Abstract

We demonstrate second harmonic generations in quasi-phase matched cladding waveguide structures fabricated by direct femtosecond laser writing. Waveguides with circular section are inscribed in z-cut MgO doped stoichiometric lithium tantalate with fan-out χ(2) grating structures. The ferroelectric domain-inverted fan-out grating period seamlessly varies from 7.5 to 8.2 µm. Seven individual waveguides with step changed periods are fabricated. The minimum insertion loss of the cladding waveguides is about 0.54 dB at wavelength of 1064 nm. Temperature tuned second harmonic generations of 1064 nm for different quasi phase matched grating periods are demonstrated by using continuous wave and pulsed laser. A comparable normalized conversion efficiency of 3.55%/(W·cm2) is obtained for 7.91 µm period. The maximum power conversion efficiency of 54.3% was obtained under a pump peak power of 282 W.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal

Lei Wang, Xintong Zhang, Lingqi Li, Qingming Lu, Carolina Romero, Javier R. Vázquez de Aldana, and Feng Chen
Opt. Express 27(3) 2101-2111 (2019)

Multi-watt, broadband second-harmonic-generation in MgO:PPSLT waveguides fabricated with femtosecond laser micromachining

Mark Triplett, John Khaydarov, Xiaozhen Xu, Alireza Marandi, Gennady Imeshev, John Arntsen, Ajit Ninan, Gregory Miller, and Carsten Langrock
Opt. Express 27(15) 21102-21115 (2019)

Waveguide-integrated three-dimensional quasi-phase-matching structures

Jörg Imbrock, Lukas Wesemann, Sebastian Kroesen, Mousa Ayoub, and Cornelia Denz
Optica 7(1) 28-34 (2020)

