Abstract

A longwave-infrared photodetector made of double layers of 100nm amorphous germanium (a-Ge) and 25nm amorphous silicon (a-Si) have been demonstrated. Under room temperature, the device shows the responsivity of 1.7 A/W, detectivity of 6×108 Jones, and noise equivalent power (NEP) of 5pW/√Hz under 5V bias and at 20kHz operation. Studies of frequency dependent characteristics and device modeling indicate that, above 100Hz or beyond the bandwidth of thermal response, the device operates as a quantum detector having the photoelectrons produced by optical excitation from the bandtail states to the mobile states of a-Ge. The superior device performance may be attributed to the combination of two amplification mechanisms: photoconductive gain in a-Ge and cycling excitation process (CEP) in a-Si, with the latter being the dominant factor. Besides its attractive performance, the device has a simple structure and is easy to fabricate at low cost, thus holding promise for night vision, sensing, autonomous driving, and many other applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Indium antimonide uncooled photodetector with dual band photoresponse in the infrared and millimeter wave range

Jinchao Tong, Fei Suo, Wei Zhou, Yue Qu, Niangjuan Yao, Tao Hu, Zhiming Huang, and Dao Hua Zhang
Opt. Express 27(21) 30763-30772 (2019)

Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector

Geunsik Lim, Tariq Manzur, and Aravinda Kar
Appl. Opt. 50(17) 2640-2653 (2011)

An opto-electro-mechanical infrared photon detector with high internal gain at room temperature

John Kohoutek, Ivy Yoke Leng Wan, Omer Gokalp Memis, and Hooman Mohseni
Opt. Express 17(17) 14458-14465 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Caniou, Passive Infrared Detection: Theory and Applications (Springer US, 1999), Chap.1.
  2. C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90(3), 212–214 (2001).
    [Crossref]
  3. A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
    [Crossref]
  4. VIGO, “VIGO Catalogue,” https://www.photonicsolutions.co.uk/upfiles/VIGOCatalogueLG06Feb18.pdf .
  5. J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8/spl sim/10 µm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21(7), 329–331 (2000).
    [Crossref]
  6. S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors,” J. Phys. D: Appl. Phys. 38(13), 2135–2141 (2005).
    [Crossref]
  7. K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
    [Crossref]
  8. H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-/spl mu/m atmospheric window,” IEEE J. Quantum Electron. 35(7), 1041–1044 (1999).
    [Crossref]
  9. S. I. Woods, J. E. Proctor, T. M. Jung, A. C. Carter, J. Neira, and D. R. Defibaugh, “Wideband infrared trap detector based upon doped silicon photocurrent devices,” Appl. Opt. 57(18), D82–D89 (2018).
    [Crossref]
  10. F. Szmulowicz, F. L. Madarasz, and J. Diller, “Temperature dependence of the figures of merit for blocked impurity band detectors,” J. Appl. Phys. 63(11), 5583–5588 (1988).
    [Crossref]
  11. Y. Kawano, “Wide-band frequency-tunable terahertz and infrared detection with graphene,” Nanotechnology 24(21), 214004 (2013).
    [Crossref]
  12. Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
    [Crossref]
  13. F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
    [Crossref]
  14. B.-M. Nguyen, M. Razeghi, V. Nathan, and G. J. Brown, “Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes,” Proc. SPIE 6479, 64790S (2007).
    [Crossref]
  15. M. Razeghi and B.-M. Nguyen, “Band gap tunability of Type II Antimonide-based superlattices,” Phys. Procedia 3(2), 1207–1212 (2010).
    [Crossref]
  16. S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A. G. Unil Perera, and S. Chakrabarti, “A multicolor, broadband (5–20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Appl. Phys. Lett. 101(26), 261114 (2012).
    [Crossref]
  17. S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
    [Crossref]
  18. Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
    [Crossref]
  19. L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
    [Crossref]
  20. M. A. R. Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” Proc. SPIE 10108, 101080X (2017).
    [Crossref]
  21. L. Yan, M. A. R. Miah, Y.-H. Liu, and Y.-H. Lo, “Single photon detector with a mesoscopic cycling excitation design of dual gain sections and a transport barrier,” Opt. Lett. 44(7), 1746–1749 (2019).
    [Crossref]
  22. I. A. Niaz, M. A. R. Miah, L. Yan, Y. Yu, Z. He, Y. Zhang, A. C. Zhang, J. Zhou, Y. Zhang, and Y. Lo, “Modeling Gain Mechanisms in Amorphous Silicon due to efficient carrier multiplication and trap induced junction modulation,” J. Lightwave Technol. 37(19), 5056–5066 (2019).
    [Crossref]
  23. Y. Yu, Z. Xu, S. Li, A. C. Zhang, L. Yan, Z. Liu, and Y. Lo, “Plasmonically Enhanced Amorphous Silicon Photodetector With Internal Gain,” IEEE Photonics Technol. Lett. 31(12), 959–962 (2019).
    [Crossref]
  24. Hamamatsu, “InAsSb photovoltaic detectors,” https://www.hamamatsu.com/resources/pdf/ssd/p13894_series_kird1133e.pdf .
  25. H.-H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
    [Crossref]
  26. BostonElectronics, “Heimann Thermopiles,” https://www.boselec.com/wp-content/uploads/Linear/Heimann/HeimannLiterature/Heimann-Thermopiles-3-29-19.pdf
  27. J. Tauc, A. Abrahám, R. Zallen, and M. Slade, “Infrared absorption in amorphous germanium,” J. Non-Cryst. Solids 4, 279–288 (1970).
    [Crossref]

