref]

S. W. Han, E. Jang, and W.-G. Koh, “Microfluidic-based multiplex immunoassay system integrated with an array of QD-encoded microbeads,” Sens. Actuators B Chem. 209, 242–251 (2015).
[Crossref]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

2014 (1)

L. Jiang, Y. Shen, K. Zheng, and J. Li, “Rapid and multiplex microRNA detection on graphically encoded silica suspension array,” Biosens. Bioelectron. 61, 222–226 (2014).
[Crossref] [PubMed]

2013 (4)

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

H. Liu, X. Zhang, and T. Zhai, “Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms,” Opt. Express 21(13), 15314–15322 (2013).
[Crossref] [PubMed]

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

2012 (2)

J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
[Crossref]

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
[Crossref] [PubMed]

2011 (4)

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

L. L. del Mercato, A. Z. Abbasi, M. Ochs, and W. J. Parak, “Multiplexed sensing of ions with barcoded polyelectrolyte capsules,” ACS Nano 5(12), 9668–9674 (2011).
[Crossref] [PubMed]

A. Khmaladze, R. L. Matz, C. Zhang, T. Wang, M. M. Banaszak Holl, and Z. Chen, “Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells,” Opt. Lett. 36(6), 912–914 (2011).
[Crossref] [PubMed]

D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50(19), 3360–3368 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

S. Rauf, A. Glidle, and J. M. Cooper, “Production of quantum dot barcodes using biological self-assembly,” Adv. Mater. 21(40), 4020–4024 (2009).
[Crossref]

2008 (3)

S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
[Crossref] [PubMed]

A. Khmaladze, A. Restrepo-Martínez, M. Kim, R. Castañeda, and A. Blandón, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47(17), 3203–3210 (2008).
[Crossref] [PubMed]

Q. Gu and X. Cheng, “Tribological behaviors of self-assembled 3-aminopropyltriethoxysilane films on silicon,” Curr. Appl. Phys. 8(5), 583–588 (2008).
[Crossref]

2007 (5)

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref] [PubMed]

D. C. Pregibon, M. Toner, and P. S. Doyle, “Multifunctional encoded particles for high-throughput biomolecule analysis,” Science 315(5817), 1393–1396 (2007).
[Crossref] [PubMed]

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

S. A. Dunbar and J. W. Jacobson, “Quantitative, multiplexed detection of Salmonella and other pathogens by Luminex xMAP suspension array,” Methods Mol. Biol. 394, 1–19 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2004 (2)

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[Crossref] [PubMed]

X. Gao and S. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76(8), 2406–2410 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (2)

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74(3), 504–509 (2002).
[Crossref] [PubMed]

2001 (1)

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

1997 (1)

V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, “Electrostatic deposition of polyionic monolayers on charged surfaces,” Macromolecules 30(21), 6615–6625 (1997).
[Crossref]

1995 (2)

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, “Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): a study using Rhodamine 6G on colloidal silver,” Appl. Spectrosc. 49(6), 780–784 (1995).
[Crossref]

1994 (1)

1971 (1)

T. S. Huang, “Digital holography,” Proc. IEEE 59(9), 1335–1346 (1971).
[Crossref]

Abbasi, A. Z.

L. L. del Mercato, A. Z. Abbasi, M. Ochs, and W. J. Parak, “Multiplexed sensing of ions with barcoded polyelectrolyte capsules,” ACS Nano 5(12), 9668–9674 (2011).
[Crossref] [PubMed]

Abdelsalam, D. G.

Adams, W. W.

V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, “Electrostatic deposition of polyionic monolayers on charged surfaces,” Macromolecules 30(21), 6615–6625 (1997).
[Crossref]

Allison, K. J.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

An, Q.

J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
[Crossref]

Azoury, D.

Bai, J.

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

Banaszak Holl, M. M.

Blandón, A.

Bliznyuk, V. N.

V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, “Electrostatic deposition of polyionic monolayers on charged surfaces,” Macromolecules 30(21), 6615–6625 (1997).
[Crossref]

Boss, D.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

Braeckmans, K.

S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
[Crossref] [PubMed]

Bright, R. M.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Bunning, T. J.

V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, “Electrostatic deposition of polyionic monolayers on charged surfaces,” Macromolecules 30(21), 6615–6625 (1997).
[Crossref]

Campbell, A. L.