References

  • View by:
  • |
  • |
  • |

  1. I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2), 423–432 (2009).
    [Crossref]
  2. A. Bruner and D. Eger, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” Appl. Phys. Lett. 96(12), 7445–7449 (2004).
    [Crossref]
  3. P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater. 33(11), 1677–1680 (2011).
    [Crossref]
  4. S. Kim, Venkatraman Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90(6), 2949–2963 (2001).
    [Crossref]
  5. A. G. Getman, S. V. Popov, and J. R. Taylor, “7 W average power, high-beam-quality green generation in MgO-doped stoichiometric periodically poled lithium tantalate,” Appl. Phys. Lett. 85(15), 3026–3028 (2004).
    [Crossref]
  6. D. S. Hum, R. K. Route, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25°-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” Opt. Lett. 32(8), 961–964 (2007).
    [Crossref]
  7. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
    [Crossref]
  8. S.-Y. Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, “Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region,” Opt. Lett. 30(18), 2451–2453 (2005).
    [Crossref]
  9. J. D. Rowley, S. Yang, and F. Ganikhanov, “Power and tuning characteristics of a broadly tunable femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalite,” J. Opt. Soc. Am. B 28(5), 1026–1036 (2011).
    [Crossref]
  10. X. P. Hu, P. Xu, and S. N. Zhu, “Engineered quasi-phase-matching for laser techniques [Invited],” Photonics Res. 1(4), 171–185 (2013).
    [Crossref]
  11. Y. Ishigame, T. Suhara, and H. Nishihara, “LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett. 16(6), 375–377 (1991).
    [Crossref]
  12. J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997).
    [Crossref]
  13. T. Hatanaka, K. Nakamura, and T. Taniuchi, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25(9), 651–653 (2000).
    [Crossref]
  14. J. Zimmermann, J. Struckmeier, and M. R. Hofmann, “Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal,” Opt. Lett. 27(8), 604–606 (2002).
    [Crossref]
  15. N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
    [Crossref]
  16. D. Kip, “Photorefractive waveguides in oxide crystals: Fabrication, properties, and applications,” Appl. Phys. B: Lasers Opt. 67(2), 131–150 (1998).
    [Crossref]
  17. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
    [Crossref]
  18. S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 323–352 (2015).
    [Crossref]
  19. H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
    [Crossref]
  20. E. Kifle, P. Loiko, C. Romero, J. R. Vázquez de Aldana, A. Ródenas, V. Jambunathan, V. Zakharov, A. Veniaminov, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written erbium-doped double tungstate waveguide laser,” Opt. Express 26(23), 30826–30836 (2018).
    [Crossref]
  21. Z. Huang, C. Tu, S. Zhang, Y. Li, F. Lu, Y. Fan, and E. Li, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses,” Opt. Lett. 35(6), 877–879 (2010).
    [Crossref]
  22. Y. L. Lee, N. E. Yu, C. Jung, and B.-A. Yu, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
    [Crossref]
  23. J. Thomas, M. Heinrich, J. Burghoff, and S. Nolte, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
    [Crossref]
  24. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, and R. Ramponi, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
    [Crossref]
  25. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
    [Crossref]
  26. M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12(12), 2754–2761 (2004).
    [Crossref]
  27. T. Oka and T. Suhara, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8mol% MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
    [Crossref]
  28. K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  29. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  30. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
    [Crossref]
  31. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
    [Crossref]
  32. D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
    [Crossref]
  33. A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
    [Crossref]
  34. K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
    [Crossref]
  35. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref]
  36. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  37. C. Cheng, Y. Jia, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51, 190–193 (2016).
    [Crossref]
  38. L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
    [Crossref]
  39. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
    [Crossref]
  40. C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal,” Opt. Eng. 54(6), 067113 (2015).
    [Crossref]
  41. W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
    [Crossref]
  42. F. Thorburn, A. Lancaster, S. McDaniel, G. Cook, and A. K Kar, “5.9 GHz graphene based Q-switched modelocked mid-infrared monolithic waveguide laser,” Opt. Express 25(21), 26166–26174 (2017).
    [Crossref]
  43. G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
    [Crossref]
  44. M. Triplett, J. Khaydarov, X. Xu, A. Marandi, G. Imeshev, J. Arntsen, A. Ninan, G. Miller, and C. Langrock, “Multi-watt, broadband second-harmonic-generation in MgO:PPSLT waveguides fabricated with femtosecond laser micromachining,” Opt. Express 27(15), 21102–21115 (2019).
    [Crossref]
  45. L. Wang, X. Zhang, L. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal,” Opt. Express 27(3), 2101–2111 (2019).
    [Crossref]

2019 (4)

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

M. Triplett, J. Khaydarov, X. Xu, A. Marandi, G. Imeshev, J. Arntsen, A. Ninan, G. Miller, and C. Langrock, “Multi-watt, broadband second-harmonic-generation in MgO:PPSLT waveguides fabricated with femtosecond laser micromachining,” Opt. Express 27(15), 21102–21115 (2019).
[Crossref]

L. Wang, X. Zhang, L. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal,” Opt. Express 27(3), 2101–2111 (2019).
[Crossref]

2018 (3)

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

E. Kifle, P. Loiko, C. Romero, J. R. Vázquez de Aldana, A. Ródenas, V. Jambunathan, V. Zakharov, A. Veniaminov, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written erbium-doped double tungstate waveguide laser,” Opt. Express 26(23), 30826–30836 (2018).
[Crossref]

2017 (1)

2016 (1)

C. Cheng, Y. Jia, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51, 190–193 (2016).
[Crossref]

2015 (5)

C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal,” Opt. Eng. 54(6), 067113 (2015).
[Crossref]

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref]

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 323–352 (2015).
[Crossref]

T. Oka and T. Suhara, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8mol% MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
[Crossref]

2014 (5)

K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref]

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

G. Salamu, F. Jipa, M. Zamfirescu, and N. Pavel, “Cladding waveguides realized in Nd:YAG ceramic by direct femtosecond-laser writing with a helical movement technique,” Opt. Mater. Express 4(4), 790–797 (2014).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

2013 (1)

X. P. Hu, P. Xu, and S. N. Zhu, “Engineered quasi-phase-matching for laser techniques [Invited],” Photonics Res. 1(4), 171–185 (2013).
[Crossref]

