Abstract

Due to the propagation-invariant and self-healing properties, nondiffracting beams are highly attractive in optical trapping. However, little attention has been paid to investigating optical guiding of microparticles in nondiffracting beams generated by high-numerical-aperture (NA) optics with direct visualization. In this letter, we report a technique for direct observation and characterization of optical guiding of microparticles in a tight focusing system. With this technique, we observed a parabolic particle guiding trajectory with a longitudinal distance of more than 100µm and a maximal lateral deviation of 20 µm when using Airy beams. We also realized the tilted-path transport of microparticles with controllable guiding direction using tilted zeroth-order quasi-Bessel beams. For an NA of the focusing lens equal to 0.95, we achieved the optical guiding of microparticles along a straight path with a tilt angle of up to 18.8° with respect to the optical axis over a distance of 300 µm. Importantly, quantitative measurement of particle’s motion was readily accessed by measuring the particle’s position and velocity during the transport process. The reported technique for direct visualization and characterization of the guided particles will find its potential applications in optical trapping and guiding with novel nondiffracting beams or accelerating beams.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical trapping with focused Airy beams

Zhu Zheng, Bai-Fu Zhang, Hao Chen, Jianping Ding, and Hui-Tian Wang
Appl. Opt. 50(1) 43-49 (2011)

Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam

Hua Cheng, Weiping Zang, Wenyuan Zhou, and Jianguo Tian
Opt. Express 18(19) 20384-20394 (2010)

Rigorous full-wave calculation of optical forces on dielectric and metallic microparticles immersed in a vector Airy beam