V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, “Electrostatic deposition of polyionic monolayers on charged surfaces,” Macromolecules 30(21), 6615–6625 (1997).
[Crossref]

Cao, Y. C.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Carl, D.

Castañeda, R.

Chae, J.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Chan, W. C. W.

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

Charrière, F.

Chen, H.

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
[Crossref] [PubMed]

Chen, Z.

Cheng, X.

Q. Gu and X. Cheng, “Tribological behaviors of self-assembled 3-aminopropyltriethoxysilane films on silicon,” Curr. Appl. Phys. 8(5), 583–588 (2008).
[Crossref]

Cheshnovsky, O.

Chilkoti, A.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74(3), 504–509 (2002).
[Crossref] [PubMed]

Cho, M.-H.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Choi, H.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Colomb, T.

Cong, H.

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Cooper, J. M.

S. Rauf, A. Glidle, and J. M. Cooper, “Production of quantum dot barcodes using biological self-assembly,” Adv. Mater. 21(40), 4020–4024 (2009).
[Crossref]

Cromer, R.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Cuche, E.

Cui, Y.

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
[Crossref] [PubMed]

Dakoff, A.

Dasari, R. R.

Davis, J. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

De Smedt, S. C.

S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
[Crossref] [PubMed]

del Mercato, L. L.

L. L. del Mercato, A. Z. Abbasi, M. Ochs, and W. J. Parak, “Multiplexed sensing of ions with barcoded polyelectrolyte capsules,” ACS Nano 5(12), 9668–9674 (2011).
[Crossref] [PubMed]

Demeester, J.

S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
[Crossref] [PubMed]

Depeursinge, C.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref] [PubMed]

Derveaux, S.

S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
[Crossref] [PubMed]

Dou, H.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Doyle, P. S.

D. C. Pregibon, M. Toner, and P. S. Doyle, “Multifunctional encoded particles for high-throughput biomolecule analysis,” Science 315(5817), 1393–1396 (2007).
[Crossref] [PubMed]

Duan, J.

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

Dunbar, S. A.

S. A. Dunbar and J. W. Jacobson, “Quantitative, multiplexed detection of Salmonella and other pathogens by Luminex xMAP suspension array,” Methods Mol. Biol. 394, 1–19 (2007).
[Crossref] [PubMed]

Ehlers, M. D.

Emery, Y.

Fan, X.

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

Feld, M. S.

Freeman, R. G.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Fu, Q.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Gao, X.

X. Gao and S. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76(8), 2406–2410 (2004).
[Crossref] [PubMed]

Gao, Z.

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

Gass, J.

Glidle, A.

S. Rauf, A. Glidle, and J. M. Cooper, “Production of quantum dot barcodes using biological self-assembly,” Adv. Mater. 21(40), 4020–4024 (2009).
[Crossref]

Grabar, K. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Gu, H.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Gu, Q.

Q. Gu and X. Cheng, “Tribological behaviors of self-assembled 3-aminopropyltriethoxysilane films on silicon,” Curr. Appl. Phys. 8(5), 583–588 (2008).
[Crossref]

Guo, J.

J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
[Crossref]

Guthrie, A. P.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Han, J.

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Han, S. W.

S. W. Han, E. Jang, and W.-G. Koh, “Microfluidic-based multiplex immunoassay system integrated with an array of QD-encoded microbeads,” Sens. Actuators B Chem. 209, 242–251 (2015).
[Crossref]

He, L.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

He, Q.

He, T.

Y. Lai, S. Sun, T. He, S. Schlücker, and Y. Wang, “Raman-encoded microbeads for spectral multiplexing with SERS detection,” RSC Advances 5(18), 13762–13767 (2015).
[Crossref]

He, Y.

Z. Shen, Y. He, G. Zhang, Q. He, D. Li, and Y. Ji, “Dual-wavelength digital holographic phase and fluorescence microscopy for an optical thickness encoded suspension array,” Opt. Lett. 43(4), 739–742 (2018).
[Crossref] [PubMed]

Y. Liu, L. Liu, Y. He, Q. He, and H. Ma, “Quantum-dots-encoded-microbeads based molecularly imprinted polymer,” Biosens. Bioelectron. 77, 886–893 (2016).
[Crossref] [PubMed]

Y. Liu, L. Liu, Y. He, L. Zhu, and H. Ma, “Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method,” Anal. Chem. 87(10), 5286–5293 (2015).
[Crossref] [PubMed]

Hommer, M. B.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Hu, J.