2011 (3)

2010 (2)

2009 (1)

I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2), 423–432 (2009).
[Crossref]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (4)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

J. Thomas, M. Heinrich, J. Burghoff, and S. Nolte, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, and R. Ramponi, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

D. S. Hum, R. K. Route, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25°-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” Opt. Lett. 32(8), 961–964 (2007).
[Crossref]

2006 (2)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Y. L. Lee, N. E. Yu, C. Jung, and B.-A. Yu, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

2005 (1)

2004 (4)

A. G. Getman, S. V. Popov, and J. R. Taylor, “7 W average power, high-beam-quality green generation in MgO-doped stoichiometric periodically poled lithium tantalate,” Appl. Phys. Lett. 85(15), 3026–3028 (2004).
[Crossref]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[Crossref]

A. Bruner and D. Eger, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” Appl. Phys. Lett. 96(12), 7445–7449 (2004).
[Crossref]

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12(12), 2754–2761 (2004).
[Crossref]

2002 (1)

2001 (1)

S. Kim, Venkatraman Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

2000 (1)

1998 (1)

D. Kip, “Photorefractive waveguides in oxide crystals: Fabrication, properties, and applications,” Appl. Phys. B: Lasers Opt. 67(2), 131–150 (1998).
[Crossref]

1997 (1)

1996 (1)

1991 (1)

Aguiló, M.

Arie, A.

I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2), 423–432 (2009).
[Crossref]

Arisholm, G.

Arntsen, J.

Bruner, A.

A. Bruner and D. Eger, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” Appl. Phys. Lett. 96(12), 7445–7449 (2004).
[Crossref]

Brunner, F.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

J. Thomas, M. Heinrich, J. Burghoff, and S. Nolte, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Cerullo, G.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, and R. Ramponi, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Chen, F.

L. Wang, X. Zhang, L. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal,” Opt. Express 27(3), 2101–2111 (2019).
[Crossref]

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

C. Cheng, Y. Jia, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51, 190–193 (2016).
[Crossref]

C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal,” Opt. Eng. 54(6), 067113 (2015).
[Crossref]

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Chen, J.-Y.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Chen, Q. D.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Cheng, C.

C. Cheng, Y. Jia, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51, 190–193 (2016).
[Crossref]

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref]

C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal,” Opt. Eng. 54(6), 067113 (2015).
[Crossref]

Cheng, Y.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, and R. Ramponi, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Cook, G.

Corrielli, G.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Davis, K. M.

Díaz, F.

Dolev, I.

I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2), 423–432 (2009).
[Crossref]

Eger, D.

A. Bruner and D. Eger, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” Appl. Phys. Lett. 96(12), 7445–7449 (2004).
[Crossref]

Fan, Y.

Fang, X.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Fejer, M. M.

Feng, Z.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Furukawa, Y.

S. Kim, Venkatraman Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

Gadret, G.

I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2), 423–432 (2009).
[Crossref]

Ganikhanov, F.

Gao, J.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Gao, Z. D.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gayer, O.

I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2), 423–432 (2009).
[Crossref]

Getman, A. G.

A. G. Getman, S. V. Popov, and J. R. Taylor, “7 W average power, high-beam-quality green generation in MgO-doped stoichiometric periodically poled lithium tantalate,” Appl. Phys. Lett. 85(15), 3026–3028 (2004).
[Crossref]

Gopalan, Venkatraman

S. Kim, Venkatraman Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

Gräfe, M.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Griebner, U.

Gross, S.

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 323–352 (2015).
[Crossref]

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Gu, M.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Hanada, Y.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref]

Hang, Y.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater. 33(11), 1677–1680 (2011).
[Crossref]

Haro-González, P.

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

Hatanaka, T.

He, X.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater. 33(11), 1677–1680 (2011).
[Crossref]

Heilmann, R.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Heinrich, M.

J. Thomas, M. Heinrich, J. Burghoff, and S. Nolte, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

Hirao, K.