Wanli Lu, Huajin Chen, Shiyang Liu, and Zhifang Lin
Opt. Express 25(19) 23238-23253 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
    [Crossref]
  2. P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
    [Crossref]
  3. R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
    [Crossref]
  4. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
    [Crossref]
  5. A. Jonáš and P. Zemanek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
    [Crossref]
  6. A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  7. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
    [Crossref]
  8. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
    [Crossref]
  9. F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
    [Crossref]
  10. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
    [Crossref]
  11. D. N. Christodoulides, “Optical trapping: Riding along an Airy beam,” Nat. Photonics 2(11), 652–653 (2008).
    [Crossref]
  12. S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
    [Crossref]
  13. J. Morris, T. Čižmár, H. Dalgarno, R. Marchington, F. Gunn-Moore, and K. Dholakia, “Realization of curved Bessel beams: propagation around obstructions,” J. Opt. 12(12), 124002 (2010).
    [Crossref]
  14. D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
    [Crossref]
  15. X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
    [Crossref]
  16. W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1(02), 1–14 (2019).
    [Crossref]
  17. J. A. Rodrigo and T. Alieva, “Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond,” Optica 2(9), 812 (2015).
    [Crossref]
  18. R. S. Verma, S. Ahlawat, and A. Uppal, “Optical guiding-based cell focusing for Raman flow cell cytometer,” Analyst 143(11), 2648–2655 (2018).
    [Crossref]
  19. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
    [Crossref]
  20. Z. Gong, Y.-L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: Principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
    [Crossref]
  21. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
    [Crossref]
  22. G. Thalhammer, R. Steiger, S. Bernet, and M. Ritsch-Marte, “Optical macro-tweezers: trapping of highly motile micro-organisms,” J. Opt. 13(4), 044024 (2011).
    [Crossref]
  23. R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
    [Crossref]
  24. E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
    [Crossref]
  25. G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 1–11 (2014).
    [Crossref]
  26. Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
    [Crossref]
  27. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [Crossref]
  28. G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref]
  29. I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell's Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
    [Crossref]
  30. S. Chávez-Cerda and G. H. C. New, “Evolution of focused Hankel waves and Bessel beams,” Opt. Commun. 181(4-6), 369–377 (2000).
    [Crossref]
  31. Y. A. Ayala, A. V. Arzola, and K. Volke-Sepúlveda, “Comparative study of optical levitation traps: focused Bessel beam versus Gaussian beams,” J. Opt. Soc. Am. B 33(6), 1060 (2016).
    [Crossref]
  32. Y. A. Ayala, A. V. Arzola, and K. Volke-Sepulveda, “3D micromanipulation at low numerical aperture with a single light beam: the focused-Bessel trap,” Opt. Lett. 41(3), 614–617 (2016).
    [Crossref]
  33. Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
    [Crossref]
  34. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1959), pp. 358–379.
  35. M. Zamboni-Rached, “Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen Waves,” Opt. Express 12(17), 4001–4006 (2004).
    [Crossref]
  36. T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
    [Crossref]
  37. I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Bessel-like optical beams with arbitrary trajectories,” Opt. Lett. 37(23), 5003–5005 (2012).
    [Crossref]
  38. J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories,” Opt. Lett. 38(4), 498–500 (2013).
    [Crossref]
  39. D. Chremmos and N. K. Efremidis, “Nonparaxial accelerating Bessel-like beams,” Phys. Rev. A 88(6), 063816 (2013).
    [Crossref]
  40. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Advanced Trajectory Engineering of Diffraction-Resisting Laser Beams,” Proceedings of the International Conferenceon Photonics, Optics and Laser Technology (PHOTOPTICS-2013), 10–18 (2013).
  41. M. A. Preciado, K. Dholakia, and M. Mazilu, “Generation of attenuation-compensating Airy beams,” Opt. Lett. 39(16), 4950–4953 (2014).
    [Crossref]
  42. J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
    [Crossref]
  43. M. Fortin, M. Piché, D. Brousseau, and S. Thibault, “Generation of optical Bessel beams with arbitrarily curved trajectories using a magnetic-liquid deformable mirror,” Appl. Opt. 57(21), 6135–6144 (2018).
    [Crossref]
  44. S. H. Moosavi, C. Gohn-Kreuz, and A. Rohrbach, “Feedback phase correction of Bessel beams in confocal line light-sheet microscopy: a simulation study,” Appl. Opt. 52(23), 5835–5842 (2013).
    [Crossref]
  45. I. Minin and O. Minin, “Active MMW/Terahertz Security System Based on Bessel Beams,” ISRN Opt. 2013, 1–4 (2013).
    [Crossref]
  46. P. Theer, D. Dragneva, and M. Knop, “Pi-SPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes,” Sci. Rep. 6(1), 32880 (2016).
    [Crossref]
  47. Y. C. Zhong and Y. J. Cheng, “Wideband Quasi-Nondiffraction Beam With Accurately Controllable Propagating Angle and Depth-of-Field,” IEEE Trans. Antennas Propag. 65(10), 5035–5042 (2017).
    [Crossref]

2019 (1)

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1(02), 1–14 (2019).
[Crossref]

2018 (5)

X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
[Crossref]

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

R. S. Verma, S. Ahlawat, and A. Uppal, “Optical guiding-based cell focusing for Raman flow cell cytometer,” Analyst 143(11), 2648–2655 (2018).
[Crossref]

Z. Gong, Y.-L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: Principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

M. Fortin, M. Piché, D. Brousseau, and S. Thibault, “Generation of optical Bessel beams with arbitrarily curved trajectories using a magnetic-liquid deformable mirror,” Appl. Opt. 57(21), 6135–6144 (2018).
[Crossref]

2017 (2)

Y. C. Zhong and Y. J. Cheng, “Wideband Quasi-Nondiffraction Beam With Accurately Controllable Propagating Angle and Depth-of-Field,” IEEE Trans. Antennas Propag. 65(10), 5035–5042 (2017).
[Crossref]

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

2016 (4)

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Y. A. Ayala, A. V. Arzola, and K. Volke-Sepúlveda, “Comparative study of optical levitation traps: focused Bessel beam versus Gaussian beams,” J. Opt. Soc. Am. B 33(6), 1060 (2016).
[Crossref]

Y. A. Ayala, A. V. Arzola, and K. Volke-Sepulveda, “3D micromanipulation at low numerical aperture with a single light beam: the focused-Bessel trap,” Opt. Lett. 41(3), 614–617 (2016).
[Crossref]

