Abstract

With the rapid developments in compact devices, the multi-function and reconfigurability of nanostructures are highly appreciated, while still very challenging. A majority of devices are usually mono-functional or hard to switch between different functions in one design. In this paper, we proposed graphene-wrapped core-shell nanowires to realize real-time reconfigurable sensors and nanoantenna by tuning the Fermi energies of graphene layers at the surfaces of core and shell, respectively. Owing to the electromagnetic coupling between the two graphene layer, two corresponding Fano resonances of scattering can arise in the Terahertz spectrum, which arises from the interference of bright modes and dark modes. Around the Fano resonances, the scattering can be considerably resonant (as an antenna) or suppressed (as a sensor). Interestingly, the field distributions are distinct at the suppressed scattering states for the two Fano resonances. The presented reconfigurable nanostructures may offer promising potentials for integrated and multi-functional electromagnetic control such as dynamic sensing and emission.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic Fano spectral response from graphene metasurfaces in the MIR region

Hua Lu, Dong Mao, Chao Zeng, Fajun Xiao, Dexing Yang, Ting Mei, and Jianlin Zhao
Opt. Mater. Express 8(4) 1058-1068 (2018)

Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration

Jicheng Wang, Ci Song, Jing Hang, Zheng-Da Hu, and Feng Zhang
Opt. Express 25(20) 23880-23892 (2017)

Tunablity of the unconventional Fano resonances in coated nanowires with radial anisotropy

H. L. Chen and L. Gao
Opt. Express 21(20) 23619-23630 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref]
  2. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  3. M. Naserpour, C. J. Zapata-Rodriguez, S. M. Vukovic, H. Pashaeiadl, and M. R. Belic, “Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers,” Sci. Rep. 7(1), 12186 (2017).
    [Crossref]
  4. X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
    [Crossref]
  5. C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alù, “Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
    [Crossref]
  6. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref]
  7. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
    [Crossref]
  8. T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, S. Gong, C. Zhang, and S. Liu, “Plasmon modes of circular cylindrical double-layer graphene,” Opt. Express 24(18), 20461 (2016).
    [Crossref]
  9. D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
    [Crossref]
  10. N. K. Emani, T. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
    [Crossref]
  11. E. Lee, I. C. Seo, S. C. Lim, H. Y. Jeong, and Y. C. Jun, “Active switching and tuning of sharp Fano resonances in the mid-infrared spectral region,” Opt. Express 24(22), 25684 (2016).
    [Crossref]
  12. T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
    [Crossref]
  13. T. Han, X. Bai, J. T. L. Thong, B. Li, and C. Qiu, “Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
    [Crossref]
  14. T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
    [Crossref]
  15. T. H. Han, J. J. Zhao, and T. Yuan, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
    [Crossref]
  16. K. Zhang, Y. Huang, A. E. Miroshnichenko, and L. Gao, “Tunable Optical Bistability and Tristability in Nonlinear Graphene-Wrapped Nanospheres,” J. Phys. Chem. C 121(21), 11804–11810 (2017).
    [Crossref]
  17. K. Zhang and L. Gao, “Optical bistability in graphene-wrapped dielectric nanowires,” Opt. Express 25(12), 13747 (2017).
    [Crossref]
  18. Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
    [Crossref]
  19. H. L. Chen and L. Gao, “Tunablity of the unconventional Fano resonances in coated nanowires with radial anisotropy,” Opt. Express 21(20), 23619 (2013).
    [Crossref]
  20. D. Gao, L. Gao, A. Novitsky, H. Chen, and B. Luk’Yanchuk, “Topological effects in anisotropy- induced nano-fano resonance of a cylinder,” Opt. Lett. 40(17), 4162–4165 (2015).
    [Crossref]
  21. Y. Xu, A. E. Miroshnichenko, and A. S. Desyatnikov, “Optical vortices at Fano resonances,” Opt. Lett. 37(23), 4985–4987 (2012).
    [Crossref]
  22. B. S. Luk Yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15(7), 073001 (2013).
    [Crossref]
  23. E. Prodan, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref]
  24. J. Zhu, J. Li, and J. Zhao, “The Effect of Dielectric Coating on the Local Electric Field Enhancement of Au-Ag Core-Shell Nanoparticles,” Plasmonics 10(1), 1–8 (2015).
    [Crossref]
  25. Z. Jian, L. Jian-jun, and Z. Jun-wu, “Tuning the Dipolar Plasmon Hybridization of Multishell Metal-Dielectric Nanostructure: Gold Nanosphere in a Gold Nanoshell,” Plasmonics 6(3), 527–534 (2011).
    [Crossref]
  26. Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
    [Crossref]
  27. W. J. Yu, P. J. Ma, H. Sun, L. Gao, and R. E. Noskov, “Optical tristability and ultrafast Fano switching in nonlinear magnetoplasmonic nanoparticles,” Phys. Rev. B 97(7), 075436 (2018).
    [Crossref]