J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
[Crossref]

Huang, T. S.

T. S. Huang, “Digital holography,” Proc. IEEE 59(9), 1335–1346 (1971).
[Crossref]

Hung, A.

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

Ikeda, T.

Jackson, M. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Jacobson, J. W.

S. A. Dunbar and J. W. Jacobson, “Quantitative, multiplexed detection of Salmonella and other pathogens by Luminex xMAP suspension array,” Methods Mol. Biol. 394, 1–19 (2007).
[Crossref] [PubMed]

Jang, E.

S. W. Han, E. Jang, and W.-G. Koh, “Microfluidic-based multiplex immunoassay system integrated with an array of QD-encoded microbeads,” Sens. Actuators B Chem. 209, 242–251 (2015).
[Crossref]

Javidi, B.

Jeong, D. H.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Jeong, I. G.

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

Jeong, S.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Jha, R.

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

Ji, Y.

Jia, C.

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Jiang, L.

L. Jiang, Y. Shen, K. Zheng, and J. Li, “Rapid and multiplex microRNA detection on graphically encoded silica suspension array,” Biosens. Bioelectron. 61, 222–226 (2014).
[Crossref] [PubMed]

Jiang, Y.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Jin, Q.

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Jin, R.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Jing, F.

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Jourdain, P.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

Jun, B. H.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Jun, B.-H.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Jüptner, W.

Kang, H.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Kang, T.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Keating, C. D.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Kemper, B.

Khmaladze, A.

Kim, C.-S.

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

Kim, D.

Kim, J.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Kim, J. H.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Kim, J.-H.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Kim, J.-S.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Kim, M.

Kim, M. K.

Kim, S.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Kim, Y.-K.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Klostranec, J.

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

Kneipp, K.

Koh, W.-G.

S. W. Han, E. Jang, and W.-G. Koh, “Microfluidic-based multiplex immunoassay system integrated with an array of QD-encoded microbeads,” Sens. Actuators B Chem. 209, 242–251 (2015).
[Crossref]

Kühn, J.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
[Crossref] [PubMed]

Kwak, S.-Y.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Lai, Y.

Y. Lai, S. Sun, T. He, S. Schlücker, and Y. Wang, “Raman-encoded microbeads for spectral multiplexing with SERS detection,” RSC Advances 5(18), 13762–13767 (2015).
[Crossref]

Lee, D.

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

Lee, H.

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

Lee, J. A.

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

Lee, K. H.

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

Lee, S.-M.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Lee, Y. S.

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Lee, Y.-S.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Leng, Y.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Li, D.

Z. Shen, Y. He, G. Zhang, Q. He, D. Li, and Y. Ji, “Dual-wavelength digital holographic phase and fluorescence microscopy for an optical thickness encoded suspension array,” Opt. Lett. 43(4), 739–742 (2018).
[Crossref] [PubMed]

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

Li, G.

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Li, J.

L. Jiang, Y. Shen, K. Zheng, and J. Li, “Rapid and multiplex microRNA detection on graphically encoded silica suspension array,” Biosens. Bioelectron. 61, 222–226 (2014).
[Crossref] [PubMed]

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Li, J.-M.

J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
[Crossref]

Li, W.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
[Crossref] [PubMed]

Li, Y.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Lin, Y.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Liu, H.

Liu, L.

Y. Liu, L. Liu, Y. He, Q. He, and H. Ma, “Quantum-dots-encoded-microbeads based molecularly imprinted polymer,” Biosens. Bioelectron. 77, 886–893 (2016).
[Crossref] [PubMed]

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Y. Liu, L. Liu, Y. He, L. Zhu, and H. Ma, “Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method,” Anal. Chem. 87(10), 5286–5293 (2015).
[Crossref] [PubMed]

Liu, M.

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, L. Liu, Y. He, Q. He, and H. Ma, “Quantum-dots-encoded-microbeads based molecularly imprinted polymer,” Biosens. Bioelectron. 77, 886–893 (2016).
[Crossref] [PubMed]

Y. Liu, L. Liu, Y. He, L. Zhu, and H. Ma, “Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method,” Anal. Chem. 87(10), 5286–5293 (2015).
[Crossref] [PubMed]

Lv, Z.