P. Theer, D. Dragneva, and M. Knop, “Pi-SPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes,” Sci. Rep. 6(1), 32880 (2016).
[Crossref]

2015 (2)

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref]

J. A. Rodrigo and T. Alieva, “Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond,” Optica 2(9), 812 (2015).
[Crossref]

2014 (3)

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 1–11 (2014).
[Crossref]

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref]

M. A. Preciado, K. Dholakia, and M. Mazilu, “Generation of attenuation-compensating Airy beams,” Opt. Lett. 39(16), 4950–4953 (2014).
[Crossref]

2013 (5)

S. H. Moosavi, C. Gohn-Kreuz, and A. Rohrbach, “Feedback phase correction of Bessel beams in confocal line light-sheet microscopy: a simulation study,” Appl. Opt. 52(23), 5835–5842 (2013).
[Crossref]

I. Minin and O. Minin, “Active MMW/Terahertz Security System Based on Bessel Beams,” ISRN Opt. 2013, 1–4 (2013).
[Crossref]

J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories,” Opt. Lett. 38(4), 498–500 (2013).
[Crossref]

D. Chremmos and N. K. Efremidis, “Nonparaxial accelerating Bessel-like beams,” Phys. Rev. A 88(6), 063816 (2013).
[Crossref]

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

2012 (3)

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell's Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref]

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Bessel-like optical beams with arbitrary trajectories,” Opt. Lett. 37(23), 5003–5005 (2012).
[Crossref]

2011 (3)

B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
[Crossref]

G. Thalhammer, R. Steiger, S. Bernet, and M. Ritsch-Marte, “Optical macro-tweezers: trapping of highly motile micro-organisms,” J. Opt. 13(4), 044024 (2011).
[Crossref]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

2010 (2)

S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
[Crossref]

J. Morris, T. Čižmár, H. Dalgarno, R. Marchington, F. Gunn-Moore, and K. Dholakia, “Realization of curved Bessel beams: propagation around obstructions,” J. Opt. 12(12), 124002 (2010).
[Crossref]

2009 (2)

2008 (3)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

D. N. Christodoulides, “Optical trapping: Riding along an Airy beam,” Nat. Photonics 2(11), 652–653 (2008).
[Crossref]

A. Jonáš and P. Zemanek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[Crossref]

2007 (1)

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

2006 (2)

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
[Crossref]

2005 (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

2004 (2)

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

M. Zamboni-Rached, “Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen Waves,” Opt. Express 12(17), 4001–4006 (2004).
[Crossref]

2002 (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref]

2001 (1)

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

2000 (1)

S. Chávez-Cerda and G. H. C. New, “Evolution of focused Hankel waves and Bessel beams,” Opt. Commun. 181(4-6), 369–377 (2000).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Ahlawat, S.

R. S. Verma, S. Ahlawat, and A. Uppal, “Optical guiding-based cell focusing for Raman flow cell cytometer,” Analyst 143(11), 2648–2655 (2018).
[Crossref]

Alieva, T.

Arlt, J.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Arzola, A. V.

Ashkin, A.

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Ayala, Y. A.

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Bekenstein, R.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell's Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref]

Bernet, S.

G. Thalhammer, R. Steiger, S. Bernet, and M. Ritsch-Marte, “Optical macro-tweezers: trapping of highly motile micro-organisms,” J. Opt. 13(4), 044024 (2011).
[Crossref]

Bettiol, A. A.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
[Crossref]

Block, S. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

Boschi, C. D.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Botcherby, E. J.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

Bowman, R. W.

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

Broky, J.

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Brousseau, D.

Burvall, A.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Castonguay, A.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 1–11 (2014).
[Crossref]

Chávez-Cerda, S.

S. Chávez-Cerda and G. H. C. New, “Evolution of focused Hankel waves and Bessel beams,” Opt. Commun. 181(4-6), 369–377 (2000).
[Crossref]

Chen, X.

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Chen, Z.