Hofmann, M. R.

Hu, P.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater. 33(11), 1677–1680 (2011).
[Crossref]

Hu, X.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Hu, X. P.

X. P. Hu, P. Xu, and S. N. Zhu, “Engineered quasi-phase-matching for laser techniques [Invited],” Photonics Res. 1(4), 171–185 (2013).
[Crossref]

Hu, Y.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Huang, Z.

Hum, D. S.

Imeshev, G.

Innerhofer, E.

Ishigame, Y.

Ito, H.

Jambunathan, V.

Jaque, D.

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

Jia, Y.

C. Cheng, Y. Jia, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51, 190–193 (2016).
[Crossref]

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref]

Jin, X.-M.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Jipa, F.

John, S.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Jung, C.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Y. L. Lee, N. E. Yu, C. Jung, and B.-A. Yu, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Kang, H.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Kar, A. K

Kar, A. K.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19(18), 17820–17833 (2011).
[Crossref]

Keller, U.

Khaydarov, J.

Kifle, E.

Kim, B. H.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Kim, S.

S. Kim, Venkatraman Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: Fabrication, properties, and applications,” Appl. Phys. B: Lasers Opt. 67(2), 131–150 (1998).
[Crossref]

Kitamura, K.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[Crossref]

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12(12), 2754–2761 (2004).
[Crossref]

S. Kim, Venkatraman Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

Ko, D.-K.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Kung, A. H.

Kurimura, S.

Lai, P.-C.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Lancaster, A.

Langrock, C.

Lee, K.-S.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Lee, Y. L.

Y. L. Lee, N. E. Yu, C. Jung, and B.-A. Yu, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Li, E.

Li, J.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Li, L.

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

L. Wang, X. Zhang, L. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal,” Opt. Express 27(3), 2101–2111 (2019).
[Crossref]

Li, Y.

Li, Z.

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

Lin, X.-F.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, and R. Ramponi, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

Loiko, P.

Lu, F.

Lu, Q.

Lucianetti, A.

Mangin, J.

I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2), 423–432 (2009).
[Crossref]

Marandi, A.

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, and R. Ramponi, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12(12), 2754–2761 (2004).
[Crossref]

Marchese, S. V.

Mateos, X.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McDaniel, S.

Meany, T.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Meyn, J.-P.

Midorikawa, K.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref]

Miller, G.

Miura, K.

Mocek, T.

Nakamura, K.

Nakamura, M.

Nie, W.

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref]

Ninan, A.

Nishihara, H.

Nolte, S.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

J. Thomas, M. Heinrich, J. Burghoff, and S. Nolte, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Oh, M.-K.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Oka, T.

T. Oka and T. Suhara, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8mol% MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
[Crossref]

Osellame, R.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, and R. Ramponi, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12(12), 2754–2761 (2004).
[Crossref]

Padowicz, A. G.

I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2), 423–432 (2009).
[Crossref]

Paiè, P.

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

Paschotta, R.

Pavel, N.

Perez-Leija, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Petrov, V.

Popov, S. V.

A. G. Getman, S. V. Popov, and J. R. Taylor, “7 W average power, high-beam-quality green generation in MgO-doped stoichiometric periodically poled lithium tantalate,” Appl. Phys. Lett. 85(15), 3026–3028 (2004).
[Crossref]

Qiao, L.-F.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Ramponi, R.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, and R. Ramponi, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12(12), 2754–2761 (2004).
[Crossref]

Rodenas, A.

Ródenas, A.

Romero, C.

Route, R. K.

Rowley, J. D.

Salamu, G.

Steel, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Struckmeier, J.

Südmeyer, T.

Sugimoto, N.

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref]

Suhara, T.