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

Ma, H.

Y. Liu, L. Liu, Y. He, Q. He, and H. Ma, “Quantum-dots-encoded-microbeads based molecularly imprinted polymer,” Biosens. Bioelectron. 77, 886–893 (2016).
[Crossref] [PubMed]

Y. Liu, L. Liu, Y. He, L. Zhu, and H. Ma, “Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method,” Anal. Chem. 87(10), 5286–5293 (2015).
[Crossref] [PubMed]

Ma, W.-F.

J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
[Crossref]

Magistretti, P. J.

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

Magnusson, R.

Maher, K. O.

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

Mardyani, S.

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

Marquet, P.

Matz, R. L.

Mirkin, C. A.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Montfort, F.

Moon, I.

Mu, Y.

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

Natan, M. J.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Nath, N.

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74(3), 504–509 (2002).
[Crossref] [PubMed]

Newpher, T. M.

Nicewarner-Pena, S. R.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Nie, S.

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

X. Gao and S. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76(8), 2406–2410 (2004).
[Crossref] [PubMed]

Ning, B.

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

Ochs, M.

L. L. del Mercato, A. Z. Abbasi, M. Ochs, and W. J. Parak, “Multiplexed sensing of ions with barcoded polyelectrolyte capsules,” ACS Nano 5(12), 9668–9674 (2011).
[Crossref] [PubMed]

Parak, W. J.

L. L. del Mercato, A. Z. Abbasi, M. Ochs, and W. J. Parak, “Multiplexed sensing of ions with barcoded polyelectrolyte capsules,” ACS Nano 5(12), 9668–9674 (2011).
[Crossref] [PubMed]

Park, H.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Park, J. H.

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

Pena, D. J.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Peng, Y.

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

Popescu, G.

Pregibon, D. C.

D. C. Pregibon, M. Toner, and P. S. Doyle, “Multifunctional encoded particles for high-throughput biomolecule analysis,” Science 315(5817), 1393–1396 (2007).
[Crossref] [PubMed]

Qian, X.

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

Rappaz, B.

Rauf, S.

S. Rauf, A. Glidle, and J. M. Cooper, “Production of quantum dot barcodes using biological self-assembly,” Adv. Mater. 21(40), 4020–4024 (2009).
[Crossref]

Reiss, B. D.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Restrepo-Martínez, A.

Rhee, A.

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

Roelant, C.

S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
[Crossref] [PubMed]

Sato, K.

S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
[Crossref] [PubMed]

Schlücker, S.

Y. Lai, S. Sun, T. He, S. Schlücker, and Y. Wang, “Raman-encoded microbeads for spectral multiplexing with SERS detection,” RSC Advances 5(18), 13762–13767 (2015).
[Crossref]

Schnars, U.

Searson, P. C.

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

Shaked, N. T.

Shen, L.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Shen, Y.

L. Jiang, Y. Shen, K. Zheng, and J. Li, “Rapid and multiplex microRNA detection on graphically encoded silica suspension array,” Biosens. Bioelectron. 61, 222–226 (2014).
[Crossref] [PubMed]

Shen, Z.

Smith, P. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Song, S. H.

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

Stubbe, B. G.

S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
[Crossref] [PubMed]

Sun, K.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Sun, S.

Y. Lai, S. Sun, T. He, S. Schlücker, and Y. Wang, “Raman-encoded microbeads for spectral multiplexing with SERS detection,” RSC Advances 5(18), 13762–13767 (2015).
[Crossref]

Sun, Z.

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

Toner, M.

D. C. Pregibon, M. Toner, and P. S. Doyle, “Multifunctional encoded particles for high-throughput biomolecule analysis,” Science 315(5817), 1393–1396 (2007).
[Crossref] [PubMed]

Tsukruk, V. V.

V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, “Electrostatic deposition of polyionic monolayers on charged surfaces,” Macromolecules 30(21), 6615–6625 (1997).
[Crossref]

Turcatti, G.

Tzang, O.

Visser, D.

V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, “Electrostatic deposition of polyionic monolayers on charged surfaces,” Macromolecules 30(21), 6615–6625 (1997).
[Crossref]

von Bally, G.