2019 (4)

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

L. Yan, M. A. R. Miah, Y.-H. Liu, and Y.-H. Lo, “Single photon detector with a mesoscopic cycling excitation design of dual gain sections and a transport barrier,” Opt. Lett. 44(7), 1746–1749 (2019).
[Crossref]

I. A. Niaz, M. A. R. Miah, L. Yan, Y. Yu, Z. He, Y. Zhang, A. C. Zhang, J. Zhou, Y. Zhang, and Y. Lo, “Modeling Gain Mechanisms in Amorphous Silicon due to efficient carrier multiplication and trap induced junction modulation,” J. Lightwave Technol. 37(19), 5056–5066 (2019).
[Crossref]

Y. Yu, Z. Xu, S. Li, A. C. Zhang, L. Yan, Z. Liu, and Y. Lo, “Plasmonically Enhanced Amorphous Silicon Photodetector With Internal Gain,” IEEE Photonics Technol. Lett. 31(12), 959–962 (2019).
[Crossref]

2018 (2)

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

S. I. Woods, J. E. Proctor, T. M. Jung, A. C. Carter, J. Neira, and D. R. Defibaugh, “Wideband infrared trap detector based upon doped silicon photocurrent devices,” Appl. Opt. 57(18), D82–D89 (2018).
[Crossref]

2017 (2)

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

M. A. R. Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” Proc. SPIE 10108, 101080X (2017).
[Crossref]

2016 (1)

H.-H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
[Crossref]

2015 (1)

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

2013 (1)

Y. Kawano, “Wide-band frequency-tunable terahertz and infrared detection with graphene,” Nanotechnology 24(21), 214004 (2013).
[Crossref]

2012 (1)

S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A. G. Unil Perera, and S. Chakrabarti, “A multicolor, broadband (5–20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Appl. Phys. Lett. 101(26), 261114 (2012).
[Crossref]

2010 (1)

M. Razeghi and B.-M. Nguyen, “Band gap tunability of Type II Antimonide-based superlattices,” Phys. Procedia 3(2), 1207–1212 (2010).
[Crossref]

2007 (2)

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

B.-M. Nguyen, M. Razeghi, V. Nathan, and G. J. Brown, “Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes,” Proc. SPIE 6479, 64790S (2007).
[Crossref]

2005 (1)

S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors,” J. Phys. D: Appl. Phys. 38(13), 2135–2141 (2005).
[Crossref]

2002 (1)

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

2001 (1)

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90(3), 212–214 (2001).
[Crossref]

2000 (2)

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8/spl sim/10 µm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21(7), 329–331 (2000).
[Crossref]

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

1999 (1)

H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-/spl mu/m atmospheric window,” IEEE J. Quantum Electron. 35(7), 1041–1044 (1999).
[Crossref]

1988 (1)

F. Szmulowicz, F. L. Madarasz, and J. Diller, “Temperature dependence of the figures of merit for blocked impurity band detectors,” J. Appl. Phys. 63(11), 5583–5588 (1988).
[Crossref]

1970 (1)

J. Tauc, A. Abrahám, R. Zallen, and M. Slade, “Infrared absorption in amorphous germanium,” J. Non-Cryst. Solids 4, 279–288 (1970).
[Crossref]

Abdullah, A.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Abrahám, A.