2018 (1)

W. J. Yu, P. J. Ma, H. Sun, L. Gao, and R. E. Noskov, “Optical tristability and ultrafast Fano switching in nonlinear magnetoplasmonic nanoparticles,” Phys. Rev. B 97(7), 075436 (2018).
[Crossref]

2017 (3)

M. Naserpour, C. J. Zapata-Rodriguez, S. M. Vukovic, H. Pashaeiadl, and M. R. Belic, “Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers,” Sci. Rep. 7(1), 12186 (2017).
[Crossref]

K. Zhang, Y. Huang, A. E. Miroshnichenko, and L. Gao, “Tunable Optical Bistability and Tristability in Nonlinear Graphene-Wrapped Nanospheres,” J. Phys. Chem. C 121(21), 11804–11810 (2017).
[Crossref]

K. Zhang and L. Gao, “Optical bistability in graphene-wrapped dielectric nanowires,” Opt. Express 25(12), 13747 (2017).
[Crossref]

2016 (4)

Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
[Crossref]

E. Lee, I. C. Seo, S. C. Lim, H. Y. Jeong, and Y. C. Jun, “Active switching and tuning of sharp Fano resonances in the mid-infrared spectral region,” Opt. Express 24(22), 25684 (2016).
[Crossref]

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref]

T. Zhao, M. Hu, R. Zhong, X. Chen, P. Zhang, S. Gong, C. Zhang, and S. Liu, “Plasmon modes of circular cylindrical double-layer graphene,” Opt. Express 24(18), 20461 (2016).
[Crossref]

2015 (4)

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

J. Zhu, J. Li, and J. Zhao, “The Effect of Dielectric Coating on the Local Electric Field Enhancement of Au-Ag Core-Shell Nanoparticles,” Plasmonics 10(1), 1–8 (2015).
[Crossref]

D. Gao, L. Gao, A. Novitsky, H. Chen, and B. Luk’Yanchuk, “Topological effects in anisotropy- induced nano-fano resonance of a cylinder,” Opt. Lett. 40(17), 4162–4165 (2015).
[Crossref]

2014 (3)

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

T. Han, X. Bai, J. T. L. Thong, B. Li, and C. Qiu, “Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

N. K. Emani, T. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

2013 (4)

T. H. Han, J. J. Zhao, and T. Yuan, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

H. L. Chen and L. Gao, “Tunablity of the unconventional Fano resonances in coated nanowires with radial anisotropy,” Opt. Express 21(20), 23619 (2013).
[Crossref]

B. S. Luk Yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15(7), 073001 (2013).
[Crossref]

Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
[Crossref]

2012 (2)

Y. Xu, A. E. Miroshnichenko, and A. S. Desyatnikov, “Optical vortices at Fano resonances,” Opt. Lett. 37(23), 4985–4987 (2012).
[Crossref]

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alù, “Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

2011 (1)

Z. Jian, L. Jian-jun, and Z. Jun-wu, “Tuning the Dipolar Plasmon Hybridization of Multishell Metal-Dielectric Nanostructure: Gold Nanosphere in a Gold Nanoshell,” Plasmonics 6(3), 527–534 (2011).
[Crossref]

2010 (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

2008 (2)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

2003 (1)

E. Prodan, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Aguanno, G. D.

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alù, “Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Alù, A.