Walter, D. G.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Walton, I. D.

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

Wang, C.

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
[Crossref] [PubMed]

Wang, C.-C.

J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
[Crossref]

Wang, G.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Wang, L.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Wang, P.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Wang, T.

Wang, X.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Lai, S. Sun, T. He, S. Schlücker, and Y. Wang, “Raman-encoded microbeads for spectral multiplexing with SERS detection,” RSC Advances 5(18), 13762–13767 (2015).
[Crossref]

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, R. R. Dasari, and M. S. Feld, “Approach to single molecule detection using surface-enhanced resonance Raman scattering (SERRS): a study using Rhodamine 6G on colloidal silver,” Appl. Spectrosc. 49(6), 780–784 (1995).
[Crossref]

Wang, Z.

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
[Crossref] [PubMed]

Wax, A.

Wei, C.

J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
[Crossref]

Wei, D.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Wernicke, G.

Wu, Q.

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

Wu, S.

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Xiao, H.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Xu, C.

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

Xu, H.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Xu, S.

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
[Crossref] [PubMed]

Yang, H.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Yang, Z.

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

Yi, F.

Yu, K.-N.

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

Yuan, X.

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

Zhai, T.

Zhang, C.

Zhang, D. S.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Zhang, G.

Zhang, S.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Zhang, X.

Zhao, J.

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Zheng, K.

L. Jiang, Y. Shen, K. Zheng, and J. Li, “Rapid and multiplex microRNA detection on graphically encoded silica suspension array,” Biosens. Bioelectron. 61, 222–226 (2014).
[Crossref] [PubMed]

Zhou, C.

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

Zhou, H.

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Zhu, L.

Y. Liu, L. Liu, Y. He, L. Zhu, and H. Ma, “Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method,” Anal. Chem. 87(10), 5286–5293 (2015).
[Crossref] [PubMed]

Zhu, Y.

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Zong, S.

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
[Crossref] [PubMed]

ACS Nano (2)

G. Wang, Y. Leng, H. Dou, L. Wang, W. Li, X. Wang, K. Sun, L. Shen, X. Yuan, J. Li, K. Sun, J. Han, H. Xiao, and Y. Li, “Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection,” ACS Nano 7(1), 471–481 (2013).
[Crossref] [PubMed]

L. L. del Mercato, A. Z. Abbasi, M. Ochs, and W. J. Parak, “Multiplexed sensing of ions with barcoded polyelectrolyte capsules,” ACS Nano 5(12), 9668–9674 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

D. S. Zhang, Y. Jiang, H. Yang, Y. Zhu, S. Zhang, Y. Zhu, D. Wei, Y. Lin, P. Wang, Q. Fu, H. Xu, and H. Gu, “Dual-encoded microbeads through a host-guest structure: enormous, flexible, and accurate barcodes for multiplexed assays,” Adv. Funct. Mater. 26(34), 6146–6157 (2016).
[Crossref]

Adv. Mater. (2)

S. Rauf, A. Glidle, and J. M. Cooper, “Production of quantum dot barcodes using biological self-assembly,” Adv. Mater. 21(40), 4020–4024 (2009).
[Crossref]

J. A. Lee, A. Hung, S. Mardyani, A. Rhee, J. Klostranec, Y. Mu, D. Li, and W. C. W. Chan, “Toward the Accurate read-out of quantum dot barcodes: design of deconvolution algorithms and assessment of fluorescence signals in buffer,” Adv. Mater. 19(20), 3113–3118 (2007).
[Crossref]

Anal. Bioanal. Chem. (1)

S. Derveaux, B. G. Stubbe, K. Braeckmans, C. Roelant, K. Sato, J. Demeester, and S. C. De Smedt, “Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient,” Anal. Bioanal. Chem. 391(7), 2453–2467 (2008).
[Crossref] [PubMed]

Anal. Chem. (3)

X. Gao and S. Nie, “Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry,” Anal. Chem. 76(8), 2406–2410 (2004).
[Crossref] [PubMed]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem. 74(3), 504–509 (2002).
[Crossref] [PubMed]

Y. Liu, L. Liu, Y. He, L. Zhu, and H. Ma, “Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method,” Anal. Chem. 87(10), 5286–5293 (2015).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Spectrosc. (1)