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref]

J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories,” Opt. Lett. 38(4), 498–500 (2013).
[Crossref]

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Bessel-like optical beams with arbitrary trajectories,” Opt. Lett. 37(23), 5003–5005 (2012).
[Crossref]

D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Advanced Trajectory Engineering of Diffraction-Resisting Laser Beams,” Proceedings of the International Conferenceon Photonics, Optics and Laser Technology (PHOTOPTICS-2013), 10–18 (2013).

Cheng, Y. J.

Y. C. Zhong and Y. J. Cheng, “Wideband Quasi-Nondiffraction Beam With Accurately Controllable Propagating Angle and Depth-of-Field,” IEEE Trans. Antennas Propag. 65(10), 5035–5042 (2017).
[Crossref]

Cheong, F. C.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
[Crossref]

Chremmos, D.

D. Chremmos and N. K. Efremidis, “Nonparaxial accelerating Bessel-like beams,” Phys. Rev. A 88(6), 063816 (2013).
[Crossref]

D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Advanced Trajectory Engineering of Diffraction-Resisting Laser Beams,” Proceedings of the International Conferenceon Photonics, Optics and Laser Technology (PHOTOPTICS-2013), 10–18 (2013).

Chremmos, I. D.

Christodoulides, D.

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Christodoulides, D. N.

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref]

J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories,” Opt. Lett. 38(4), 498–500 (2013).
[Crossref]

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Bessel-like optical beams with arbitrary trajectories,” Opt. Lett. 37(23), 5003–5005 (2012).
[Crossref]

D. N. Christodoulides, “Optical trapping: Riding along an Airy beam,” Nat. Photonics 2(11), 652–653 (2008).
[Crossref]

D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Advanced Trajectory Engineering of Diffraction-Resisting Laser Beams,” Proceedings of the International Conferenceon Photonics, Optics and Laser Technology (PHOTOPTICS-2013), 10–18 (2013).

Cižmár, T.

J. Morris, T. Čižmár, H. Dalgarno, R. Marchington, F. Gunn-Moore, and K. Dholakia, “Realization of curved Bessel beams: propagation around obstructions,” J. Opt. 12(12), 124002 (2010).
[Crossref]

T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref]

Climent, V.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Cottet, M.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 1–11 (2014).
[Crossref]

Dalgarno, H.

J. Morris, T. Čižmár, H. Dalgarno, R. Marchington, F. Gunn-Moore, and K. Dholakia, “Realization of curved Bessel beams: propagation around obstructions,” J. Opt. 12(12), 124002 (2010).
[Crossref]

Dan, D.

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

De Koninck, Y.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 1–11 (2014).
[Crossref]

Deng, D.

Desyatnikov, A. S.

Dholakia, K.

M. A. Preciado, K. Dholakia, and M. Mazilu, “Generation of attenuation-compensating Airy beams,” Opt. Lett. 39(16), 4950–4953 (2014).
[Crossref]

J. Morris, T. Čižmár, H. Dalgarno, R. Marchington, F. Gunn-Moore, and K. Dholakia, “Realization of curved Bessel beams: propagation around obstructions,” J. Opt. 12(12), 124002 (2010).
[Crossref]

T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express 17(18), 15558–15570 (2009).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Ding, W.

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1(02), 1–14 (2019).
[Crossref]

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Ding, X.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Dogariu, A.

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Donato, M. G.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Dragneva, D.

P. Theer, D. Dragneva, and M. Knop, “Pi-SPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes,” Sci. Rep. 6(1), 32880 (2016).
[Crossref]

Duran, V.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Efremidis, N. K.

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref]

D. Chremmos and N. K. Efremidis, “Nonparaxial accelerating Bessel-like beams,” Phys. Rev. A 88(6), 063816 (2013).
[Crossref]

J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories,” Opt. Lett. 38(4), 498–500 (2013).
[Crossref]

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Bessel-like optical beams with arbitrary trajectories,” Opt. Lett. 37(23), 5003–5005 (2012).
[Crossref]

D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Advanced Trajectory Engineering of Diffraction-Resisting Laser Beams,” Proceedings of the International Conferenceon Photonics, Optics and Laser Technology (PHOTOPTICS-2013), 10–18 (2013).