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alù, “Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Argyropoulos, C.

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alù, “Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Bai, X.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

T. Han, X. Bai, J. T. L. Thong, B. Li, and C. Qiu, “Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

Belic, M. R.

M. Naserpour, C. J. Zapata-Rodriguez, S. M. Vukovic, H. Pashaeiadl, and M. R. Belic, “Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers,” Sci. Rep. 7(1), 12186 (2017).
[Crossref]

Boltasseva, A.

N. K. Emani, T. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Chen, H.

Chen, H. L.

Chen, P.

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alù, “Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Chen, X.

Chen, Y. P.

N. K. Emani, T. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Chung, T.

N. K. Emani, T. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Desyatnikov, A. S.

Dorpe, P. V.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Emani, N. K.

N. K. Emani, T. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Gao, D.

D. Gao, L. Gao, A. Novitsky, H. Chen, and B. Luk’Yanchuk, “Topological effects in anisotropy- induced nano-fano resonance of a cylinder,” Opt. Lett. 40(17), 4162–4165 (2015).
[Crossref]

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Gao, L.

W. J. Yu, P. J. Ma, H. Sun, L. Gao, and R. E. Noskov, “Optical tristability and ultrafast Fano switching in nonlinear magnetoplasmonic nanoparticles,” Phys. Rev. B 97(7), 075436 (2018).
[Crossref]

K. Zhang, Y. Huang, A. E. Miroshnichenko, and L. Gao, “Tunable Optical Bistability and Tristability in Nonlinear Graphene-Wrapped Nanospheres,” J. Phys. Chem. C 121(21), 11804–11810 (2017).
[Crossref]

K. Zhang and L. Gao, “Optical bistability in graphene-wrapped dielectric nanowires,” Opt. Express 25(12), 13747 (2017).
[Crossref]

Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
[Crossref]

D. Gao, L. Gao, A. Novitsky, H. Chen, and B. Luk’Yanchuk, “Topological effects in anisotropy- induced nano-fano resonance of a cylinder,” Opt. Lett. 40(17), 4162–4165 (2015).
[Crossref]

H. L. Chen and L. Gao, “Tunablity of the unconventional Fano resonances in coated nanowires with radial anisotropy,” Opt. Express 21(20), 23619 (2013).
[Crossref]

Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Gong, S.

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Han, T.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

T. Han, X. Bai, J. T. L. Thong, B. Li, and C. Qiu, “Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

Han, T. H.

T. H. Han, J. J. Zhao, and T. Yuan, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Hao, F.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

He, X.

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref]

Hu, M.

Huang, Y.

K. Zhang, Y. Huang, A. E. Miroshnichenko, and L. Gao, “Tunable Optical Bistability and Tristability in Nonlinear Graphene-Wrapped Nanospheres,” J. Phys. Chem. C 121(21), 11804–11810 (2017).
[Crossref]

Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
[Crossref]

Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
[Crossref]

Jeong, H. Y.

Jian, Z.

Z. Jian, L. Jian-jun, and Z. Jun-wu, “Tuning the Dipolar Plasmon Hybridization of Multishell Metal-Dielectric Nanostructure: Gold Nanosphere in a Gold Nanoshell,” Plasmonics 6(3), 527–534 (2011).
[Crossref]

Jian-jun, L.

Z. Jian, L. Jian-jun, and Z. Jun-wu, “Tuning the Dipolar Plasmon Hybridization of Multishell Metal-Dielectric Nanostructure: Gold Nanosphere in a Gold Nanoshell,” Plasmonics 6(3), 527–534 (2011).
[Crossref]

Jun, Y. C.

Jun-wu, Z.

