Abstract

The wavelength tuning range of a tunable vertical-cavity surface-emitting laser (VCSEL) is strongly influenced by the design of the interface between the semiconductor cavity and the air cavity. A simplified model is used to investigate the origin of the dramatic differences in free spectral range (FSR) and tuning slope observed in semiconductor cavity dominant, extended cavity, and air cavity dominant VCSELs. The differences arise from the positioning of the resonant and antiresonant wavelengths of the semiconductor cavity with respect to the center wavelength. The air cavity dominant design is realized by designing an antiresonant semiconductor cavity, resulting in a larger tuning slope near the center of the tuning range and a wider FSR toward the edges of the tuning range. The findings from the simplified model are confirmed with the simulation of a full VCSEL structure. Using an air cavity dominant design, an electrically pumped laser with a tuning range of 68.38 nm centered at 1056.7 nm at a 550 kHz sweep rate is demonstrated with continuous wave emission at room temperature. This epitaxial design rule can be used to increase the tuning range of tunable VCSELs, making them more applicable in swept-source optical coherence tomography and frequency-modulated continuous-wave LIDAR systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable 1060-nm VCSEL with high-contrast grating mirror

Kun Li, Chris Chase, Pengfei Qiao, and Connie J. Chang-Hasnain
Opt. Express 25(10) 11844-11854 (2017)

High-contrast gratings for integrated optoelectronics

Connie J. Chang-Hasnain and Weijian Yang
Adv. Opt. Photon. 4(3) 379-440 (2012)

Size effect of high contrast gratings in VCSELs

Christopher Chase, Ye Zhou, and Connie J. Chang-Hasnain
Opt. Express 17(26) 24002-24007 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
    [Crossref]
  2. C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, L. T. Florez, and N. C. Andreadakis, “Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers,” Electron. Lett. 27(11), 1002–1003 (1991).
    [Crossref]
  3. P. R. Berger, N. K. Dutta, K. D. Choquette, G. Hasnain, and N. Chand, “Monolithic Peltier-cooled vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 59(1), 117–119 (1991).
    [Crossref]
  4. L. Frasunkiewicz, T. Czyszanowski, H. Thienpont, and K. Panajotov, “Electrically tunable VCSEL with intra-cavity liquid crystal: Design, optimization, and analysis of polarization- and mode-stability,” Opt. Commun. 427, 271–277 (2018).
    [Crossref]
  5. M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett. 31(19), 1671–1672 (1995).
    [Crossref]
  6. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [Crossref]
  7. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
    [Crossref]
  8. F. Sugihwo, M. C. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
    [Crossref]
  9. C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
    [Crossref]
  10. D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for opthalmic imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
    [Crossref] [PubMed]
  11. P. Qiao, K. T. Cook, K. Li, and C. Chang-Hasnain, “Wavelength-Swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
    [Crossref]
  12. E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24(3), 1999–2005 (2016).
    [Crossref] [PubMed]
  13. I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
    [Crossref]
  14. P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
    [Crossref]
  15. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012).
  16. T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702306 (2013).
    [Crossref]

2018 (2)

L. Frasunkiewicz, T. Czyszanowski, H. Thienpont, and K. Panajotov, “Electrically tunable VCSEL with intra-cavity liquid crystal: Design, optimization, and analysis of polarization- and mode-stability,” Opt. Commun. 427, 271–277 (2018).
[Crossref]

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

2017 (1)

P. Qiao, K. T. Cook, K. Li, and C. Chang-Hasnain, “Wavelength-Swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

2016 (1)

2015 (1)

2013 (2)

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702306 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

2011 (1)

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

2010 (1)

I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

2008 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

2000 (1)

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

1998 (1)

F. Sugihwo, M. C. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

1995 (1)

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett. 31(19), 1671–1672 (1995).
[Crossref]

1991 (2)

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, L. T. Florez, and N. C. Andreadakis, “Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers,” Electron. Lett. 27(11), 1002–1003 (1991).
[Crossref]

P. R. Berger, N. K. Dutta, K. D. Choquette, G. Hasnain, and N. Chand, “Monolithic Peltier-cooled vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 59(1), 117–119 (1991).
[Crossref]

Amann, M.-C.

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

Andreadakis, N. C.

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, L. T. Florez, and N. C. Andreadakis, “Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers,” Electron. Lett. 27(11), 1002–1003 (1991).
[Crossref]

Ansbaek, T.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702306 (2013).
[Crossref]

Bengtsson, J.

Berger, P. R.

P. R. Berger, N. K. Dutta, K. D. Choquette, G. Hasnain, and N. Chand, “Monolithic Peltier-cooled vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 59(1), 117–119 (1991).
[Crossref]

Böhm, G.

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

Burgner, C. B.

Cable, A. E.

Caliman, A.

I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Chand, N.

P. R. Berger, N. K. Dutta, K. D. Choquette, G. Hasnain, and N. Chand, “Monolithic Peltier-cooled vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 59(1), 117–119 (1991).
[Crossref]

Chang-Hasnain, C.