T. Oka and T. Suhara, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8mol% MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
[Crossref]

Y. Ishigame, T. Suhara, and H. Nishihara, “LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett. 16(6), 375–377 (1991).
[Crossref]

Sun, H. B.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Sun, K.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Szameit, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Takekawa, S.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

M. Marangoni, R. Osellame, R. Ramponi, S. Takekawa, M. Nakamura, and K. Kitamura, “Reverse-proton-exchange in stoichiometric lithium tantalate,” Opt. Express 12(12), 2754–2761 (2004).
[Crossref]

Tan, Y.

C. Cheng, Y. Jia, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51, 190–193 (2016).
[Crossref]

Tang, H.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Taniuchi, T.

Taylor, J. R.

A. G. Getman, S. V. Popov, and J. R. Taylor, “7 W average power, high-beam-quality green generation in MgO-doped stoichiometric periodically poled lithium tantalate,” Appl. Phys. Lett. 85(15), 3026–3028 (2004).
[Crossref]

Thomas, J.

J. Thomas, M. Heinrich, J. Burghoff, and S. Nolte, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

Thorburn, F.

Triplett, M.

Tu, C.

Tu, S.-Y.

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

Usami, T.

Vázquez de Aldana, J. R.

L. Wang, X. Zhang, L. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal,” Opt. Express 27(3), 2101–2111 (2019).
[Crossref]

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

E. Kifle, P. Loiko, C. Romero, J. R. Vázquez de Aldana, A. Ródenas, V. Jambunathan, V. Zakharov, A. Veniaminov, A. Lucianetti, T. Mocek, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, and X. Mateos, “Fs-laser-written erbium-doped double tungstate waveguide laser,” Opt. Express 26(23), 30826–30836 (2018).
[Crossref]

C. Cheng, Y. Jia, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51, 190–193 (2016).
[Crossref]

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref]

C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal,” Opt. Eng. 54(6), 067113 (2015).
[Crossref]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Veniaminov, A.

Wang, C.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Wang, C.-Y.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Wang, H.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Wang, L.

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

L. Wang, X. Zhang, L. Li, Q. Lu, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Second harmonic generation of femtosecond laser written depressed cladding waveguides in periodically poled MgO:LiTaO3 crystal,” Opt. Express 27(3), 2101–2111 (2019).
[Crossref]

Wang, Y.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Wang, Z.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref]

Wei, D.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Withford, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 323–352 (2015).
[Crossref]

Wu, D.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref]

Xia, H.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Xiao, M.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Xiong, J.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater. 33(11), 1677–1680 (2011).
[Crossref]

Xu, J.

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref]

Xu, P.

X. P. Hu, P. Xu, and S. N. Zhu, “Engineered quasi-phase-matching for laser techniques [Invited],” Photonics Res. 1(4), 171–185 (2013).
[Crossref]

Xu, X.

Xu, X.-Y.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Yang, A.-L.

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Yang, S.

Yin, J.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater. 33(11), 1677–1680 (2011).
[Crossref]

Yu, B.-A.

Y. L. Lee, N. E. Yu, C. Jung, and B.-A. Yu, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Yu, N. E.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Y. L. Lee, N. E. Yu, C. Jung, and B.-A. Yu, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

Zakharov, V.

Zamfirescu, M.

Zhang, B.

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

Zhang, L.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater. 33(11), 1677–1680 (2011).
[Crossref]

Zhang, S.

Zhang, X.

Zhang, Y.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Zhang, Y. L.

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Zhao, C.

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater. 33(11), 1677–1680 (2011).
[Crossref]

Zhu, S.

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

Zhu, S. N.

Zimmermann, J.