Biomaterials (2)

J. Han, X. Qian, Q. Wu, R. Jha, J. Duan, Z. Yang, K. O. Maher, S. Nie, and C. Xu, “Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells,” Biomaterials 105, 66–76 (2016).
[Crossref] [PubMed]

H. Lee, D. Lee, J. H. Park, S. H. Song, I. G. Jeong, C.-S. Kim, P. C. Searson, and K. H. Lee, “High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine,” Biomaterials 135, 23–29 (2017).
[Crossref] [PubMed]

Biosens. Bioelectron. (4)

Y. Wang, B. Ning, Y. Peng, J. Bai, M. Liu, X. Fan, Z. Sun, Z. Lv, C. Zhou, and Z. Gao, “Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut,” Biosens. Bioelectron. 41, 391–396 (2013).
[Crossref] [PubMed]

L. Jiang, Y. Shen, K. Zheng, and J. Li, “Rapid and multiplex microRNA detection on graphically encoded silica suspension array,” Biosens. Bioelectron. 61, 222–226 (2014).
[Crossref] [PubMed]

Y. Liu, L. Liu, Y. He, Q. He, and H. Ma, “Quantum-dots-encoded-microbeads based molecularly imprinted polymer,” Biosens. Bioelectron. 77, 886–893 (2016).
[Crossref] [PubMed]

L. Liu, S. Wu, F. Jing, H. Zhou, C. Jia, G. Li, H. Cong, Q. Jin, and J. Zhao, “Bead-based microarray immunoassay for lung cancer biomarkers using quantum dots as labels,” Biosens. Bioelectron. 80, 300–306 (2016).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

J. H. Kim, H. Kang, S. Kim, B. H. Jun, T. Kang, J. Chae, S. Jeong, J. Kim, D. H. Jeong, and Y. S. Lee, “Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles,” Chem. Commun. (Camb.) 47(8), 2306–2308 (2011).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

Q. Gu and X. Cheng, “Tribological behaviors of self-assembled 3-aminopropyltriethoxysilane films on silicon,” Curr. Appl. Phys. 8(5), 583–588 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, and Y. Cui, “SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice,” J. Am. Chem. Soc. 134(6), 2993–3000 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

D. Boss, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy,” J. Biomed. Opt. 18(3), 036007 (2013).
[Crossref] [PubMed]

J. Comb. Chem. (1)

B.-H. Jun, J.-H. Kim, H. Park, J.-S. Kim, K.-N. Yu, S.-M. Lee, H. Choi, S.-Y. Kwak, Y.-K. Kim, D. H. Jeong, M.-H. Cho, and Y.-S. Lee, “Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay,” J. Comb. Chem. 9(2), 237–244 (2007).
[Crossref] [PubMed]

J. Mater. Chem. (1)

J.-M. Li, C. Wei, W.-F. Ma, Q. An, J. Guo, J. Hu, and C.-C. Wang, “Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres,” J. Mater. Chem. 22(24), 12100 (2012).
[Crossref]

Macromolecules (1)

V. V. Tsukruk, V. N. Bliznyuk, D. Visser, A. L. Campbell, T. J. Bunning, and W. W. Adams, “Electrostatic deposition of polyionic monolayers on charged surfaces,” Macromolecules 30(21), 6615–6625 (1997).
[Crossref]

Methods Mol. Biol. (1)

S. A. Dunbar and J. W. Jacobson, “Quantitative, multiplexed detection of Salmonella and other pathogens by Luminex xMAP suspension array,” Methods Mol. Biol. 394, 1–19 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Proc. IEEE (1)

T. S. Huang, “Digital holography,” Proc. IEEE 59(9), 1335–1346 (1971).
[Crossref]

RSC Advances (1)

Y. Lai, S. Sun, T. He, S. Schlücker, and Y. Wang, “Raman-encoded microbeads for spectral multiplexing with SERS detection,” RSC Advances 5(18), 13762–13767 (2015).
[Crossref]

Science (4)

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, “Submicrometer metallic barcodes,” Science 294(5540), 137–141 (2001).
[Crossref] [PubMed]

D. C. Pregibon, M. Toner, and P. S. Doyle, “Multifunctional encoded particles for high-throughput biomolecule analysis,” Science 315(5817), 1393–1396 (2007).
[Crossref] [PubMed]

