Abstract

In this study, three different types of ZrO2 films were prepared with different precursors and additives using the sol-gel method. High-temperature annealing was implemented to investigate the impact of temperature on optical properties, microstructure, surface morphologies and absorption of these films. According to the laser-induced damage threshold (LIDT) tests on films having experienced annealing and those implemented with in-situ high temperature, the ZrO2 film with ZrOCl2·8H2O as the precursor and copolymer of silicone and polyaldoxyl ether as the additive had the highest resistance to laser-induced damage. After annealing at 623 K, its LIDT was 21.4 J/cm2, while that at an in-situ high temperature of 523 K was 23.9 J/cm2. The strong high temperature resistance was likely attributed to the usage of carbon-free precursor and high temperature-resistant additive, which contributed to low carbon contents and less structural damage caused by organic matter evaporation. In this context, there were less high temperature-induced impurity and structural defects, leading to higher LIDT values. This study provided a novel method for preparing high temperature-resistant sol-gel films, which shed light upon wider potential application of sol-gel films at high-temperature conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improvement on laser-induced damage threshold of sol-gel ZrO2 coatings by crystal structure tuning

Xiaodong Wang, Guangming Wu, Bin Zhou, and Jun Shen
Opt. Express 20(22) 24482-24487 (2012)

Employing oxygen-plasma posttreatment to improve the laser-induced damage threshold of ZrO2 films prepared by the electron-beam evaporation method

Dongping Zhang, Jianda Shao, Dawei Zhang, Shuhai Fan, Tianya Tan, and Zhengxiu Fan
Opt. Lett. 29(24) 2870-2872 (2004)

Preparation of high laser induced damage threshold antireflection film using interrupted ion assisted deposition

Da-Wei Zhang, Yuan-Shen Huang, Zheng-Ji Ni, Song-Lin Zhuang, Jian-Da Shao, and Zheng-Xiu Fan
Opt. Express 15(17) 10753-10760 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. P. Zhang, H. J. Qi, S. Y. Shao, H. B. He, J. D. Shao, and Z. X. Fan, “Surface morphology and properties of zirconia thin films prepared at different deposition rates,” Surf. Eng. 22(2), 157–160 (2006).
    [Crossref]
  2. P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
    [Crossref]
  3. S. A. K. M. Faruque, R. P. Giri, and S. Chakraborty, “Effect of N2O ratio on the crystallization temperature of ZrO2 film deposited on Si by reactive sputtering in Ar/O2/N2O plasma,” Mater. Res. Express.3(11), (2016).
  4. J. Houska, “Molecular dynamics study of the growth of crystalline ZrO2,” Surf. Coat. Technol. 304, 23–30 (2016).
    [Crossref]
  5. J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
    [Crossref]
  6. C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
    [Crossref]
  7. C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
    [Crossref]
  8. Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
    [Crossref]
  9. X. Wang, G. Wu, B. Zhou, and J. Shen, “Improvement on laser-induced damage threshold of sol-gel ZrO2 coatings by crystal structure tuning,” Opt. Express 20(22), 24482 (2012).
    [Crossref]
  10. Y. J. Guo, X. T. Zu, B. Y. Wang, X. D. Jiang, X. D. Yuan, and H. B. Lv, “Preparation of sol-gel ZrO2-SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic,” Optik (Munich, Ger.) 122(13), 1140–1142 (2011).
    [Crossref]
  11. J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
    [Crossref]
  12. C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
    [Crossref]
  13. M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).
  14. X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
    [Crossref]
  15. M. Liu, B. Li, Y. Wang, and W. Gao, “Combined laser calorimetry and surface thermal lens technique for optical coating characterization,” Appl. Phys. B: Lasers Opt. 91(2), 223–227 (2008).
    [Crossref]
  16. ISO 11254-1:2000: lasers and laser-related equipment-determination of laser-induced damage threshold of optical surfaces. Part 1. 1-on-1 test.
  17. C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
    [Crossref]
  18. C. Xu, H. L. Fan, D. W. Li, J. W. Qi, S. Yang, and Y. H. Qiang, “Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness,” Optik 126(24), 5478–5482 (2015).
    [Crossref]
  19. C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
    [Crossref]
  20. B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
    [Crossref]
  21. C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
    [Crossref]

2018 (2)

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

2016 (2)

J. Houska, “Molecular dynamics study of the growth of crystalline ZrO2,” Surf. Coat. Technol. 304, 23–30 (2016).
[Crossref]

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

2015 (3)