Fazal, F. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

Fortin, M.

Friberg, A. T.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Gao, D.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Gao, X.

X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
[Crossref]

Gao, Y.

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Gluckstad, J.

B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
[Crossref]

Gohn-Kreuz, C.

Gong, Z.

Z. Gong, Y.-L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: Principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

Greenfield, E.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref]

Grier, D. G.

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref]

S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18(7), 6988–6993 (2010).
[Crossref]

Gucciardi, P. G.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Gunn-Moore, F.

J. Morris, T. Čižmár, H. Dalgarno, R. Marchington, F. Gunn-Moore, and K. Dholakia, “Realization of curved Bessel beams: propagation around obstructions,” J. Opt. 12(12), 124002 (2010).
[Crossref]

Guo, H.

X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
[Crossref]

Horn, M. V.

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Iati, M. A.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Jaroszewicz, Z.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Jonáš, A.

A. Jonáš and P. Zemanek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[Crossref]

Jones, P. H.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Juškaitis, R.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

Kaminer, I.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell's Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref]

Kan, J. A. V.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
[Crossref]

Keiding, S. R.

B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
[Crossref]

Kivshar, Y. S.

Knop, M.

P. Theer, D. Dragneva, and M. Knop, “Pi-SPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes,” Sci. Rep. 6(1), 32880 (2016).
[Crossref]

Kolodziejczyk, A.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Kristensen, M. V.

B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
[Crossref]

Krolikowski, W.

Kylling, A. P.

B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
[Crossref]

Lancis, J.

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

Lee, S.-H.

Lei, M.

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Li, R.

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Li, X.

X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
[Crossref]

Li, Y.

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Lim, C.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Lindballe, B.

B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
[Crossref]

Liu, J.

Lumer, Y.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref]

Magazzu, A.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Marago, O. M.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Marchington, R.

J. Morris, T. Čižmár, H. Dalgarno, R. Marchington, F. Gunn-Moore, and K. Dholakia, “Realization of curved Bessel beams: propagation around obstructions,” J. Opt. 12(12), 124002 (2010).
[Crossref]

Mazilu, M.

M. A. Preciado, K. Dholakia, and M. Mazilu, “Generation of attenuation-compensating Airy beams,” Opt. Lett. 39(16), 4950–4953 (2014).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

McCarthy, N.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 1–11 (2014).
[Crossref]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref]

Minin, I.

I. Minin and O. Minin, “Active MMW/Terahertz Security System Based on Bessel Beams,” ISRN Opt. 2013, 1–4 (2013).
[Crossref]

Minin, O.

I. Minin and O. Minin, “Active MMW/Terahertz Security System Based on Bessel Beams,” ISRN Opt. 2013, 1–4 (2013).
[Crossref]

Moosavi, S. H.

Morris, J.

J. Morris, T. Čižmár, H. Dalgarno, R. Marchington, F. Gunn-Moore, and K. Dholakia, “Realization of curved Bessel beams: propagation around obstructions,” J. Opt. 12(12), 124002 (2010).
[Crossref]

Nemirovsky, J.

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell's Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref]

New, G. H. C.

S. Chávez-Cerda and G. H. C. New, “Evolution of focused Hankel waves and Bessel beams,” Opt. Commun. 181(4-6), 369–377 (2000).
[Crossref]

Nieto-Vesperinas, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Padgett, M. J.

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

Palima, D. Z.

B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
[Crossref]

Pan, Y.-L.

Z. Gong, Y.-L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: Principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

Patti, F.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Piché, M.

Polimeno, P.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Preciado, M. A.

Qiu, C.-W.

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1(02), 1–14 (2019).
[Crossref]

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Qu, J.

X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
[Crossref]

Rahman, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1959), pp. 358–379.

Ritsch-Marte, M.

