Abstract

Optically massive trapping of the moisture in the air into an adjacent surface is a potential technique in the fields of bacterial adhesion and microfluidic generation, which is quite important to the development of LN-based biological lab-on-chips. Here we demonstrate on a LiNbO3:Fe substrate the visible-light-assisted condensation of the water vapor in a flowing stream created by an ultrasonic atomizer. Through analyzing the dynamic processes of the visible-light-assisted water condensation at different illumination intensities, it is found that the extent of the water condensation, the bending angle of water vapor trails and the interaction range of the condensation effect are highly dependent on the illumination intensity. According to these findings and the simulated trajectories of the water vapor stream at different illumination intensities, we propose that this visible-light-assisted water condensation is an aggregation process of tiny water droplets driven by the dielectrophoretic interaction of inhomogeneous photovoltaic field and also an electrostatic screening course of photovoltaic charges through the charged evaporation of condensed water. The prolonged condensation of water vapor after a high-intensity illumination and that of oil vapor at a super-low evaporation rate are also studied, and the agreement between the simulation and experimental results reinforces the above mechanism. The reported technique, employing the inexpensive, safe-for-cell visible laser beam, is quite convenient for the controllable generation of various biological microdroplets, and thus it is promising for the microfluidic functionality integration of LN-based biological lab-on-chips.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical splitting of dielectric microdroplets by using a y-cut-LN-based anti-symmetrical sandwich structure

Feifei Li, Xiong Zhang, Kaifang Gao, Lihong Shi, Zhitao Zan, Zuoxuan Gao, Chao Liang, E. R. Mugisha, Hongjian Chen, and Wenbo Yan
Opt. Express 27(18) 25767-25776 (2019)

Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers

Xiong Zhang, Kaifang Gao, Zuoxuan Gao, Zhitao Zan, Lihong Shi, Xiaohu Liu, Mengtong Wang, Hongjian Chen, and Wenbo Yan
Opt. Lett. 45(5) 1180-1183 (2020)

Pyroelectric effect in green light-assisted domain reversal of Mg-doped LiNbO3 crystals

Shoujun Zheng, Yongfa Kong, Hongde Liu, Shaolin Chen, Ling Zhang, Shiguo Liu, and Jingjun Xu
Opt. Express 20(27) 29131-29136 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Villarroel, H. Burgos, A. Garcia-Cabanes, M. Carrascosa, A. Blazquez-Castro, and F. Agullo-Lopez, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
    [Crossref]
  2. C. Arregui, J. B. Ramiro, A. Alcazar, A. Mendez, H. Burgos, A. Garcia-Cabanes, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
    [Crossref]
  3. M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
    [Crossref]
  4. A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
    [Crossref]
  5. R. Rega, O. Gennari, L. Mecozzi, S. Grilli, V. Pagliarulo, and P. Ferraro, “Bipolar Patterning of Polymer Membranes by Pyroelectrification,” Adv. Mater. 28(3), 454–459 (2016).
    [Crossref]
  6. Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).
  7. P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
    [Crossref]
  8. A. Blázquez-Castro, A. García-Cabañes, and M. Carrascosa, “Biological applications of ferroelectric materials,” Appl. Phys. Rev. 5(4), 041101 (2018).
    [Crossref]
  9. G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
    [Crossref]
  10. T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
    [Crossref]
  11. T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
    [Crossref]
  12. P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
    [Crossref]
  13. S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
    [Crossref]
  14. X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
    [Crossref]
  15. J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
    [Crossref]
  16. I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
    [Crossref]
  17. M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
    [Crossref]
  18. L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
    [Crossref]
  19. M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
    [Crossref]
  20. M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
    [Crossref]
  21. L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
    [Crossref]
  22. L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Light-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
    [Crossref]
  23. B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
    [Crossref]
  24. A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
    [Crossref]
  25. W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
    [Crossref]
  26. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
    [Crossref]
  27. J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
    [Crossref]
  28. M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
    [Crossref]
  29. A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
    [Crossref]
  30. A. V. Shavlov, V. A. Dzhumandzhi, and A. A. Yakovenko, “Charge of water droplets during evaporation and condensation,” J. Aerosol Sci. 123, 17–26 (2018).
    [Crossref]
  31. J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
    [Crossref]
  32. X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.
  33. P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
    [Crossref]
  34. S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
    [Crossref]
  35. H. Y. Sun, Y. H. Liu, J. J. Ju, Y. Tian, Y. F. Bai, Y. X. Liu, S. Z. Du, C. Wang, T. J. Wang, and J. S. Liu, “Picosecond laser-induced water condensation in a cloud chamber,” Opt. Express 24(18), 20494–20506 (2016).
    [Crossref]
  36. Y. H. Liu, H. Y. Sun, J. S. Liu, H. Liang, J. J. Ju, T. J. Wang, Y. Tian, C. Wang, Y. Liu, and S. L. Chin, “Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases,” Opt. Express 24(7), 7364–7373 (2016).
    [Crossref]