J. Tauc, A. Abrahám, R. Zallen, and M. Slade, “Infrared absorption in amorphous germanium,” J. Non-Cryst. Solids 4, 279–288 (1970).
[Crossref]

Adhikary, S.

S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A. G. Unil Perera, and S. Chakrabarti, “A multicolor, broadband (5–20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Appl. Phys. Lett. 101(26), 261114 (2012).
[Crossref]

Alkorjia, O.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Almasri, M.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Ariyawansa, G.

S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors,” J. Phys. D: Appl. Phys. 38(13), 2135–2141 (2005).
[Crossref]

Aytac, Y.

S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A. G. Unil Perera, and S. Chakrabarti, “A multicolor, broadband (5–20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Appl. Phys. Lett. 101(26), 261114 (2012).
[Crossref]

Bandara, S. V.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Benyahia, D.

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

Bhattacharya, P.

S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors,” J. Phys. D: Appl. Phys. 38(13), 2135–2141 (2005).
[Crossref]

Bock, J. J.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Brown, G.

H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-/spl mu/m atmospheric window,” IEEE J. Quantum Electron. 35(7), 1041–1044 (1999).
[Crossref]

Brown, G. J.

B.-M. Nguyen, M. Razeghi, V. Nathan, and G. J. Brown, “Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes,” Proc. SPIE 6479, 64790S (2007).
[Crossref]

Caniou, J.

J. Caniou, Passive Infrared Detection: Theory and Applications (Springer US, 1999), Chap.1.

Carter, A. C.

Chakrabarti, S.

S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A. G. Unil Perera, and S. Chakrabarti, “A multicolor, broadband (5–20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Appl. Phys. Lett. 101(26), 261114 (2012).
[Crossref]

S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors,” J. Phys. D: Appl. Phys. 38(13), 2135–2141 (2005).
[Crossref]

Chen, C.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90(3), 212–214 (2001).
[Crossref]

Defibaugh, D. R.

Deloach, P.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Diller, J.

F. Szmulowicz, F. L. Madarasz, and J. Diller, “Temperature dependence of the figures of merit for blocked impurity band detectors,” J. Appl. Phys. 63(11), 5583–5588 (1988).
[Crossref]

Grodecki, K.

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

Gunapala, S. D.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Hall, D.

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

M. A. R. Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” Proc. SPIE 10108, 101080X (2017).
[Crossref]

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

He, Z.

Hong, S.-C.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8/spl sim/10 µm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21(7), 329–331 (2000).
[Crossref]

Horowitz, R.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Jakobsen, H.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

Jung, T. M.

Jurenczyk, J.

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

Kawano, Y.

Y. Kawano, “Wide-band frequency-tunable terahertz and infrared detection with graphene,” Nanotechnology 24(21), 214004 (2013).
[Crossref]

Kim, J.-W.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8/spl sim/10 µm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21(7), 329–331 (2000).
[Crossref]

Kinzel, E.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Kitching, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Koppula, A. K. R.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Kubiszyn, L

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

Lewis, S.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Li, S.

Y. Yu, Z. Xu, S. Li, A. C. Zhang, L. Yan, Z. Liu, and Y. Lo, “Plasmonically Enhanced Amorphous Silicon Photodetector With Internal Gain,” IEEE Photonics Technol. Lett. 31(12), 959–962 (2019).
[Crossref]

Liu, J. K.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Liu, T.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Liu, Y.-H.

L. Yan, M. A. R. Miah, Y.-H. Liu, and Y.-H. Lo, “Single photon detector with a mesoscopic cycling excitation design of dual gain sections and a transport barrier,” Opt. Lett. 44(7), 1746–1749 (2019).
[Crossref]

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

M. A. R. Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” Proc. SPIE 10108, 101080X (2017).
[Crossref]

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

Liu, Z.