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

C. Xu, H. L. Fan, D. W. Li, J. W. Qi, S. Yang, and Y. H. Qiang, “Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness,” Optik 126(24), 5478–5482 (2015).
[Crossref]

C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

2014 (2)

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

2012 (2)

X. Wang, G. Wu, B. Zhou, and J. Shen, “Improvement on laser-induced damage threshold of sol-gel ZrO2 coatings by crystal structure tuning,” Opt. Express 20(22), 24482 (2012).
[Crossref]

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

2011 (1)

Y. J. Guo, X. T. Zu, B. Y. Wang, X. D. Jiang, X. D. Yuan, and H. B. Lv, “Preparation of sol-gel ZrO2-SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic,” Optik (Munich, Ger.) 122(13), 1140–1142 (2011).
[Crossref]

2008 (2)

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
[Crossref]

M. Liu, B. Li, Y. Wang, and W. Gao, “Combined laser calorimetry and surface thermal lens technique for optical coating characterization,” Appl. Phys. B: Lasers Opt. 91(2), 223–227 (2008).
[Crossref]

2007 (1)

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

2006 (2)

D. P. Zhang, H. J. Qi, S. Y. Shao, H. B. He, J. D. Shao, and Z. X. Fan, “Surface morphology and properties of zirconia thin films prepared at different deposition rates,” Surf. Eng. 22(2), 157–160 (2006).
[Crossref]

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref]

2000 (1)

J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
[Crossref]

Aarthi, U.

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

Arunkumar, P.

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

Babu, K. S.

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

Bassiri, R.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Cha, S. W.

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

Chakraborty, S.

S. A. K. M. Faruque, R. P. Giri, and S. Chakraborty, “Effect of N2O ratio on the crystallization temperature of ZrO2 film deposited on Si by reactive sputtering in Ar/O2/N2O plasma,” Mater. Res. Express.3(11), (2016).

Chen, B.

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref]

Chen, J. J.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Chen, L.

J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
[Crossref]

Clark, C.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Deng, J.

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

Deng, J. X.

C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

Deng, X. R.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Deng, Z.

J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
[Crossref]

Fan, H.

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Fan, H. L.

C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

C. Xu, H. L. Fan, D. W. Li, J. W. Qi, S. Yang, and Y. H. Qiang, “Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness,” Optik 126(24), 5478–5482 (2015).
[Crossref]

Fan, Z. X.

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

D. P. Zhang, H. J. Qi, S. Y. Shao, H. B. He, J. D. Shao, and Z. X. Fan, “Surface morphology and properties of zirconia thin films prepared at different deposition rates,” Surf. Eng. 22(2), 157–160 (2006).
[Crossref]

Faruque, S. A. K. M.

S. A. K. M. Faruque, R. P. Giri, and S. Chakraborty, “Effect of N2O ratio on the crystallization temperature of ZrO2 film deposited on Si by reactive sputtering in Ar/O2/N2O plasma,” Mater. Res. Express.3(11), (2016).

Fejer, M.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Feng, P.

M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).

Gao, W.

M. Liu, B. Li, Y. Wang, and W. Gao, “Combined laser calorimetry and surface thermal lens technique for optical coating characterization,” Appl. Phys. B: Lasers Opt. 91(2), 223–227 (2008).
[Crossref]

Gibson, D.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Giri, R. P.

S. A. K. M. Faruque, R. P. Giri, and S. Chakraborty, “Effect of N2O ratio on the crystallization temperature of ZrO2 film deposited on Si by reactive sputtering in Ar/O2/N2O plasma,” Mater. Res. Express.3(11), (2016).

Guo, Y. J.

Y. J. Guo, X. T. Zu, B. Y. Wang, X. D. Jiang, X. D. Yuan, and H. B. Lv, “Preparation of sol-gel ZrO2-SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic,” Optik (Munich, Ger.) 122(13), 1140–1142 (2011).
[Crossref]

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
[Crossref]

He, H. B.

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

D. P. Zhang, H. J. Qi, S. Y. Shao, H. B. He, J. D. Shao, and Z. X. Fan, “Surface morphology and properties of zirconia thin films prepared at different deposition rates,” Surf. Eng. 22(2), 157–160 (2006).
[Crossref]

Houska, J.

J. Houska, “Molecular dynamics study of the growth of crystalline ZrO2,” Surf. Coat. Technol. 304, 23–30 (2016).
[Crossref]

Hu, G.

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

Hui, H. H.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Jia, J.

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

Jiang, X. D.