Z. Jian, L. Jian-jun, and Z. Jun-wu, “Tuning the Dipolar Plasmon Hybridization of Multishell Metal-Dielectric Nanostructure: Gold Nanosphere in a Gold Nanoshell,” Plasmonics 6(3), 527–534 (2011).
[Crossref]

Khanikaev, A. B.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Kildishev, A. V.

N. K. Emani, T. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Kivshar, Y. S.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

B. S. Luk Yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15(7), 073001 (2013).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

Lee, E.

Li, B.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

T. Han, X. Bai, J. T. L. Thong, B. Li, and C. Qiu, “Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

Li, J.

J. Zhu, J. Li, and J. Zhao, “The Effect of Dielectric Coating on the Local Electric Field Enhancement of Au-Ag Core-Shell Nanoparticles,” Plasmonics 10(1), 1–8 (2015).
[Crossref]

Lim, S. C.

Lin, F.

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref]

Liu, F.

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref]

Liu, S.

Luk Yanchuk, B. S.

B. S. Luk Yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15(7), 073001 (2013).
[Crossref]

Luk’Yanchuk, B.

D. Gao, L. Gao, A. Novitsky, H. Chen, and B. Luk’Yanchuk, “Topological effects in anisotropy- induced nano-fano resonance of a cylinder,” Opt. Lett. 40(17), 4162–4165 (2015).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Luo, Y.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Ma, P. J.

W. J. Yu, P. J. Ma, H. Sun, L. Gao, and R. E. Noskov, “Optical tristability and ultrafast Fano switching in nonlinear magnetoplasmonic nanoparticles,” Phys. Rev. B 97(7), 075436 (2018).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Miroshnichenko, A. E.

K. Zhang, Y. Huang, A. E. Miroshnichenko, and L. Gao, “Tunable Optical Bistability and Tristability in Nonlinear Graphene-Wrapped Nanospheres,” J. Phys. Chem. C 121(21), 11804–11810 (2017).
[Crossref]

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

B. S. Luk Yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15(7), 073001 (2013).
[Crossref]

Y. Xu, A. E. Miroshnichenko, and A. S. Desyatnikov, “Optical vortices at Fano resonances,” Opt. Lett. 37(23), 4985–4987 (2012).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Monticone, F.

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alù, “Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Naserpour, M.

M. Naserpour, C. J. Zapata-Rodriguez, S. M. Vukovic, H. Pashaeiadl, and M. R. Belic, “Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers,” Sci. Rep. 7(1), 12186 (2017).
[Crossref]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Noskov, R. E.

W. J. Yu, P. J. Ma, H. Sun, L. Gao, and R. E. Noskov, “Optical tristability and ultrafast Fano switching in nonlinear magnetoplasmonic nanoparticles,” Phys. Rev. B 97(7), 075436 (2018).
[Crossref]

Novitsky, A.

Pashaeiadl, H.

M. Naserpour, C. J. Zapata-Rodriguez, S. M. Vukovic, H. Pashaeiadl, and M. R. Belic, “Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers,” Sci. Rep. 7(1), 12186 (2017).
[Crossref]

Prodan, E.

E. Prodan, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Qiu, C.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

T. Han, X. Bai, J. T. L. Thong, B. Li, and C. Qiu, “Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

Qiu, C. W.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

Seo, I. C.

Shalaev, V. M.

N. K. Emani, T. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Shi, W.

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref]

Smirnova, D. A.

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Sun, H.

W. J. Yu, P. J. Ma, H. Sun, L. Gao, and R. E. Noskov, “Optical tristability and ultrafast Fano switching in nonlinear magnetoplasmonic nanoparticles,” Phys. Rev. B 97(7), 075436 (2018).
[Crossref]

Teng, J.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Thong, J. T. L.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

T. Han, X. Bai, J. T. L. Thong, B. Li, and C. Qiu, “Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

Vukovic, S. M.

M. Naserpour, C. J. Zapata-Rodriguez, S. M. Vukovic, H. Pashaeiadl, and M. R. Belic, “Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers,” Sci. Rep. 7(1), 12186 (2017).
[Crossref]

Wu, L.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Xu, Y.