Y. Yu, Z. Xu, S. Li, A. C. Zhang, L. Yan, Z. Liu, and Y. Lo, “Plasmonically Enhanced Amorphous Silicon Photodetector With Internal Gain,” IEEE Photonics Technol. Lett. 31(12), 959–962 (2019).
[Crossref]

Lo, Y.

Lo, Y.-H.

L. Yan, M. A. R. Miah, Y.-H. Liu, and Y.-H. Lo, “Single photon detector with a mesoscopic cycling excitation design of dual gain sections and a transport barrier,” Opt. Lett. 44(7), 1746–1749 (2019).
[Crossref]

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

M. A. R. Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” Proc. SPIE 10108, 101080X (2017).
[Crossref]

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

Luong, E. M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Madarasz, F. L.

F. Szmulowicz, F. L. Madarasz, and J. Diller, “Temperature dependence of the figures of merit for blocked impurity band detectors,” J. Appl. Phys. 63(11), 5583–5588 (1988).
[Crossref]

Majumdar, A.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Mao, M.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Martyniuk, P.

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

McKelvey, M. J.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Meesala, S.

S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A. G. Unil Perera, and S. Chakrabarti, “A multicolor, broadband (5–20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Appl. Phys. Lett. 101(26), 261114 (2012).
[Crossref]

Miah, M. A. R.

Michalczewski, K.

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

Mitchel, W.

H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-/spl mu/m atmospheric window,” IEEE J. Quantum Electron. 35(7), 1041–1044 (1999).
[Crossref]

Mohseni, H.

H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-/spl mu/m atmospheric window,” IEEE J. Quantum Electron. 35(7), 1041–1044 (1999).
[Crossref]

Mumolo, J. M.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Nathan, V.

B.-M. Nguyen, M. Razeghi, V. Nathan, and G. J. Brown, “Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes,” Proc. SPIE 6479, 64790S (2007).
[Crossref]

Neira, J.

Nguyen, B.-M.

M. Razeghi and B.-M. Nguyen, “Band gap tunability of Type II Antimonide-based superlattices,” Phys. Procedia 3(2), 1207–1212 (2010).
[Crossref]

B.-M. Nguyen, M. Razeghi, V. Nathan, and G. J. Brown, “Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes,” Proc. SPIE 6479, 64790S (2007).
[Crossref]

Niaz, I. A.

I. A. Niaz, M. A. R. Miah, L. Yan, Y. Yu, Z. He, Y. Zhang, A. C. Zhang, J. Zhou, Y. Zhang, and Y. Lo, “Modeling Gain Mechanisms in Amorphous Silicon due to efficient carrier multiplication and trap induced junction modulation,” J. Lightwave Technol. 37(19), 5056–5066 (2019).
[Crossref]

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

M. A. R. Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” Proc. SPIE 10108, 101080X (2017).
[Crossref]

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

Niklaus, F.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

Norton, P.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Oh, J.-E.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8/spl sim/10 µm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21(7), 329–331 (2000).
[Crossref]

Park, C.-H.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8/spl sim/10 µm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21(7), 329–331 (2000).
[Crossref]

Perera, A. G. U.

S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors,” J. Phys. D: Appl. Phys. 38(13), 2135–2141 (2005).
[Crossref]

Piotrowski, J.

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

Proctor, J. E.

Rafol, S. B.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Raihan Miah, M. A.

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

Razeghi, M.

M. Razeghi and B.-M. Nguyen, “Band gap tunability of Type II Antimonide-based superlattices,” Phys. Procedia 3(2), 1207–1212 (2010).
[Crossref]

B.-M. Nguyen, M. Razeghi, V. Nathan, and G. J. Brown, “Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes,” Proc. SPIE 6479, 64790S (2007).
[Crossref]

H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-/spl mu/m atmospheric window,” IEEE J. Quantum Electron. 35(7), 1041–1044 (1999).
[Crossref]

Rebeiz, G. M.

H.-H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
[Crossref]

Rogalski, A.

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

Sham, L. J.

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

Shott, C. A.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Slade, M.

