Abstract

Simultaneous transmission of two polarization-division-multiplexing four-level pulse-amplitude-modulation (2 × PDM-PAM4) signals is proposed, and a simplified receiver is used for demultiplexing two data streams. Experimental results at 160-Gbit/s show that the power penalty of each data stream is ~0.4-dB (back-to-back) and ~1-dB (25-km transmission) compared with the single PDM system. Furthermore, the stabilization of the proposed scheme is investigated. The BER fluctuation is <0.5-dB at a polarization scrambling rate up to 1417.5-deg/s.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simplified demultiplexing scheme for two PDM-IM/DD systems utilizing a single Stokes analyzer over 25-km SMF

Yan Pan, Lianshan Yan, Anlin Yi, Lin Jiang, Wei Pan, Bin Luo, and Xihua Zou
Opt. Lett. 42(20) 4071-4074 (2017)

Transmission of multi-polarization-multiplexed signals: another freedom to explore?

Zhiyu Chen, Lianshan Yan, Wei Pan, Bin Luo, Yinghui Guo, Hengyun Jiang, Anlin Yi, Yafei Sun, and Xiaoxia Wu
Opt. Express 21(9) 11590-11605 (2013)

100 Gbps IM/DD links using quad-polarization: Performance, complexity, and power dissipation

S. Saldaña Cercós, M. Piels, J. Estarán, M. Usuga, E. Porto da Silva, A. Manolova Fagertun, and I. Tafur Monroy
Opt. Express 23(15) 19954-19968 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Hyperscale Data Center Count Approaches the 400 Mark; US Still Dominates, December (2017). https://www.srgresearch.com
  2. Cisco Global Cloud Index, February (2018). https://www.cisco.com
  3. F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
    [Crossref]
  4. M. R. T. Tan, B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, “50 Gb/s PAM4 Modulated 1065 nm Single-Mode VCSELs Using SMF-28 for Mega-Data Centers,” IEEE Photonics Technol. Lett. 29(13), 1128–1131 (2017).
    [Crossref]
  5. N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental Demonstration of 84 Gb/s PAM-4 Over up to 1.6 km SSMF Using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
    [Crossref]
  6. K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
    [Crossref]
  7. M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “224-Gb/s 10-km transmission of PDM PAM-4 at 1.3 μm using a single intensity modulated laser and a direct detection MIMO DSP-based receiver,” J. Lightwave Technol. 33(7), 1417 (2015).
    [Crossref]
  8. J. Yu, J. Zhang, H. Chien, X. Li, Y. Xu, X. Pan, and F. Wang, Z, Li, B. Liu, L. Zhang, X. Xin, H. Wang, and G. K. Chang, “56Gb/s Chirp-managed Symbol Transmission with Low-cost 10-G Class LD for 400G Intra-data Center Interconnection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4D.2.
    [Crossref]
  9. S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
    [Crossref] [PubMed]
  10. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  11. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers-Kronig coherent receiver,” Optica 3(11), 1220–1227 (2016).
    [Crossref]
  12. T. M. Hoang, M. Y. S. Sowailem, Q. Zhuge, Z. Xing, M. Morsy-Osman, E. El-Fiky, S. Fan, M. Xiang, and D. V. Plant, “Single wavelength 480 Gb/s direct detection over 80km SSMF enabled by Stokes vector Kramers Kronig transceiver,” Opt. Express 25(26), 33534–33542 (2017).
    [Crossref]
  13. K. Kikuchi, “Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems,” Opt. Express 22(2), 1971–1980 (2014).
    [Crossref] [PubMed]
  14. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for short-reach optical communication,” Opt. Lett. 39(11), 3110–3113 (2014).
    [Crossref] [PubMed]
  15. J. Estarán, M. A. Usuga, E. P. da Silva, M. Piels, M. I. Olmedo, D. Zibar, and I. T. Monroy, “Quaternary Polarization-Multiplexed Subsystem for High-Capacity IM/DD Optical Data Links,” J. Lightwave Technol. 33(7), 1408–1416 (2015).
    [Crossref]
  16. Y. Pan, L. Yan, A. Yi, L. Jiang, W. Pan, B. Luo, and X. Zou, “Simplified demultiplexing scheme for two PDM-IM/DD systems utilizing a single stokes analyzer over 25-km SMF,” Opt. Lett. 42(20), 4071–4074 (2017).
    [Crossref] [PubMed]
  17. R. A. Chipman, “Mueller Matrices,” in Hand of Optics, E. D. M. Bass, ed. (McGraw-Hill, 2009).
  18. F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
    [Crossref]