P. Qiao, K. T. Cook, K. Li, and C. Chang-Hasnain, “Wavelength-Swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Chang-Hasnain, C. J.

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett. 31(19), 1671–1672 (1995).
[Crossref]

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, L. T. Florez, and N. C. Andreadakis, “Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers,” Electron. Lett. 27(11), 1002–1003 (1991).
[Crossref]

Chase, C.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Chitgarha, M. R.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Choi, W. J.

Choquette, K. D.

P. R. Berger, N. K. Dutta, K. D. Choquette, G. Hasnain, and N. Chand, “Monolithic Peltier-cooled vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 59(1), 117–119 (1991).
[Crossref]

Chung, I. S.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702306 (2013).
[Crossref]

I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Cook, K. T.

P. Qiao, K. T. Cook, K. Li, and C. Chang-Hasnain, “Wavelength-Swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Czyszanowski, T.

L. Frasunkiewicz, T. Czyszanowski, H. Thienpont, and K. Panajotov, “Electrically tunable VCSEL with intra-cavity liquid crystal: Design, optimization, and analysis of polarization- and mode-stability,” Opt. Commun. 427, 271–277 (2018).
[Crossref]

Davani, H. A.

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

Dutta, N. K.

P. R. Berger, N. K. Dutta, K. D. Choquette, G. Hasnain, and N. Chand, “Monolithic Peltier-cooled vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 59(1), 117–119 (1991).
[Crossref]

Fattal, D.

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, L. T. Florez, and N. C. Andreadakis, “Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers,” Electron. Lett. 27(11), 1002–1003 (1991).
[Crossref]

Frasunkiewicz, L.

L. Frasunkiewicz, T. Czyszanowski, H. Thienpont, and K. Panajotov, “Electrically tunable VCSEL with intra-cavity liquid crystal: Design, optimization, and analysis of polarization- and mode-stability,” Opt. Commun. 427, 271–277 (2018).
[Crossref]

Fujimoto, J. G.

Gierl, C.

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

Grasse, C.

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

Gründl, T.

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

Gustavsson, J. S.

Haglund, Å.

Haglund, E.

Hansen, O.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702306 (2013).
[Crossref]

Harbison, J. P.

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, L. T. Florez, and N. C. Andreadakis, “Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers,” Electron. Lett. 27(11), 1002–1003 (1991).
[Crossref]

Harris, J. S.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

Hasnain, G.

P. R. Berger, N. K. Dutta, K. D. Choquette, G. Hasnain, and N. Chand, “Monolithic Peltier-cooled vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 59(1), 117–119 (1991).
[Crossref]

Huang, M. C. Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Iakovlev, V.

I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Jayaraman, V.

John, D. D.

Kapon, E.

I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Küppers, F.

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

Larson, M. C.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

Larsson, A.

Lee, B. K.

Li, G. S.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett. 31(19), 1671–1672 (1995).
[Crossref]

Li, K.

P. Qiao, K. T. Cook, K. Li, and C. Chang-Hasnain, “Wavelength-Swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Meissner, P.

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

Mereuta, A.

I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Mork, J.

I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Panajotov, K.

L. Frasunkiewicz, T. Czyszanowski, H. Thienpont, and K. Panajotov, “Electrically tunable VCSEL with intra-cavity liquid crystal: Design, optimization, and analysis of polarization- and mode-stability,” Opt. Commun. 427, 271–277 (2018).
[Crossref]

Potsaid, B.

Qiao, P.

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

P. Qiao, K. T. Cook, K. Li, and C. Chang-Hasnain, “Wavelength-Swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Rao, Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Robertson, M. E.

Semenova, E. S.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702306 (2013).
[Crossref]

Sirbu, A.

I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

Sorin, W.

Sugihwo, F.

F. Sugihwo, M. C. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

Tan, M.

Thienpont, H.

L. Frasunkiewicz, T. Czyszanowski, H. Thienpont, and K. Panajotov, “Electrically tunable VCSEL with intra-cavity liquid crystal: Design, optimization, and analysis of polarization- and mode-stability,” Opt. Commun. 427, 271–277 (2018).
[Crossref]

Vail, E. C.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett. 31(19), 1671–1672 (1995).
[Crossref]

Willner, A. E.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Worland, D. P.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Wu, M. S.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett. 31(19), 1671–1672 (1995).
[Crossref]

Yang, W.

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Yuen, W.

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett. 31(19), 1671–1672 (1995).
[Crossref]

Yvind, K.

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702306 (2013).
[Crossref]

Zah, C. E.

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, L. T. Florez, and N. C. Andreadakis, “Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers,” Electron. Lett. 27(11), 1002–1003 (1991).
[Crossref]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Zivadi, M.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Zogal, K.