G. Thalhammer, R. Steiger, S. Bernet, and M. Ritsch-Marte, “Optical macro-tweezers: trapping of highly motile micro-organisms,” J. Opt. 13(4), 044024 (2011).
[Crossref]

Rode, A. V.

Rodrigo, J. A.

Rohrbach, A.

Roichman, Y.

Ruffner, D. B.

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref]

Saija, R.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Schley, R.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref]

Segev, M.

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell's Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref]

Shao, P.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
[Crossref]

Shvedov, V. G.

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

Siviloglou, G.

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Song, D.

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref]

Song, Q.

X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
[Crossref]

Sow, C. H.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
[Crossref]

Stapelfeldt, H.

B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
[Crossref]

Steiger, R.

G. Thalhammer, R. Steiger, S. Bernet, and M. Ritsch-Marte, “Optical macro-tweezers: trapping of highly motile micro-organisms,” J. Opt. 13(4), 044024 (2011).
[Crossref]

Thalhammer, G.

G. Thalhammer, R. Steiger, S. Bernet, and M. Ritsch-Marte, “Optical macro-tweezers: trapping of highly motile micro-organisms,” J. Opt. 13(4), 044024 (2011).
[Crossref]

Theer, P.

P. Theer, D. Dragneva, and M. Knop, “Pi-SPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes,” Sci. Rep. 6(1), 32880 (2016).
[Crossref]

Thériault, G.

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 1–11 (2014).
[Crossref]

Thibault, S.

Uppal, A.

R. S. Verma, S. Ahlawat, and A. Uppal, “Optical guiding-based cell focusing for Raman flow cell cytometer,” Analyst 143(11), 2648–2655 (2018).
[Crossref]

Verma, R. S.

R. S. Verma, S. Ahlawat, and A. Uppal, “Optical guiding-based cell focusing for Raman flow cell cytometer,” Analyst 143(11), 2648–2655 (2018).
[Crossref]

Videen, G.

Z. Gong, Y.-L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: Principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

Volke-Sepulveda, K.

Volke-Sepúlveda, K.

Volpe, G.

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Wang, C.

Z. Gong, Y.-L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: Principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

Watt, F.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
[Crossref]

Wee, A. T. S.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
[Crossref]

Weng, X.

X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
[Crossref]

Wilson, T.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1959), pp. 358–379.

Yang, Y.

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Yao, B.

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Ye, T.

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Zamboni-Rached, M.

Zemanek, P.

A. Jonáš and P. Zemanek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[Crossref]

Zhang, P.

Zhang, T.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Zhao, J.

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref]

J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories,” Opt. Lett. 38(4), 498–500 (2013).
[Crossref]

Zhong, Y. C.

Y. C. Zhong and Y. J. Cheng, “Wideband Quasi-Nondiffraction Beam With Accurately Controllable Propagating Angle and Depth-of-Field,” IEEE Trans. Antennas Propag. 65(10), 5035–5042 (2017).
[Crossref]

Zhou, L.-M.

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1(02), 1–14 (2019).
[Crossref]

Zhu, T.

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1(02), 1–14 (2019).
[Crossref]

Zhuang, S.

X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
[Crossref]

Adv. Photonics (1)

W. Ding, T. Zhu, L.-M. Zhou, and C.-W. Qiu, “Photonic tractor beams: a review,” Adv. Photonics 1(02), 1–14 (2019).
[Crossref]

Analyst (1)

R. S. Verma, S. Ahlawat, and A. Uppal, “Optical guiding-based cell focusing for Raman flow cell cytometer,” Analyst 143(11), 2648–2655 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. V. Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers,” Appl. Phys. B 83(1), 121–125 (2006).
[Crossref]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Electrophoresis (1)

A. Jonáš and P. Zemanek, “Light at work: The use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[Crossref]

Front. Cell. Neurosci. (1)

G. Thériault, M. Cottet, A. Castonguay, N. McCarthy, and Y. De Koninck, “Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging,” Front. Cell. Neurosci. 8, 1–11 (2014).
[Crossref]