2017 (4)

2016 (2)

2015 (5)

2014 (2)

1986 (1)

F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[Crossref]

Antonelli, C.

Chagnon, M.

Che, D.

Chen, W.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

Chen, X.

Chien, H.

J. Yu, J. Zhang, H. Chien, X. Li, Y. Xu, X. Pan, and F. Wang, Z, Li, B. Liu, L. Zhang, X. Xin, H. Wang, and G. K. Chang, “56Gb/s Chirp-managed Symbol Transmission with Low-cost 10-G Class LD for 400G Intra-data Center Interconnection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4D.2.
[Crossref]

da Silva, E. P.

Daly, A.

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Dochhan, A.

Eiselt, M. H.

Eiselt, N.

El-Fiky, E.

Estarán, J.

Fan, S.

Fu, S.

Gao, Y.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

Gardner, F. M.

F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[Crossref]

Griesser, H.

Gui, T.

Hoang, T. M.

Hohenleitner, R.

N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental Demonstration of 84 Gb/s PAM-4 Over up to 1.6 km SSMF Using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
[Crossref]

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Hu, Q.

Jiang, L.

Karinou, F.

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Kikuchi, K.

Kögel, B.

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Lau, A. P. T.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

Lessard, S.

Li, A.

Li, X.

S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
[Crossref] [PubMed]

J. Yu, J. Zhang, H. Chien, X. Li, Y. Xu, X. Pan, and F. Wang, Z, Li, B. Liu, L. Zhang, X. Xin, H. Wang, and G. K. Chang, “56Gb/s Chirp-managed Symbol Transmission with Low-cost 10-G Class LD for 400G Intra-data Center Interconnection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4D.2.
[Crossref]

Lu, C.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

Luo, B.

Man, J.

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Mathai, S.

M. R. T. Tan, B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, “50 Gb/s PAM4 Modulated 1065 nm Single-Mode VCSELs Using SMF-28 for Mega-Data Centers,” IEEE Photonics Technol. Lett. 29(13), 1128–1131 (2017).
[Crossref]

Mecozzi, A.

Monroy, I. T.

Morsy-Osman, M.

Neumeyr, C.

N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental Demonstration of 84 Gb/s PAM-4 Over up to 1.6 km SSMF Using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
[Crossref]

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Olmedo, M. I.

Olmos, J. J. V.

Ortsiefer, M.

N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental Demonstration of 84 Gb/s PAM-4 Over up to 1.6 km SSMF Using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
[Crossref]

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Pan, W.

Pan, X.

J. Yu, J. Zhang, H. Chien, X. Li, Y. Xu, X. Pan, and F. Wang, Z, Li, B. Liu, L. Zhang, X. Xin, H. Wang, and G. K. Chang, “56Gb/s Chirp-managed Symbol Transmission with Low-cost 10-G Class LD for 400G Intra-data Center Interconnection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4D.2.
[Crossref]

Pan, Y.

Piels, M.

Plant, D. V.

Poulin, M.

Prodaniuc, C.

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Rosenberg, P.

M. R. T. Tan, B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, “50 Gb/s PAM4 Modulated 1065 nm Single-Mode VCSELs Using SMF-28 for Mega-Data Centers,” IEEE Photonics Technol. Lett. 29(13), 1128–1131 (2017).
[Crossref]

Shieh, W.