Y. J. Guo, X. T. Zu, B. Y. Wang, X. D. Jiang, X. D. Yuan, and H. B. Lv, “Preparation of sol-gel ZrO2-SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic,” Optik (Munich, Ger.) 122(13), 1140–1142 (2011).
[Crossref]

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
[Crossref]

Jin, Y. X.

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

Keshri, A. K.

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

Lei, X. Y.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Li, B.

M. Liu, B. Li, Y. Wang, and W. Gao, “Combined laser calorimetry and surface thermal lens technique for optical coating characterization,” Appl. Phys. B: Lasers Opt. 91(2), 223–227 (2008).
[Crossref]

Li, D.

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).

Li, D. W.

C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

C. Xu, H. L. Fan, D. W. Li, J. W. Qi, S. Yang, and Y. H. Qiang, “Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness,” Optik 126(24), 5478–5482 (2015).
[Crossref]

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

Li, H. Y.

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

Lin, D.

M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).

Lin, E.

M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).

Liu, J.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

Liu, J. T.

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

Liu, M.

M. Liu, B. Li, Y. Wang, and W. Gao, “Combined laser calorimetry and surface thermal lens technique for optical coating characterization,” Appl. Phys. B: Lasers Opt. 91(2), 223–227 (2008).
[Crossref]

Lv, H. B.

Y. J. Guo, X. T. Zu, B. Y. Wang, X. D. Jiang, X. D. Yuan, and H. B. Lv, “Preparation of sol-gel ZrO2-SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic,” Optik (Munich, Ger.) 122(13), 1140–1142 (2011).
[Crossref]

Ma, H.

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

Ma, M.

M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).

Markosyan, A.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Martin, I.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Mukherjee, B.

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

Murray, P.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Niu, J. N.

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

Qi, H. J.

D. P. Zhang, H. J. Qi, S. Y. Shao, H. B. He, J. D. Shao, and Z. X. Fan, “Surface morphology and properties of zirconia thin films prepared at different deposition rates,” Surf. Eng. 22(2), 157–160 (2006).
[Crossref]

Qi, J.

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Qi, J. W.

C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

C. Xu, H. L. Fan, D. W. Li, J. W. Qi, S. Yang, and Y. H. Qiang, “Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness,” Optik 126(24), 5478–5482 (2015).
[Crossref]

Qiang, Y.

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).

Qiang, Y. H.

C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

C. Xu, H. L. Fan, D. W. Li, J. W. Qi, S. Yang, and Y. H. Qiang, “Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness,” Optik 126(24), 5478–5482 (2015).
[Crossref]

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

Rowan, S.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Shao, J. D.

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

D. P. Zhang, H. J. Qi, S. Y. Shao, H. B. He, J. D. Shao, and Z. X. Fan, “Surface morphology and properties of zirconia thin films prepared at different deposition rates,” Surf. Eng. 22(2), 157–160 (2006).
[Crossref]

Shao, S. Y.

D. P. Zhang, H. J. Qi, S. Y. Shao, H. B. He, J. D. Shao, and Z. X. Fan, “Surface morphology and properties of zirconia thin films prepared at different deposition rates,” Surf. Eng. 22(2), 157–160 (2006).
[Crossref]

Shen, J.

X. Wang, G. Wu, B. Zhou, and J. Shen, “Improvement on laser-induced damage threshold of sol-gel ZrO2 coatings by crystal structure tuning,” Opt. Express 20(22), 24482 (2012).
[Crossref]

J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
[Crossref]

Sribalaji, M.

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

Sun, H.

M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).

Tang, Y. X.

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

Tanveer, W. H.

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

Tao, C.

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Tao, C. X.

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

Thomas, R. J.

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref]

Thomsen, S. L.

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref]

Tian, D. B.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
[Crossref]

Wang, B. Y.

Y. J. Guo, X. T. Zu, B. Y. Wang, X. D. Jiang, X. D. Yuan, and H. B. Lv, “Preparation of sol-gel ZrO2-SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic,” Optik (Munich, Ger.) 122(13), 1140–1142 (2011).
[Crossref]

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
[Crossref]

Wang, J.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
[Crossref]

Wang, J. F.

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

Wang, X.

Wang, Y.

M. Liu, B. Li, Y. Wang, and W. Gao, “Combined laser calorimetry and surface thermal lens technique for optical coating characterization,” Appl. Phys. B: Lasers Opt. 91(2), 223–227 (2008).
[Crossref]

Wei, Y. W.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Welch, A. J.

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref]

Wu, G.