J. Tauc, A. Abrahám, R. Zallen, and M. Slade, “Infrared absorption in amorphous germanium,” J. Non-Cryst. Solids 4, 279–288 (1970).
[Crossref]

Stetson, N.

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Stiff-Roberts, A. D.

S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors,” J. Phys. D: Appl. Phys. 38(13), 2135–2141 (2005).
[Crossref]

Su, X. H.

S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors,” J. Phys. D: Appl. Phys. 38(13), 2135–2141 (2005).
[Crossref]

Szmulowicz, F.

F. Szmulowicz, F. L. Madarasz, and J. Diller, “Temperature dependence of the figures of merit for blocked impurity band detectors,” J. Appl. Phys. 63(11), 5583–5588 (1988).
[Crossref]

Tauc, J.

J. Tauc, A. Abrahám, R. Zallen, and M. Slade, “Infrared absorption in amorphous germanium,” J. Non-Cryst. Solids 4, 279–288 (1970).
[Crossref]

Unil Perera, A. G.

S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A. G. Unil Perera, and S. Chakrabarti, “A multicolor, broadband (5–20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Appl. Phys. Lett. 101(26), 261114 (2012).
[Crossref]

Varesi, J.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Vieider, C.

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

Wadle, S.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Warder, C.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Wojkowski, J.

H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-/spl mu/m atmospheric window,” IEEE J. Quantum Electron. 35(7), 1041–1044 (1999).
[Crossref]

Wolde, S.

S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A. G. Unil Perera, and S. Chakrabarti, “A multicolor, broadband (5–20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Appl. Phys. Lett. 101(26), 261114 (2012).
[Crossref]

Woods, S. I.

Wu, C. H.

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

Xiong, B.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90(3), 212–214 (2001).
[Crossref]

Xu, Z.

Y. Yu, Z. Xu, S. Li, A. C. Zhang, L. Yan, Z. Liu, and Y. Lo, “Plasmonically Enhanced Amorphous Silicon Photodetector With Internal Gain,” IEEE Photonics Technol. Lett. 31(12), 959–962 (2019).
[Crossref]

Yan, L.

Y. Yu, Z. Xu, S. Li, A. C. Zhang, L. Yan, Z. Liu, and Y. Lo, “Plasmonically Enhanced Amorphous Silicon Photodetector With Internal Gain,” IEEE Photonics Technol. Lett. 31(12), 959–962 (2019).
[Crossref]

L. Yan, M. A. R. Miah, Y.-H. Liu, and Y.-H. Lo, “Single photon detector with a mesoscopic cycling excitation design of dual gain sections and a transport barrier,” Opt. Lett. 44(7), 1746–1749 (2019).
[Crossref]

I. A. Niaz, M. A. R. Miah, L. Yan, Y. Yu, Z. He, Y. Zhang, A. C. Zhang, J. Zhou, Y. Zhang, and Y. Lo, “Modeling Gain Mechanisms in Amorphous Silicon due to efficient carrier multiplication and trap induced junction modulation,” J. Lightwave Technol. 37(19), 5056–5066 (2019).
[Crossref]

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

Yang, H.-H.

H.-H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
[Crossref]

Yi, X.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90(3), 212–214 (2001).
[Crossref]

Yoo, T.-K.

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8/spl sim/10 µm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21(7), 329–331 (2000).
[Crossref]

Yu, Y.

I. A. Niaz, M. A. R. Miah, L. Yan, Y. Yu, Z. He, Y. Zhang, A. C. Zhang, J. Zhou, Y. Zhang, and Y. Lo, “Modeling Gain Mechanisms in Amorphous Silicon due to efficient carrier multiplication and trap induced junction modulation,” J. Lightwave Technol. 37(19), 5056–5066 (2019).
[Crossref]

Y. Yu, Z. Xu, S. Li, A. C. Zhang, L. Yan, Z. Liu, and Y. Lo, “Plasmonically Enhanced Amorphous Silicon Photodetector With Internal Gain,” IEEE Photonics Technol. Lett. 31(12), 959–962 (2019).
[Crossref]

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

Zallen, R.

J. Tauc, A. Abrahám, R. Zallen, and M. Slade, “Infrared absorption in amorphous germanium,” J. Non-Cryst. Solids 4, 279–288 (1970).
[Crossref]

Zhang, A. C.