Shtaif, M.

Sorin, W. V.

M. R. T. Tan, B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, “50 Gb/s PAM4 Modulated 1065 nm Single-Mode VCSELs Using SMF-28 for Mega-Data Centers,” IEEE Photonics Technol. Lett. 29(13), 1128–1131 (2017).
[Crossref]

Sowailem, M. Y. S.

Stojanovic, N.

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Tan, M. R. T.

M. R. T. Tan, B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, “50 Gb/s PAM4 Modulated 1065 nm Single-Mode VCSELs Using SMF-28 for Mega-Data Centers,” IEEE Photonics Technol. Lett. 29(13), 1128–1131 (2017).
[Crossref]

Tao, L.

Usuga, M. A.

Wang, B.

M. R. T. Tan, B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, “50 Gb/s PAM4 Modulated 1065 nm Single-Mode VCSELs Using SMF-28 for Mega-Data Centers,” IEEE Photonics Technol. Lett. 29(13), 1128–1131 (2017).
[Crossref]

Wang, F.

J. Yu, J. Zhang, H. Chien, X. Li, Y. Xu, X. Pan, and F. Wang, Z, Li, B. Liu, L. Zhang, X. Xin, H. Wang, and G. K. Chang, “56Gb/s Chirp-managed Symbol Transmission with Low-cost 10-G Class LD for 400G Intra-data Center Interconnection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4D.2.
[Crossref]

Wang, Y.

Wei, J.

Xiang, M.

Xing, Z.

Xu, Y.

J. Yu, J. Zhang, H. Chien, X. Li, Y. Xu, X. Pan, and F. Wang, Z, Li, B. Liu, L. Zhang, X. Xin, H. Wang, and G. K. Chang, “56Gb/s Chirp-managed Symbol Transmission with Low-cost 10-G Class LD for 400G Intra-data Center Interconnection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4D.2.
[Crossref]

Yan, L.

Yang, Q.

Yi, A.

Yi, L.

Yu, J.

J. Yu, J. Zhang, H. Chien, X. Li, Y. Xu, X. Pan, and F. Wang, Z, Li, B. Liu, L. Zhang, X. Xin, H. Wang, and G. K. Chang, “56Gb/s Chirp-managed Symbol Transmission with Low-cost 10-G Class LD for 400G Intra-data Center Interconnection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4D.2.
[Crossref]

Zeng, L.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

Zhang, J.

J. Yu, J. Zhang, H. Chien, X. Li, Y. Xu, X. Pan, and F. Wang, Z, Li, B. Liu, L. Zhang, X. Xin, H. Wang, and G. K. Chang, “56Gb/s Chirp-managed Symbol Transmission with Low-cost 10-G Class LD for 400G Intra-data Center Interconnection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4D.2.
[Crossref]

Zhong, K.

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

Zhou, S.

Zhou, X.

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

Zhuge, Q.

Zibar, D.

Zou, X.

IEEE Photonics Technol. Lett. (3)

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kögel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

M. R. T. Tan, B. Wang, W. V. Sorin, S. Mathai, and P. Rosenberg, “50 Gb/s PAM4 Modulated 1065 nm Single-Mode VCSELs Using SMF-28 for Mega-Data Centers,” IEEE Photonics Technol. Lett. 29(13), 1128–1131 (2017).
[Crossref]

K. Zhong, X. Zhou, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “140-Gb/s 20-km Transmission of PAM-4 signal at 1.3 µm for short reach communications,” IEEE Photonics Technol. Lett. 27(16), 1757–1760 (2015).
[Crossref]

IEEE Trans. Commun. (1)

F. M. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE Trans. Commun. 34(5), 423–429 (1986).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Other (4)