2019 (2)

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
[Crossref]

2018 (4)

A. V. Shavlov, V. A. Dzhumandzhi, and A. A. Yakovenko, “Charge of water droplets during evaporation and condensation,” J. Aerosol Sci. 123, 17–26 (2018).
[Crossref]

A. Blázquez-Castro, A. García-Cabañes, and M. Carrascosa, “Biological applications of ferroelectric materials,” Appl. Phys. Rev. 5(4), 041101 (2018).
[Crossref]

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

2017 (4)

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

2016 (9)

H. Y. Sun, Y. H. Liu, J. J. Ju, Y. Tian, Y. F. Bai, Y. X. Liu, S. Z. Du, C. Wang, T. J. Wang, and J. S. Liu, “Picosecond laser-induced water condensation in a cloud chamber,” Opt. Express 24(18), 20494–20506 (2016).
[Crossref]

Y. H. Liu, H. Y. Sun, J. S. Liu, H. Liang, J. J. Ju, T. J. Wang, Y. Tian, C. Wang, Y. Liu, and S. L. Chin, “Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases,” Opt. Express 24(7), 7364–7373 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref]

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Light-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

R. Rega, O. Gennari, L. Mecozzi, S. Grilli, V. Pagliarulo, and P. Ferraro, “Bipolar Patterning of Polymer Membranes by Pyroelectrification,” Adv. Mater. 28(3), 454–459 (2016).
[Crossref]

2015 (5)

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

2014 (2)

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

C. Arregui, J. B. Ramiro, A. Alcazar, A. Mendez, H. Burgos, A. Garcia-Cabanes, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
[Crossref]

2013 (1)

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

2011 (2)

J. Villarroel, H. Burgos, A. Garcia-Cabanes, M. Carrascosa, A. Blazquez-Castro, and F. Agullo-Lopez, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

2010 (2)

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

2009 (1)

2007 (1)

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Agullo-Lopez, F.

Agulló-López, F.

Alcazar, A.

Alcázar, A.

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

Arizmendi, L.

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
[Crossref]

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

Arregui, C.

Bai, Y. F.

Ban, D.

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Barroso, Á

Battista, L.

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

Bella, J. L.

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

Bettella, G.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

Blazquez-Castro, A.

Blázquez-Castro, A.

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

A. Blázquez-Castro, A. García-Cabañes, and M. Carrascosa, “Biological applications of ferroelectric materials,” Appl. Phys. Rev. 5(4), 041101 (2018).
[Crossref]

Bo, F.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).

Bragheri, F.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

Burgos, H.

Carrascosa, M.

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
[Crossref]

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

A. Blázquez-Castro, A. García-Cabañes, and M. Carrascosa, “Biological applications of ferroelectric materials,” Appl. Phys. Rev. 5(4), 041101 (2018).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

C. Arregui, J. B. Ramiro, A. Alcazar, A. Mendez, H. Burgos, A. Garcia-Cabanes, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
[Crossref]

J. Villarroel, H. Burgos, A. Garcia-Cabanes, M. Carrascosa, A. Blazquez-Castro, and F. Agullo-Lopez, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref]

Chauvet, M.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

Chen, H.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Light-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Chen, L.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Light-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Chin, S. L.

Coppola, S.

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

Cristiani, I.

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Denz, C.

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Di Tano, M.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Du, S. Z.

Dzhumandzhi, V. A.

A. V. Shavlov, V. A. Dzhumandzhi, and A. A. Yakovenko, “Charge of water droplets during evaporation and condensation,” J. Aerosol Sci. 123, 17–26 (2018).
[Crossref]

Eason, R. W.

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

Elvira, I.

Esseling, M.

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Fan, B.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Light-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Ferraro, P.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

R. Rega, O. Gennari, L. Mecozzi, S. Grilli, V. Pagliarulo, and P. Ferraro, “Bipolar Patterning of Polymer Membranes by Pyroelectrification,” Adv. Mater. 28(3), 454–459 (2016).
[Crossref]

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

Gao, K.

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Gao, N.

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

Gao, Z.

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Garcia-Cabanes, A.

García-Cabañes, A.