Xu, C.

C. Xu, H. L. Fan, D. W. Li, J. W. Qi, S. Yang, and Y. H. Qiang, “Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness,” Optik 126(24), 5478–5482 (2015).
[Crossref]

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).

Xu, Q.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Xu, S. Z.

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
[Crossref]

Yang, D.

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

Yang, S.

C. Xu, H. L. Fan, D. W. Li, J. W. Qi, S. Yang, and Y. H. Qiang, “Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness,” Optik 126(24), 5478–5482 (2015).
[Crossref]

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

Yang, T.

J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
[Crossref]

Yang, W.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Yao, J. K.

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

Yi, P.

C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Yuan, X. D.

Y. J. Guo, X. T. Zu, B. Y. Wang, X. D. Jiang, X. D. Yuan, and H. B. Lv, “Preparation of sol-gel ZrO2-SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic,” Optik (Munich, Ger.) 122(13), 1140–1142 (2011).
[Crossref]

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
[Crossref]

Zhang, D. P.

D. P. Zhang, H. J. Qi, S. Y. Shao, H. B. He, J. D. Shao, and Z. X. Fan, “Surface morphology and properties of zirconia thin films prepared at different deposition rates,” Surf. Eng. 22(2), 157–160 (2006).
[Crossref]

Zhang, Q.

J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
[Crossref]

Zhang, Q. H.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Zhao, Y. A.

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

Zhou, B.

X. Wang, G. Wu, B. Zhou, and J. Shen, “Improvement on laser-induced damage threshold of sol-gel ZrO2 coatings by crystal structure tuning,” Opt. Express 20(22), 24482 (2012).
[Crossref]

J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
[Crossref]

Zhu, J. L.

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Zu, X. T.

Y. J. Guo, X. T. Zu, B. Y. Wang, X. D. Jiang, X. D. Yuan, and H. B. Lv, “Preparation of sol-gel ZrO2-SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic,” Optik (Munich, Ger.) 122(13), 1140–1142 (2011).
[Crossref]

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

M. Liu, B. Li, Y. Wang, and W. Gao, “Combined laser calorimetry and surface thermal lens technique for optical coating characterization,” Appl. Phys. B: Lasers Opt. 91(2), 223–227 (2008).
[Crossref]

Appl. Surf. Sci. (2)

C. Xu, D. Li, H. Fan, J. Qi, J. Deng, S. Yang, P. Yi, and Y. Qiang, “Laser-induced damage of Ta2O5 films obtained from TaCl5 precursor and annealed at different temperatures,” Appl. Surf. Sci. 344, 137–145 (2015).
[Crossref]

C. Xu, P. Yi, H. Fan, J. Qi, Y. Qiang, J. Liu, C. Tao, and D. Li, “Correlations between the oxygen deficiency and the laser damage resistance of different oxide films,” Appl. Surf. Sci. 289, 141–144 (2014).
[Crossref]

Chin. Phys. Lett. (2)

J. K. Yao, H. Y. Li, Z. X. Fan, Y. X. Tang, Y. X. Jin, Y. A. Zhao, H. B. He, and J. D. Shao, “Comparison of TiO2 and ZrO2 films deposited by electron-beam evaporation and by sol-gel process,” Chin. Phys. Lett. 24(7), 1964–1966 (2007).
[Crossref]

C. Xu, S. Yang, J. F. Wang, J. N. Niu, H. Ma, Y. H. Qiang, J. T. Liu, D. W. Li, and C. X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chin. Phys. Lett. 29(8), 2–6 (2012).
[Crossref]

Coatings (1)

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. Murray, D. Gibson, S. Rowan, and M. Fejer, “Comparison of single-layer and double-layer anti-refiection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

J. Alloys Compd. (1)

P. Arunkumar, U. Aarthi, M. Sribalaji, B. Mukherjee, A. K. Keshri, W. H. Tanveer, S. W. Cha, and K. S. Babu, “Deposition rate dependent phase/mechanical property evolution in zirconia and ceria-zirconia thin film by EB-PVD technique,” J. Alloys Compd. 765, 418–427 (2018).
[Crossref]

J. Appl. Phys. (1)

C. Xu, J. Jia, D. Yang, H. Fan, Y. Qiang, J. Liu, G. Hu, and D. Li, “Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering,” J. Appl. Phys. 116(5), 053102 (2014).
[Crossref]