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

Adv. Opt. Photonics (1)

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photonics 10(1), 180–245 (2018).
[Crossref]

Appl. Phys. Lett. (1)

P. R. Berger, N. K. Dutta, K. D. Choquette, G. Hasnain, and N. Chand, “Monolithic Peltier-cooled vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 59(1), 117–119 (1991).
[Crossref]

Electron. Lett. (3)

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, L. T. Florez, and N. C. Andreadakis, “Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers,” Electron. Lett. 27(11), 1002–1003 (1991).
[Crossref]

M. S. Wu, E. C. Vail, G. S. Li, W. Yuen, and C. J. Chang-Hasnain, “Tunable micromachined vertical cavity surface emitting laser,” Electron. Lett. 31(19), 1671–1672 (1995).
[Crossref]

C. Gierl, T. Gründl, K. Zogal, H. A. Davani, C. Grasse, G. Böhm, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined MEMS-tunable VCSELs with wide and fast wavelength tuning,” Electron. Lett. 47(22), 1243–1244 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

I. S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mork, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46(9), 1245–1253 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

T. Ansbaek, I. S. Chung, E. S. Semenova, O. Hansen, and K. Yvind, “Resonant MEMS tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1702306 (2013).
[Crossref]

P. Qiao, K. T. Cook, K. Li, and C. Chang-Hasnain, “Wavelength-Swept VCSELs,” IEEE J. Sel. Top. Quantum Electron. 23(6), 1700516 (2017).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Zivadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

F. Sugihwo, M. C. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998).
[Crossref]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Opt. Commun. (1)

L. Frasunkiewicz, T. Czyszanowski, H. Thienpont, and K. Panajotov, “Electrically tunable VCSEL with intra-cavity liquid crystal: Design, optimization, and analysis of polarization- and mode-stability,” Opt. Commun. 427, 271–277 (2018).
[Crossref]

Opt. Express (1)

Other (1)

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic view of a MEMS-HCG tunable VCSEL with engineered semiconductor-air coupling (SAC) region. (b) Scanning electron microscope view of a fabricated 1060-nm MEMS-HCG tunable VCSEL.
Fig. 2
Fig. 2 Simplified coupled-cavity transfer-matrix analysis. (a) Illustration of simplified two coupled cavities with a semiconductor-air coupling (SAC) layer in-between. The 4λC semiconductor cavity with index nS is shown in blue, the SAC layer with index nSAC is shown in green, and the air cavity has an index of 1. The reflectors are indicated by dashed lines. (b) Comparison between SCD, EC, and ACD tuning characteristics with nSAC = 1, nAR, nS respectively. The ACD design has the widest FSR when measured around the center wavelength of 1060 nm. (c) SCD and (d) ACD tuning curves plotted in black against semiconductor cavity modes in blue and air cavity modes in red. The circles indicate where the two families of lines cross, which results in anti-crossing in the (black) resonance lines of the full structures.
Fig. 3
Fig. 3 FP Resonance as a function of air cavity thickness for a realistic VCSEL cavity using transfer-matrix and FDTD analysis. (a) Schematic of VCSEL structure, semiconductor cavity structure, and air cavity structure used to compute Fabry-Perot modes. The SAC region contains a high-index λC/2 “window” layer on top of a low-index λC/4 layer with nlow, both indices >nAR. (b)-(f) Transfer matrix simulations for VCSEL modes (black), semiconductor cavity modes (green), and air cavity modes (red), inscribed on a resonance colormap from FDTD simulations of the full VCSEL structure. The thickness of the “window” layer is varied from 0 to λC/2, illustrating the shift from ACD at 0 to SCD at λC/4 and back to ACD at λC/2.
Fig. 4
Fig. 4 Longitudinal electric energy density ϵ(z)|E(z)|2 profiles (red) calculated using the transfer-matrix method at tuning center where λr = 1060 nm for (a) ACD, (b) EC and (c) SCD. The refractive index (blue) for each layer is also plotted for each case to show the simulated structure.
Fig. 5
Fig. 5 Effective length is observed from the semiconductor cavity. (b) Total effective length Leff as a function of resonance wavelength for SCD (red), EC (black), and ACD (blue) designs. (c) Threshold material gain gth with uniform material loss αi = 20 cm−1 added to all semiconductor layers. (d) Confinement factor calculated with Γ = α/gth.
Fig. 6
Fig. 6 (a) Measured swept VCSEL spectra for an ACD tunable VCSEL at 4.5 mA current injection under a constant DC bias (blue) and with an additional 550 kHz AC (red) tuning voltage. The swept spectrum covers a range of 68.38 nm, measured at −20 dB from the tuning edge peaks. (b) Threshold current measured with two different techniques. The curve in blue is measured by applying a series of DC tuning biases and measuring the threshold and wavelength at 1.1Ith. The curve in red is measured by applying a DC tuning bias and sweeping the position of the HCG by applying a resonant AC signal, then measuring the emission spectrum at a series of laser drive currents. (c) The MEMS frequency response shows a resonance at 610 kHz and a −3-dB cutoff at 1.05 MHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L eff ( λ r )= λ r 2 4π n g λ [ ϕ top (λ)+ ϕ bottom (λ) ] λ= λ r
Γ g th =α= 1 2 L eff ln( 1 R 1 R 2 )

Metrics