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
[Crossref]

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

A. Blázquez-Castro, A. García-Cabañes, and M. Carrascosa, “Biological applications of ferroelectric materials,” Appl. Phys. Rev. 5(4), 041101 (2018).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

Gauthier-Manuel, L.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

Gazzetto, M.

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

Gennari, O.

R. Rega, O. Gennari, L. Mecozzi, S. Grilli, V. Pagliarulo, and P. Ferraro, “Bipolar Patterning of Polymer Membranes by Pyroelectrification,” Adv. Mater. 28(3), 454–459 (2016).
[Crossref]

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Grilli, S.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

R. Rega, O. Gennari, L. Mecozzi, S. Grilli, V. Pagliarulo, and P. Ferraro, “Bipolar Patterning of Polymer Membranes by Pyroelectrification,” Adv. Mater. 28(3), 454–459 (2016).
[Crossref]

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

Gylfason, K. B.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Hao, Z.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Hao, Z. Q.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

Haraldsson, T.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Henin, S.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Horn, W.

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

Jia, R.

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

Ju, J. J.

Jubera, M.

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

Kasparian, J.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Kong, Y.

X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
[Crossref]

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).

Lascoux, N.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Lelii, F. D.

Li, F.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Li, S.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Light-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Li, Y.

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

Liang, C.

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Liang, H.

Liu, D.

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

Liu, H.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).

Liu, J. S.

Liu, Y.

Liu, Y. H.

Liu, Y. X.

Luo, W.

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

Mailis, S.

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

Marchesano, V.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

Martinez Vazquez, R.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Matarrubia, J.

Mecozzi, L.

R. Rega, O. Gennari, L. Mecozzi, S. Grilli, V. Pagliarulo, and P. Ferraro, “Bipolar Patterning of Polymer Membranes by Pyroelectrification,” Adv. Mater. 28(3), 454–459 (2016).
[Crossref]

Mendez, A.

Méndez, A.

Miccio, L.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

Minzioni, P.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Mistura, G.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

Mondello, C.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Montevecchi, C.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

Mugisha, E. R.

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Mugnano, M.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

Muir, A. C.

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

Muñoz-Martín, J. F.

Muñoz-Martínez, J. F.

Nakaema, W. M.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Nava, G.

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Omenetto, F. G.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Orlando, P.

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

Osellame, R.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

Ozcan, A.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Pagliarulo, V.

R. Rega, O. Gennari, L. Mecozzi, S. Grilli, V. Pagliarulo, and P. Ferraro, “Bipolar Patterning of Polymer Membranes by Pyroelectrification,” Adv. Mater. 28(3), 454–459 (2016).
[Crossref]

Paiè, P.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Pan, L.

Paturzo, M.

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

Petit, Y.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Pierno, M.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

Pohl, T.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

Pozza, G.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

Puerto, A.

Queisser, M.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Ramiro, J. B.

Rega, R.

R. Rega, O. Gennari, L. Mecozzi, S. Grilli, V. Pagliarulo, and P. Ferraro, “Bipolar Patterning of Polymer Membranes by Pyroelectrification,” Adv. Mater. 28(3), 454–459 (2016).
[Crossref]

Ren, M.

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Rohwetter, P.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Rupp, R.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).

Rupp, R. A.

Sada, C.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Salame, R.

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Schneider, F.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

Shavlov, A. V.

A. V. Shavlov, V. A. Dzhumandzhi, and A. A. Yakovenko, “Charge of water droplets during evaporation and condensation,” J. Aerosol Sci. 123, 17–26 (2018).
[Crossref]

Shi, L.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Light-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Stelmaszczyk, K.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Sun, H. Y.

Sun, Q.

Sun, S.

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Tan, X.

Tang, B.

Tian, Y.

Vazquez, R. M.

Veglione, M.

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Vespini, V.

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

Villarroel, J.

Vogel, A.

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

Wang, C.

Wang, D.

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Wang, J.

Wang, T. J.

Wang, W.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).

Wang, X.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

Wax, A.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Xu, J.

X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
[Crossref]

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).

Yakovenko, A. A.

A. V. Shavlov, V. A. Dzhumandzhi, and A. A. Yakovenko, “Charge of water droplets during evaporation and condensation,” J. Aerosol Sci. 123, 17–26 (2018).
[Crossref]

Yan, W.

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Light-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Yang, T.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

Zaltron, A.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Zamboni, R.

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

Zan, Z.

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Zhang, D.

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

Zhang, G.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).

Zhang, L.

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

Zhang, X.

X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
[Crossref]

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Zhang, Y.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

Zhang, Y. B.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Zhao, D.

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

Zhao, S.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Zheng, D.