J. Yu, J. Zhang, H. Chien, X. Li, Y. Xu, X. Pan, and F. Wang, Z, Li, B. Liu, L. Zhang, X. Xin, H. Wang, and G. K. Chang, “56Gb/s Chirp-managed Symbol Transmission with Low-cost 10-G Class LD for 400G Intra-data Center Interconnection,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper W4D.2.
[Crossref]

Hyperscale Data Center Count Approaches the 400 Mark; US Still Dominates, December (2017). https://www.srgresearch.com

Cisco Global Cloud Index, February (2018). https://www.cisco.com

R. A. Chipman, “Mueller Matrices,” in Hand of Optics, E. D. M. Bass, ed. (McGraw-Hill, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Configuration of the multiplexing and demultiplexing for the proposed scheme. PAM, pulse amplitude modulation; SMF, single mode fiber; Pol., polarization; OBPF, optical band-pass filter; PD, photo-detector.
Fig. 2
Fig. 2 Experimental setup for 2 × PDM-PAM4 system. ECL, external cavity laser; AWG, arbitrary wave generator; MZM, Mach-Zehnder modulator; PS, phase shifter; PBC, polarization beam combiner; PC, polarization controller; VOA, variable optical attenuator; VODL, variable optical delay line; EDFA, erbium-doped fiber amplifier; RC, right circular; DSO, digital storage oscilloscope; DSP, digital signal processing.
Fig. 3
Fig. 3 Back-to-back BER performance of the 2 × PDM-PAM4 system, and the signal PDM-PAM4 system is shown for comparison. (a) Bit rate at 4 × 20-Gbit/s and (b) 4 × 40-Gbit/s
Fig. 4
Fig. 4 25-km transmission performance of the 2 × PDM-PAM4 and the single PDM-PAM4 system. (a) Bit rate at 4 × 20-Gbit/s and (b) 4 × 40-Gbit/s.
Fig. 5
Fig. 5 Polarization tracking stability performance at scrambling rate of 708.75-deg/s and 1417.5-deg/s.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E Tx =[ E 1 + 2 2 E 3 j 2 2 E 4 j E 2 + 2 2 E 3 +j 2 2 E 4 ]
E 1 = A 1 exp[j( ω 1 t+ φ 1 )], E 2 = A 2 exp[j( ω 1 t+ φ 1 + δ 1 )] E 3 = A 3 exp[j( ω 2 t+ φ 2 )], E 4 = A 4 exp[j( ω 2 t+ φ 2 + δ 2 )]
E Rx =H·J×[ E 1 + 2 2 E 3 j 2 2 E 4 j E 2 + 2 2 E 3 +j 2 2 E 4 ]
J=[ cosα·exp(j ϕ 2 ) sinα·exp(j ϕ 2 ) sinα·exp(j ϕ 2 ) cosα·exp(j ϕ 2 ) ]
M=[ 1 0 0 0 0 cos2α sin2α 0 0 sin2α·cosϕ cos2α·cosϕ sinϕ 0 sin2α·sinϕ cos2α·sinϕ cosϕ ]
[ S 0 ' S 1 ' S 2 ' S 3 ' ]=[ 1 0 0 0 0 cos2α sin2α 0 0 sin2α·cosϕ cos2α·cosϕ sinϕ 0 sin2α·sinϕ cos2α·sinϕ cosϕ ]×[ S 0 S 1 S 2 S 3 ]
[ I 1 I 2 I 3 I 4 ]=T×[ I in1 I in2 I in3 I in4 ]=·[ 1 1 1 1 1 0 1/2 1/2 1/2 1/2 1 0 1/2 1/2 1/2 1/2 ]×[ | E 1 | 2 | E 2 | 2 | E 3 | 2 | E 4 | 2 ]
[ I 1 I 2 I 3 I 5 ]=T·[ I in1 I in2 I in3 I in4 ]=·[ 1 1 1 1 1 0 1/2 1/2 1/2 1/2 1 0 1 1 0 0 ]·[ | E 1 | 2 | E 2 | 2 | E 3 | 2 | E 4 | 2 ]

Metrics