I. A. Niaz, M. A. R. Miah, L. Yan, Y. Yu, Z. He, Y. Zhang, A. C. Zhang, J. Zhou, Y. Zhang, and Y. Lo, “Modeling Gain Mechanisms in Amorphous Silicon due to efficient carrier multiplication and trap induced junction modulation,” J. Lightwave Technol. 37(19), 5056–5066 (2019).
[Crossref]

Y. Yu, Z. Xu, S. Li, A. C. Zhang, L. Yan, Z. Liu, and Y. Lo, “Plasmonically Enhanced Amorphous Silicon Photodetector With Internal Gain,” IEEE Photonics Technol. Lett. 31(12), 959–962 (2019).
[Crossref]

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

Zhang, Y.

Zhao, X.

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90(3), 212–214 (2001).
[Crossref]

Zhao, Y.

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

Zhou, J.

Zhou, Y.

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

Zhu, C.

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Adhikary, Y. Aytac, S. Meesala, S. Wolde, A. G. Unil Perera, and S. Chakrabarti, “A multicolor, broadband (5–20 µm), quaternary-capped InAs/GaAs quantum dot infrared photodetector,” Appl. Phys. Lett. 101(26), 261114 (2012).
[Crossref]

Y.-H. Liu, L. Yan, A. C. Zhang, D. Hall, I. A. Niaz, Y. Zhou, L. J. Sham, and Y.-H. Lo, “Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor,” Appl. Phys. Lett. 107(5), 053505 (2015).
[Crossref]

L. Yan, Y. Yu, A. C. Zhang, D. Hall, I. A. Niaz, M. A. Raihan Miah, Y.-H. Liu, and Y.-H. Lo, “An amorphous silicon photodiode with 2 THz gain-bandwidth product based on cycling excitation process,” Appl. Phys. Lett. 111(10), 101104 (2017).
[Crossref]

H.-H. Yang and G. M. Rebeiz, “Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer,” Appl. Phys. Lett. 108(5), 053106 (2016).
[Crossref]

IEEE Electron Device Lett. (1)

J.-W. Kim, J.-E. Oh, S.-C. Hong, C.-H. Park, and T.-K. Yoo, “Room temperature far infrared (8/spl sim/10 µm) photodetectors using self-assembled InAs quantum dots with high detectivity,” IEEE Electron Device Lett. 21(7), 329–331 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncooled InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8-12-/spl mu/m atmospheric window,” IEEE J. Quantum Electron. 35(7), 1041–1044 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Yu, Z. Xu, S. Li, A. C. Zhang, L. Yan, Z. Liu, and Y. Lo, “Plasmonically Enhanced Amorphous Silicon Photodetector With Internal Gain,” IEEE Photonics Technol. Lett. 31(12), 959–962 (2019).
[Crossref]

IEEE Trans. Electron Devices (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, E. M. Luong, N. Stetson, C. A. Shott, J. J. Bock, S. B. Rafol, J. M. Mumolo, and M. J. McKelvey, “Long-wavelength 256/spl times/256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera,” IEEE Trans. Electron Devices 47(2), 326–332 (2000).
[Crossref]

Infrared Phys. Technol. (1)

K. Michalczewski, Ł Kubiszyn, P. Martyniuk, C. H. Wu, J. Jureńczyk, K. Grodecki, D. Benyahia, A. Rogalski, and J. Piotrowski, “Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate,” Infrared Phys. Technol. 95, 222–226 (2018).
[Crossref]

J. Appl. Phys. (1)

F. Szmulowicz, F. L. Madarasz, and J. Diller, “Temperature dependence of the figures of merit for blocked impurity band detectors,” J. Appl. Phys. 63(11), 5583–5588 (1988).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (1)

Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitching, “Optomechanical uncooled infrared imaging system: design, microfabrication, and performance,” J. Microelectromech. Syst. 11(2), 136–146 (2002).
[Crossref]

J. Non-Cryst. Solids (1)

J. Tauc, A. Abrahám, R. Zallen, and M. Slade, “Infrared absorption in amorphous germanium,” J. Non-Cryst. Solids 4, 279–288 (1970).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Chakrabarti, A. D. Stiff-Roberts, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors,” J. Phys. D: Appl. Phys. 38(13), 2135–2141 (2005).
[Crossref]