J. Biomed. Opt. (1)

B. Chen, S. L. Thomsen, R. J. Thomas, and A. J. Welch, “Modeling thermal damage in skin from 2000-nm laser irradiation,” J. Biomed. Opt. 11(6), 064028 (2006).
[Crossref]

J. Sol-Gel Sci. Technol. (2)

J. Shen, Q. Zhang, J. Wang, T. Yang, Z. Deng, B. Zhou, and L. Chen, “Sol-gel processing of zirconia coating for HR mirrors with high laser damage threshold,” J. Sol-Gel Sci. Technol. 19(1/3), 271–274 (2000).
[Crossref]

X. R. Deng, W. Yang, Q. H. Zhang, H. H. Hui, Y. W. Wei, J. Wang, Q. Xu, X. Y. Lei, J. J. Chen, and J. L. Zhu, “Fabrication of UV-curable silicone coating with high transmittance and laser-induced damage threshold for high-power laser system,” J. Sol-Gel Sci. Technol. 88(1), 249–254 (2018).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

Y. J. Guo, X. T. Zu, X. D. Jiang, X. D. Yuan, S. Z. Xu, B. Y. Wang, and D. B. Tian, “Experimental research of laser-induced damage of the monolayer ZrO2 PVD and sol-gel films,” Opt. Laser Technol. 40(5), 677–681 (2008).
[Crossref]

Optik (1)

C. Xu, H. L. Fan, D. W. Li, J. W. Qi, S. Yang, and Y. H. Qiang, “Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness,” Optik 126(24), 5478–5482 (2015).
[Crossref]

Optik (Munich, Ger.) (1)

Y. J. Guo, X. T. Zu, B. Y. Wang, X. D. Jiang, X. D. Yuan, and H. B. Lv, “Preparation of sol-gel ZrO2-SiO2 highly reflective multilayer films and laser-induced damage threshold characteristic,” Optik (Munich, Ger.) 122(13), 1140–1142 (2011).
[Crossref]

Surf. Coat. Technol. (1)

J. Houska, “Molecular dynamics study of the growth of crystalline ZrO2,” Surf. Coat. Technol. 304, 23–30 (2016).
[Crossref]

Surf. Eng. (1)

D. P. Zhang, H. J. Qi, S. Y. Shao, H. B. He, J. D. Shao, and Z. X. Fan, “Surface morphology and properties of zirconia thin films prepared at different deposition rates,” Surf. Eng. 22(2), 157–160 (2006).
[Crossref]

Thin Solid Films (1)

C. Xu, D. W. Li, H. L. Fan, J. X. Deng, J. W. Qi, P. Yi, and Y. H. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

Other (3)

S. A. K. M. Faruque, R. P. Giri, and S. Chakraborty, “Effect of N2O ratio on the crystallization temperature of ZrO2 film deposited on Si by reactive sputtering in Ar/O2/N2O plasma,” Mater. Res. Express.3(11), (2016).

M. Ma, C. Xu, D. Lin, H. Sun, E. Lin, P. Feng, Y. Qiang, and D. Li, “Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives,” J. Optoelectron. Adv. Mater.19(3–4), 189–196 (2017).

ISO 11254-1:2000: lasers and laser-related equipment-determination of laser-induced damage threshold of optical surfaces. Part 1. 1-on-1 test.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Time dependence of the ZrO2 sol viscosity.
Fig. 2.
Fig. 2. Transmittance curves of the ZrO2 films. The inset illustrates the transmittance curves of the precursors and additives.
Fig. 3.
Fig. 3. XRD patterns of the ZrO2 films.
Fig. 4.
Fig. 4. Absorption of the ZrO2 films.
Fig. 5.
Fig. 5. AFM patterns of the ZrO2 films.
Fig. 6.
Fig. 6. LIDT results of the ZrO2 films as tested under ambient environment.
Fig. 7.
Fig. 7. Damage morphologies of the films. (a) Z2-353, (b) enlarged area A, (c) enlarged area B, (d) Z2-623, (e) enlarged area C, (f) enlarged area D.
Fig. 8.
Fig. 8. LIDT results of the Z3 films as tested under ambient environment (Z3-353, Z3-423 and Z3-523) and under in-situ environment at their respective annealing high temperatures (Z3-353D, Z3-423D and Z3-523D).
Fig. 9.
Fig. 9. Damage morphologies of the films. (a) Z3-523, (b) enlarged area A, (c) Z3-523 and (d) enlarged area B.
Fig. 10.
Fig. 10. Carbon content of the ZrO2 films.

Tables (1)

Tables Icon

Table 1. The contents of precursor and additives in the samples

Metrics