IEEE Trans. Antennas Propag. (1)

Y. C. Zhong and Y. J. Cheng, “Wideband Quasi-Nondiffraction Beam With Accurately Controllable Propagating Angle and Depth-of-Field,” IEEE Trans. Antennas Propag. 65(10), 5035–5042 (2017).
[Crossref]

ISRN Opt. (1)

I. Minin and O. Minin, “Active MMW/Terahertz Security System Based on Bessel Beams,” ISRN Opt. 2013, 1–4 (2013).
[Crossref]

J. Eur. Opt. Soc.-Rapid. (1)

B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Gluckstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA counterpropagating optical traps,” J. Eur. Opt. Soc.-Rapid. 6, 11057 (2011).
[Crossref]

J. Mod. Opt. (1)

Z. Jaroszewicz, V. Climent, V. Duran, J. Lancis, A. Kolodziejczyk, A. Burvall, and A. T. Friberg, “Programmable axicon for variable inclination of the focal segment,” J. Mod. Opt. 51(14), 2185–2190 (2004).
[Crossref]

J. Opt. (2)

J. Morris, T. Čižmár, H. Dalgarno, R. Marchington, F. Gunn-Moore, and K. Dholakia, “Realization of curved Bessel beams: propagation around obstructions,” J. Opt. 12(12), 124002 (2010).
[Crossref]

G. Thalhammer, R. Steiger, S. Bernet, and M. Ritsch-Marte, “Optical macro-tweezers: trapping of highly motile micro-organisms,” J. Opt. 13(4), 044024 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transfer (2)

P. Polimeno, A. Magazzu, M. A. Iati, F. Patti, R. Saija, C. D. Boschi, M. G. Donato, P. G. Gucciardi, P. H. Jones, G. Volpe, and O. M. Marago, “Optical tweezers and their applications,” J. Quant. Spectrosc. Radiat. Transfer 218, 131–150 (2018).
[Crossref]

Z. Gong, Y.-L. Pan, G. Videen, and C. Wang, “Optical trapping and manipulation of single particles in air: Principles, technical details, and applications,” J. Quant. Spectrosc. Radiat. Transfer 214, 94–119 (2018).
[Crossref]

Light: Sci. Appl. (1)

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C.-W. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Nat. Commun. (2)

R. Schley, I. Kaminer, E. Greenfield, R. Bekenstein, Y. Lumer, and M. Segev, “Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles’ trajectories,” Nat. Commun. 5(1), 5189 (2014).
[Crossref]

X. Weng, Q. Song, X. Li, X. Gao, H. Guo, J. Qu, and S. Zhuang, “Free-space creation of ultralong anti-diffracting beam with multiple energy oscillations adjusted using optical pen,” Nat. Commun. 9(1), 5035 (2018).
[Crossref]

Nat. Photonics (3)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

D. N. Christodoulides, “Optical trapping: Riding along an Airy beam,” Nat. Photonics 2(11), 652–653 (2008).
[Crossref]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

Nature (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref]

Opt. Commun. (3)

S. Chávez-Cerda and G. H. C. New, “Evolution of focused Hankel waves and Bessel beams,” Opt. Commun. 181(4-6), 369–377 (2000).
[Crossref]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197(4-6), 239–245 (2001).
[Crossref]

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (1)

Phys. Rev. A (1)

D. Chremmos and N. K. Efremidis, “Nonparaxial accelerating Bessel-like beams,” Phys. Rev. A 88(6), 063816 (2013).
[Crossref]

Phys. Rev. Lett. (4)

G. Siviloglou, J. Broky, A. Dogariu, and D. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell's Equations,” Phys. Rev. Lett. 108(16), 163901 (2012).
[Crossref]

D. B. Ruffner and D. G. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109(16), 163903 (2012).
[Crossref]

A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

PLoS One (1)

Y. Yang, B. Yao, M. Lei, D. Dan, R. Li, M. V. Horn, X. Chen, Y. Li, and T. Ye, “Two-Photon Laser Scanning Stereomicroscopy for Fast Volumetric Imaging,” PLoS One 11(12), e0168885 (2016).
[Crossref]