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).

Adv. Mater. (1)

R. Rega, O. Gennari, L. Mecozzi, S. Grilli, V. Pagliarulo, and P. Ferraro, “Bipolar Patterning of Polymer Membranes by Pyroelectrification,” Adv. Mater. 28(3), 454–459 (2016).
[Crossref]

Appl. Phys. Lett. (4)

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

W. Yan, D. Zhao, L. Zhang, R. Jia, N. Gao, D. Zhang, W. Luo, Y. Li, and D. Liu, “Optically induced reversible wettability transition on single crystal lithium niobate surfaces,” Appl. Phys. Lett. 111(9), 091603 (2017).
[Crossref]

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Appl. Phys. Rev. (2)

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

A. Blázquez-Castro, A. García-Cabañes, and M. Carrascosa, “Biological applications of ferroelectric materials,” Appl. Phys. Rev. 5(4), 041101 (2018).
[Crossref]

Biomed. Opt. Express (1)

Crystals (2)

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

J. Aerosol Sci. (1)

A. V. Shavlov, V. A. Dzhumandzhi, and A. A. Yakovenko, “Charge of water droplets during evaporation and condensation,” J. Aerosol Sci. 123, 17–26 (2018).
[Crossref]

J. Appl. Phys. (1)

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

J. Opt. (1)

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, and A. Wax, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Lab Chip (1)

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. Martinez Vazquez, P. Minzioni, M. Veglione, M. Di Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Laser Photonics Rev. (1)

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

Nat. Commun. (2)

S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando, and P. Ferraro, “Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range,” Nat. Commun. 5(1), 5314 (2014).
[Crossref]

S. Henin, Y. Petit, P. Rohwetter, K. Stelmaszczyk, Z. Q. Hao, W. M. Nakaema, A. Vogel, T. Pohl, F. Schneider, and J. Kasparian, “Field measurements suggest the mechanism of laser-assisted water condensation,” Nat. Commun. 2(1), 456 (2011).
[Crossref]

Nat. Nanotechnol. (1)

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

Nat. Photonics (1)

P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queisser, and R. Salame, “Laser-induced water condensation in air,” Nat. Photonics 4(7), 451–456 (2010).
[Crossref]

Opt. Express (6)

Y. H. Liu, H. Y. Sun, J. S. Liu, H. Liang, J. J. Ju, T. J. Wang, Y. Tian, C. Wang, Y. Liu, and S. L. Chin, “Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases,” Opt. Express 24(7), 7364–7373 (2016).
[Crossref]

H. Y. Sun, Y. H. Liu, J. J. Ju, Y. Tian, Y. F. Bai, Y. X. Liu, S. Z. Du, C. Wang, T. J. Wang, and J. S. Liu, “Picosecond laser-induced water condensation in a cloud chamber,” Opt. Express 24(18), 20494–20506 (2016).
[Crossref]

X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
[Crossref]

J. Villarroel, H. Burgos, A. Garcia-Cabanes, M. Carrascosa, A. Blazquez-Castro, and F. Agullo-Lopez, “Photovoltaic versus optical tweezers,” Opt. Express 19(24), 24320–24330 (2011).
[Crossref]

C. Arregui, J. B. Ramiro, A. Alcazar, A. Mendez, H. Burgos, A. Garcia-Cabanes, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
[Crossref]

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
[Crossref]

Opt. Laser Eng. (1)

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. Appl. (2)

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

Sci. Rep. (1)

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Sens. Actuators, B (1)

G. Bettella, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators, B 282, 391–398 (2019).
[Crossref]

Other (2)

Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu, “Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices,” Adv. Mater.1806452 (2019).