Nanotechnology (1)

Y. Kawano, “Wide-band frequency-tunable terahertz and infrared detection with graphene,” Nanotechnology 24(21), 214004 (2013).
[Crossref]

Opt. Lett. (1)

Phys. Procedia (1)

M. Razeghi and B.-M. Nguyen, “Band gap tunability of Type II Antimonide-based superlattices,” Phys. Procedia 3(2), 1207–1212 (2010).
[Crossref]

Proc. SPIE (4)

F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-based uncooled infrared bolometer arrays: a review,” Proc. SPIE 6836, 68360D (2007).
[Crossref]

B.-M. Nguyen, M. Razeghi, V. Nathan, and G. J. Brown, “Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes,” Proc. SPIE 6479, 64790S (2007).
[Crossref]

M. A. R. Miah, I. A. Niaz, Y.-H. Liu, D. Hall, and Y.-H. Lo, “A high-efficiency low-noise signal amplification mechanism for photodetectors,” Proc. SPIE 10108, 101080X (2017).
[Crossref]

A. K. R. Koppula, A. Abdullah, T. Liu, O. Alkorjia, C. Zhu, C. Warder, S. Wadle, P. Deloach, S. Lewis, E. Kinzel, and M. Almasri, “Material response of metasurface integrated uncooled silicon germanium oxide SixGeyO1-x-y infrared microbolometers,” Proc. SPIE 11002, 110021L (2019).
[Crossref]

Sens. Actuators, A (1)

C. Chen, X. Yi, X. Zhao, and B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuators, A 90(3), 212–214 (2001).
[Crossref]

Other (4)

J. Caniou, Passive Infrared Detection: Theory and Applications (Springer US, 1999), Chap.1.

Hamamatsu, “InAsSb photovoltaic detectors,” https://www.hamamatsu.com/resources/pdf/ssd/p13894_series_kird1133e.pdf .

BostonElectronics, “Heimann Thermopiles,” https://www.boselec.com/wp-content/uploads/Linear/Heimann/HeimannLiterature/Heimann-Thermopiles-3-29-19.pdf

VIGO, “VIGO Catalogue,” https://www.photonicsolutions.co.uk/upfiles/VIGOCatalogueLG06Feb18.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Cross-sectional (not to scale) and (b) Top view of the device.
Fig. 2.
Fig. 2. Bias dependent (a) DC dark current and (b) Responsivity at 5kHz under 27nW CO2 laser illumination
Fig. 3.
Fig. 3. Bias dependent (a) Detectivity and (b) NEP of the device at 5kHz.
Fig. 4.
Fig. 4. (a) Frequency dependent responsivity and detectivity of the device under 5V reverse bias (b) Photocurrent trace from RF Spectrum Analyzer at 5kHz laser modulation.
Fig. 5.
Fig. 5. Band diagram of the device under reverse bias. Here, τ’−1−1) represent generation recombination rate from conduction band (bandtail) to valence band, γnt) are electron capture (emission) rate to (from) bandtail state, σGp is electron generation rate via photoexcitation of bandtail states by incident LWIR photon flux.
Fig. 6.
Fig. 6. Photoresponse (at 639 nm wavelength) of a device consisted of an a-Si layer on an n-Si substrate (same structure but without the a-Ge LWIR absorption layer) for characterization of CEP gain.

Tables (1)

Tables Icon

Table 1. Comparison of NEP (pW/√Hz) and specific detectivity, D* (100M Jones) for different uncooled LWIR detectors

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d n d t = n γ n n n o τ + n t γ t + n t σ G p
d n t d t = n t γ t n t σ G p n t n t o τ + n γ n
J = J n G C E P = e n v d G C E P
n = n o ( 1 + σ G p n t o n o t l i f e )
t l i f e = 1 ( γ n + 1 τ ) + ( γ t + σ G p ) τ τ
J d a r k = e n o v d G C E P
J p h o t o = J J d a r k = e σ G p n t o t l i f e v d G C E P
R = J p h o t o h ν G p = e h ν ( σ n t o d a G e ) ( t l i f e t t r ) G C E P = e h ν η G P C G C E P

Metrics