Appl. Phys. A (1)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A 89(1), 127–132 (2007).
[Crossref]

Appl. Phys. B (1)

I. Dolev, A. G. Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96(2), 423–432 (2009).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

D. Kip, “Photorefractive waveguides in oxide crystals: Fabrication, properties, and applications,” Appl. Phys. B: Lasers Opt. 67(2), 131–150 (1998).
[Crossref]

Appl. Phys. Express (1)

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Appl. Phys. Lett. (6)

A. Bruner and D. Eger, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” Appl. Phys. Lett. 96(12), 7445–7449 (2004).
[Crossref]

A. G. Getman, S. V. Popov, and J. R. Taylor, “7 W average power, high-beam-quality green generation in MgO-doped stoichiometric periodically poled lithium tantalate,” Appl. Phys. Lett. 85(15), 3026–3028 (2004).
[Crossref]

Y. L. Lee, N. E. Yu, C. Jung, and B.-A. Yu, “Second-harmonic generation in periodically poled lithium niobate waveguides fabricated by femtosecond laser pulses,” Appl. Phys. Lett. 89(17), 171103 (2006).
[Crossref]

J. Thomas, M. Heinrich, J. Burghoff, and S. Nolte, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett. 91(15), 151108 (2007).
[Crossref]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, and R. Ramponi, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[Crossref]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett. 89(8), 081108 (2006).
[Crossref]

J. Appl. Phys. (1)

S. Kim, Venkatraman Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and nonstoichiometry in lithium tantalite,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

J. Lightwave Technol. (1)

L. Li, W. Nie, Z. Li, B. Zhang, L. Wang, P. Haro-González, D. Jaque, J. R. Vázquez de Aldana, and F. Chen, “Femtosecond Laser Writing of Optical Waveguides by Self-Induced Multiple Refocusing in LiTaO3 Crystal,” J. Lightwave Technol. 37(14), 3452–3458 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Oka and T. Suhara, “Annealed proton-exchanged waveguide quasi-phase-matched second-harmonic generation devices in 8mol% MgO-doped congruent LiTaO3 crystal,” Jpn. J. Appl. Phys. 54(10), 100304 (2015).
[Crossref]

Lab Chip (1)

K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, and K. Midorikawa, “Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass,” Lab Chip 14(18), 3447–3458 (2014).
[Crossref]

Laser Photonics Rev. (2)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Light: Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—Reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Nano Today (1)

Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today 5(5), 435–448 (2010).
[Crossref]

Nanophotonics (1)

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications,” Nanophotonics 4(3), 323–352 (2015).
[Crossref]

Nat. Photonics (3)

D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, “Experimental demonstration of a three dimensional lithium niobate nonlinear photonic crystal,” Nat. Photonics 12(10), 596–600 (2018).
[Crossref]

A. Ródenas, M. Gu, G. Corrielli, P. Paiè, S. John, A. K. Kar, and R. Osellame, “Three-dimensional femtosecond laser nanolithography of crystals,” Nat. Photonics 13(2), 105–109 (2019).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Eng. (1)

C. Cheng, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Superficial waveguide splitters fabricated by femtosecond laser writing of LiTaO3 crystal,” Opt. Eng. 54(6), 067113 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (10)

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[Crossref]

S.-Y. Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, “Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region,” Opt. Lett. 30(18), 2451–2453 (2005).
[Crossref]

D. S. Hum, R. K. Route, and M. M. Fejer, “Quasi-phase-matched second-harmonic generation of 532 nm radiation in 25°-rotated, x-cut, near-stoichiometric, lithium tantalate fabricated by vapor transport equilibration,” Opt. Lett. 32(8), 961–964 (2007).
[Crossref]

Z. Huang, C. Tu, S. Zhang, Y. Li, F. Lu, Y. Fan, and E. Li, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses,” Opt. Lett. 35(6), 877–879 (2010).
[Crossref]

T. Hatanaka, K. Nakamura, and T. Taniuchi, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett. 25(9), 651–653 (2000).
[Crossref]

Y. Ishigame, T. Suhara, and H. Nishihara, “LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett. 16(6), 375–377 (1991).
[Crossref]

J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22(16), 1214–1216 (1997).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[Crossref]

J. Zimmermann, J. Struckmeier, and M. R. Hofmann, “Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal,” Opt. Lett. 27(8), 604–606 (2002).
[Crossref]

W. Nie, C. Cheng, Y. Jia, C. Romero, J. R. Vázquez de Aldana, and F. Chen, “Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing,” Opt. Lett. 40(10), 2437–2440 (2015).
[Crossref]