X. Zhang, K. Gao, Z. Gao, Z. Zan, L. Shi, F. Li, C. Liang, M. Ren, E. R. Mugisha, H. Chen, and W. Yan, “Photovoltaic splitting of water microdroplets on a y-cut LiNbO3:Fe crystal coated with oil-infused hydrophobic insulating layers” unpublished result.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) Setup for recording the dynamic process of the visible-light-assisted condensation of water vapor; (b) Scheme of the water vapor stream flowing along the LN:Fe crystal surface and the following visible-light-assisted water condensation; (c) Typical water droplet contact angle on a charged LN:Fe surface; (d) UV-Vis absorption spectra of LN:Fe sample.
Fig. 2.
Fig. 2. (a) Snapshot of the water vapor created by an ultrasonic atomizer; (b) Picture of two tiny droplets landing on a super-hydrophobic substrate; (c) The trailing smear of the tiny droplets in the water vapor stream. The trailing smear is due to the fast movement of the tiny droplets when the camera shutter is opening. The trails of some droplets are not clear enough because they are not right located in the focal plane of the camera. The arrows in (b) denote the location of the landing droplets. The L in (c) represents the trailing smear length.
Fig. 3.
Fig. 3. The typical dynamic process of the visible-light-assisted water condensation on the –c surface of LN:Fe crystal. The “on” and “off” states of the 405 nm-illumination are denoted by the purple and gray dots, and the laser spot is marked by the purple halo in the center of the view. The flowing speed of the water vapor stream is 50 mm/s.
Fig. 4.
Fig. 4. The dynamic process of the water condensation triggered by a scanning laser. The yellow triangle represents the unmovable reference on the substrate surface. The “on” and “off” states of the 405 nm-illumination are denoted by the purple and gray dots, and the laser spot is marked by the purple halo in the center of the view. The laser scanning direction is denoted by the green arrow and the average scanning speed is about 70 µm/s.
Fig. 5.
Fig. 5. The dynamic process of the visible-light-assisted water condensation at different illumination intensities. The “on” and “off” states of the 405 nm-illumination are denoted by the purple and gray dots. The flowing speed of the water vapor stream is 14 mm/s.
Fig. 6.
Fig. 6. The total area percentage P as a function of the product of the illumination intensity (I) and duration (δt). The insets are the binarized outputs of some images of Fig. 5, and the calculated P of these figures are plotted as solid squares with corresponding colors. All data are fitted by a red line, and the fitting yields P = 1.50×10−6(I×δt) + 0.05.
Fig. 7.
Fig. 7. The typical dynamic process of the visible-light-assisted water condensation in the lateral view. The “on” and “off” states of the 405 nm-illumination are denoted by the purple and gray dots, and the laser beam is highlighted by the bluish violet color. In addition, the vapor stream flow is marked by the dash curve. The sequential images are obtained by the conventional camera with a normal speed and the blurry vapor flow is due to the fast movement of many tiny water droplets.
Fig. 8.
Fig. 8. The trails of tiny water droplets in the vapor stream at different illumination intensities. The “on” and “off” states of the 405 nm-illumination are denoted by the purple and gray dots, and the laser beam is highlighted by the bluish violet color. The flowing speed of the water vapor stream is 14 mm/s. The images are obtained by using the snap shot mode of a high-speed camera.
Fig. 9.
Fig. 9. Photovoltaic charge sign and typical visible-light-assisted water condensation on the –c and + c surfaces of LN:Fe crystal. In spite of the different charge signs on the –c and + c surfaces, no obvious difference of visible-light-assisted water condensation is found between them.
Fig. 10.
Fig. 10. The scheme for the electrostatic screening of the photovoltaic charges through the evaporation of the condensed water.
Fig. 11.
Fig. 11. The water evaporation process after the visible-light-induced condensation. A little part of condensed water located right at the illumination spot (denoted by the yellow circle) is very hard to evaporate. The “on” and “off” states of the 405 nm-illumination are denoted by the purple and gray dots.
Fig. 12.
Fig. 12. The simulated trajectory of the water vapor stream during the visible-light-assisted condensation at different illumination intensities. The tiny droplets in the stream are plotted as solid round particles with their trails and color representing the instantaneous velocities. The instantaneous electrostatic field generated by the photovoltaic charges is also plotted in a color scale. The initial speed of the water vapor stream is set as 14 mm/s.
Fig. 13.
Fig. 13. Temporal evolution of the number of tiny water droplets aggregated on the substrate surface in the simulation of the visible-light-induced water concentration at low (a) and high (b) illumination intensities. (c) Number of the tiny oil droplets during the visible-light-induced concentration of ultrasonically-atomized oil (transformer oil) vapor. The “on” and “off” moment of the illumination are denoted by the purple and green dots.
Fig. 14.
Fig. 14. (a) The prolonged water condensation after the shutdown of the high-intensity illumination (2.27×107 W/m2). (b) The heavily prolonged oil condensation after the shutdown of the low-intensity illumination (3.19×106 W/m2). The “on” and “off” states of the 405 nm-illumination are denoted by the purple and gray dots.
Fig. 15.
Fig. 15. The water condensation induced by the 473 nm-illumination. The “on” and “off” states of the 473 nm-illumination are denoted by the blue and gray dots.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ = δ tG α I ( x,y ) = δ tG α I 0 Exp [ 2 ( x 2 + y 2 ) / ω 2 ]
F D E P = α E 2 and α = 2 π r 3 ε 0 ε m ε p ε m ε p 2 ε m

Metrics