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267(5204), 1629–1632 (1995).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

S. W. Han, E. Jang, and W.-G. Koh, “Microfluidic-based multiplex immunoassay system integrated with an array of QD-encoded microbeads,” Sens. Actuators B Chem. 209, 242–251 (2015).
[Crossref]

Other (1)

L. Miccio, M. Paturzo, A. Finizio, G. D. Caprio, G. Coppola, P. Ferraro, R. Puglisi, D. Balduzzi, and A. Galli, “Quantitative phase contrast in holographic microscopy through the numerical manipulation of the retrieved wavefronts, ” in Coherent Light Microscopy, P. Ferraro, ed. (Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the DW-DHPFM system. SLD, superluminescent diode; SMF, single-mode fiber; MMF, multi-mode fiber; CL, collimator; LLF, laser line filter; LP, linear polarizer; BS, beam splitter; QWP, quarter-wave plate; ODL, optical delay line; OL, objective lens; DM, dichroic mirror; LF, long-pass filter; SF, short-pass filter; TL, tube lens. (b) Schematic of the confocal Raman microscope. NF, notch filter; (c) The synthesis and detection scheme of dual-channel encoded SA.
Fig. 2
Fig. 2 Dual-wavelength reconstruction process using DW-DHPFM system. (a) A hologram captured at 830 nm. (b) The red square area of (a). (c), (d) Reconstructed phase images of 830 and 833.4 nm respectively after compensating the aberration. (e) Reconstructed optical thickness image of MQPs and (f) cross-sectional profile of the white line in (e). Size of field of view of (a), (c)–(e): 1.26 mm × 1.26 mm.
Fig. 3
Fig. 3 (a), (b) SEM images of initial MQPs. (c) TEM image of AuNRs. (d) Zeta potential of R1 and R2. (e) Size of R1 and R2. (f) The surface of DCEM. (g) The optical thickness of MQPs before and after the assembling of R1 and R2.
Fig. 4
Fig. 4 Decoding Raman spectra of (a) single kind of Raman reporter molecules, (b) two kinds of Raman reporter molecules and (c) multiple kinds of Raman reporter molecules.
Fig. 5
Fig. 5 The binary sequence of codes and components, SERS spectra and optical thickness information of the DCEMs. 2-NT and 4-CBT are two types of Raman reporter molecules, T1 and T2 are two kinds of encoding optical thickness of MQPs. Size of field of view of reconstructed optical thickness image: 1.26 mm × 1.26 mm.
Fig. 6
Fig. 6 (a) The fluorescence image and (b) reconstructed optical thickness image of the reacted SA1, SA2, SA3 in multiplexed analysis. (c) The field of view in decoding Raman spectra and (d) the corresponding Raman spectrum of reacted SA1, SA2, SA3. Size of field of view: 1.26 mm × 1.26 mm.
Fig. 7
Fig. 7 (a-h) Fluorescence images of SA3 after being reacted with 565 nm QDs-labeled goat anti mouse IgG solution with the concentrations of 30, 15, 7.5, 3.75, 1.875 nM, and 937.5, 468.75 and 0 pM. (i) The concentration response curve is obtained by fitting average fluorescence intensity with the analytes concentration. Error bars indicate the standard deviations from 50 MQPs at different concentrations.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D ( x , y ) = λ 2 π φ ( x , y )
D ( x , y ) = λ 1 2 π φ 1 ( x , y ) + λ 1 m 1 ( x , y ) = λ 2 2 π φ 2 ( x , y ) + λ 2 m 2 ( x , y )
D ( x , y ) = λ 2 λ 1 λ 2 λ 1 [ φ 1 ( x , y ) - φ 2 ( x , y ) 2 π + m 1 ( x , y ) m 2 ( x , y ) ]
φ 1 ( x , y ) - φ 2 ( x , y ) 2 π + m 1 ( x , y ) m 2 ( x , y )
m 1 ( x , y ) = λ 2 λ 1 m 2 ( x , y ) + 1 2 π ( ( λ 2 λ 1 φ 2 ( x , y ) - φ 1 ( x , y ) )
W 1 = m
W 2 = C n 1 + C n 2 + + C n n = 2 n 1
W = W 1 × W 2 = m × ( 2 n 1 )

Metrics