Opt. Mater. (2)

C. Cheng, Y. Jia, J. R. Vázquez de Aldana, Y. Tan, and F. Chen, “Hybrid waveguiding structure in LiTaO3 crystal fabricated by direct femtosecond laser writing,” Opt. Mater. 51, 190–193 (2016).
[Crossref]

P. Hu, L. Zhang, J. Xiong, J. Yin, C. Zhao, X. He, and Y. Hang, “Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals,” Opt. Mater. 33(11), 1677–1680 (2011).
[Crossref]

Opt. Mater. Express (1)

Photonics Res. (1)

X. P. Hu, P. Xu, and S. N. Zhu, “Engineered quasi-phase-matching for laser techniques [Invited],” Photonics Res. 1(4), 171–185 (2013).
[Crossref]

Sci. Adv. (1)

H. Tang, X.-F. Lin, Z. Feng, J.-Y. Chen, J. Gao, K. Sun, C.-Y. Wang, P.-C. Lai, X.-Y. Xu, Y. Wang, L.-F. Qiao, A.-L. Yang, and X.-M. Jin, “Experimental two-dimensional quantum walk on a photonic chip,” Sci. Adv. 4(5), eaat3174 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The fabrication process of depressed cladding waveguides in fan-out PPSLT crystal. (a) The schematic diagram of the fan-out domain-inverted grating with pattern period seamlessly vary from 7.5 to 8.2 µm. Seven waveguides are fabricated at different position of sample, corresponding to the poling period from 7.83 to 7.95 µm with steps of 0.02 µm within the pattern. (b) Schematic plot of femtosecond laser direct writing. (c) Optical microscope cross-sectional image of waveguides No. 1 to No. 7, corresponding to 7.83 to 7.95 µm. The inset picture is the optical microscope image of waveguide No. 5.
Fig. 2.
Fig. 2. Schematic plot of experimental arrangement for SHG in depressed cladding waveguides in MgO doped fan-out PPSLT crystal.
Fig. 3.
Fig. 3. (a) The FP interference fringe of the waveguide No. 5 measured by wavelength tuning. Propagation loss of waveguide No. 5 = 1.56 dB/cm at 1550 nm. (b) The spectra of the fundamental laser beam at 1064 nm and the SHG at 532 nm transmitted of MgO: PPSLT cladding waveguide.
Fig. 4.
Fig. 4. (a) Experimental temperature tuning curve of SHG output power of 11 mm long PPSLT waveguide with 7.91 µm QPM period (No. 5) measured by CW laser. (b) The near-field mode-profiles of second harmonic 532 nm and (c) fundamental wave 1064 nm at the phase-matching temperature T = 81.5 °C. The yellow dotted circles in (b) and (c) are the sign of the written tracks.
Fig. 5.
Fig. 5. (a) Normalized temperature tuning curve of all seven waveguides with different periods, corresponding to different QPM temperature. (b) The calculated QPM temperatures corresponding to different periods of bulk materials (yellow line) at wavelength of 1064 nm. The seven blue circles denote the QPM temperatures of the seven cladding waveguides (Nos.1-7).
Fig. 6.
Fig. 6. Measured second harmonic output power and corresponding conversion efficiency as a function of the incident fundamental power of waveguide No. 5 at CW laser regime (a) and pulsed laser regime (b).

Tables (2)

Tables Icon

Table 1. Propagation attenuations of depressed cladding waveguides

Tables Icon

Table 2. The nonlinear SHG waveguides properties

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α = 4.34 d B L ( ln R ln ( 1 1 K 2 K ) )
K = I max I min I max + I min
η = P 2 ω ( L P ω i n ) 2 = 8 π 2 d Q P M 2 c ε 0 n ω 2 n 2 ω λ ω 2 A e f f
A e f f = [ | E ω ( x , y ) | 2 d x d y ] 2 | E 2 ω ( x , y ) | 2 d x d y [ E 2 ω ( x , y ) E ω 2 ( x , y ) d x d y ] 2

Metrics