Rep. Prog. Phys. (1)

R. W. Bowman and M. J. Padgett, “Optical trapping and binding,” Rep. Prog. Phys. 76(2), 026401 (2013).
[Crossref]

Sci. Rep. (2)

J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, “Curved singular beams for three-dimensional particle manipulation,” Sci. Rep. 5(1), 12086 (2015).
[Crossref]

P. Theer, D. Dragneva, and M. Knop, “Pi-SPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes,” Sci. Rep. 6(1), 32880 (2016).
[Crossref]

Other (2)

D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Advanced Trajectory Engineering of Diffraction-Resisting Laser Beams,” Proceedings of the International Conferenceon Photonics, Optics and Laser Technology (PHOTOPTICS-2013), 10–18 (2013).

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1959), pp. 358–379.

Supplementary Material (2)

NameDescription
» Visualization 1       Curved-path optical guiding of 4-µm polystyrene microbeads using an Airy beam.
» Visualization 2       Tilted straight-path optical guiding of 4-µm polystyrene microbeads using tilted quasi-Bessel beams.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Optical guiding of microparticles using nondiffracting beams. (a) Schematic of the experimental setup for simultaneous axial-plane trapping and imaging. (b) Principle of the axial-plane imaging using a right-angle microreflector. Red arrow: the nondiffracting beam for optical guiding of microparticles (λ = 1064 nm); blue arrow: the excitation light; green arrow: the emitted fluorescence in the direction perpendicular to the axial plane. (c) The 3D intensity profile of an Airy beam. (d) The 3D intensity profile of a quasi-Bessel beam. (Font size)
Fig. 2.
Fig. 2. Particle guiding results using an Airy beam with P = 6 pixels. (a) Time-lapse images of optical guiding of a single 4 µm polystyrene microbead (see Visualization 1). The cyclic curves show the guiding paths of the trapped beads. (b) Particle guiding trajectory in the XZ plane. The blue solid line represents a parabolic curve fitted to the experimental data. (c) The magnitude of particle velocity as a function of the axial position.
Fig. 3.
Fig. 3. Principle of generating a tilted zeroth-order quasi-Bessel beam with two methods. (a) The apodization method. The red and green light paths denote the illumination light path when the center of the ring illumination pattern is located on and shifted away from the optical axis, respectively. (b) The method of using an off-axis axicon hologram. (c, d) The enlarged view of the regions marked by the dashed squares in parts (a) and (b).
Fig. 4.
Fig. 4. Simulated propagation of a tilted zeroth-order quasi-Bessel beams. (a) The off-axis axicon phase hologram for generating a tilted zeroth-order quasi-Bessel beam. The axicon center is at (uc, vc) and the red dot indicates the origin of the coordinate system (u,v). (b) The intensity profile of the propagating beam in the focal plane of the objective lens. (c) The intensity profile in the axial plane…” as “The intensity profile of the propagating beam in the axial XZ plane. (d) The 3D intensity profile of the propagating beam. The slices P1-P3 show the transverse intensity distribution at various axial locations. (e) The tilt angle θ of the propagating beam as a function of the off-axis displacement uc in the entrance pupil plane.
Fig. 5.
Fig. 5. The overlapped axial-plane image of optical guiding of a 4-µm polystyrene microbead at different times using a tilted Bessel beam with uc=150 pixels.
Fig. 6.
Fig. 6. The dynamics of motion of a single guided 4-µm polystyrene microbeads in the Bessel beams with different tilt angles (see Visualization 2). (a) The particle trajectories. (b-h) The particle velocities dependent on the displacement along the particle trajectory for uc=0, 30, 60, 90, 120, 150 and 180 pixels, respectively. The distance is measured along the actual particle path.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( u , v ) = 2 π ( 3 u 3 + u v 2 ) / P 3 ,
ϕ ( u , v ) = 2 π ( u u c ) 2 + ( v v c ) 2 / ρ 0 .

Metrics