Yang, T.

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Ye, H.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Yeo, S. P.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Yu, W. J.

W. J. Yu, P. J. Ma, H. Sun, L. Gao, and R. E. Noskov, “Optical tristability and ultrafast Fano switching in nonlinear magnetoplasmonic nanoparticles,” Phys. Rev. B 97(7), 075436 (2018).
[Crossref]

Yuan, T.

T. H. Han, J. J. Zhao, and T. Yuan, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Zapata-Rodriguez, C. J.

M. Naserpour, C. J. Zapata-Rodriguez, S. M. Vukovic, H. Pashaeiadl, and M. R. Belic, “Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers,” Sci. Rep. 7(1), 12186 (2017).
[Crossref]

Zhang, C.

Zhang, K.

K. Zhang, Y. Huang, A. E. Miroshnichenko, and L. Gao, “Tunable Optical Bistability and Tristability in Nonlinear Graphene-Wrapped Nanospheres,” J. Phys. Chem. C 121(21), 11804–11810 (2017).
[Crossref]

K. Zhang and L. Gao, “Optical bistability in graphene-wrapped dielectric nanowires,” Opt. Express 25(12), 13747 (2017).
[Crossref]

Zhang, P.

Zhang, S.

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

Zhao, J.

J. Zhu, J. Li, and J. Zhao, “The Effect of Dielectric Coating on the Local Electric Field Enhancement of Au-Ag Core-Shell Nanoparticles,” Plasmonics 10(1), 1–8 (2015).
[Crossref]

Zhao, J. J.

T. H. Han, J. J. Zhao, and T. Yuan, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

Zhao, T.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Zhong, R.

Zhu, J.

J. Zhu, J. Li, and J. Zhao, “The Effect of Dielectric Coating on the Local Electric Field Enhancement of Au-Ag Core-Shell Nanoparticles,” Plasmonics 10(1), 1–8 (2015).
[Crossref]

Adv. Mater. (3)

T. Han, H. Ye, Y. Luo, S. P. Yeo, J. Teng, S. Zhang, and C. W. Qiu, “Manipulating DC currents with bilayer bulk natural materials,” Adv. Mater. 26(21), 3478–3483 (2014).
[Crossref]

T. Han, X. Bai, J. T. L. Thong, B. Li, and C. Qiu, “Full Control and Manipulation of Heat Signatures: Cloaking, Camouflage and Thermal Metamaterials,” Adv. Mater. 26(11), 1731–1734 (2014).
[Crossref]

T. Yang, X. Bai, D. Gao, L. Wu, B. Li, J. T. L. Thong, and C. Qiu, “Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields,” Adv. Mater. 27(47), 7752–7758 (2015).
[Crossref]

Energy Environ. Sci. (1)

T. H. Han, J. J. Zhao, and T. Yuan, “Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials,” Energy Environ. Sci. 6(12), 3537–3541 (2013).
[Crossref]

J. Opt. (1)

B. S. Luk Yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt. 15(7), 073001 (2013).
[Crossref]

J. Phys. Chem. C (2)

K. Zhang, Y. Huang, A. E. Miroshnichenko, and L. Gao, “Tunable Optical Bistability and Tristability in Nonlinear Graphene-Wrapped Nanospheres,” J. Phys. Chem. C 121(21), 11804–11810 (2017).
[Crossref]

Y. Huang and L. Gao, “Equivalent Permittivity and Permeability and Multiple Fano Resonances for Nonlocal Metallic Nanowires,” J. Phys. Chem. C 117(37), 19203–19211 (2013).
[Crossref]

Nano Lett. (2)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

N. K. Emani, T. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Nanotechnology (1)

X. He, F. Lin, F. Liu, and W. Shi, “Terahertz tunable graphene Fano resonance,” Nanotechnology 27(48), 485202 (2016).
[Crossref]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonant in plasmonic Nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (3)

W. J. Yu, P. J. Ma, H. Sun, L. Gao, and R. E. Noskov, “Optical tristability and ultrafast Fano switching in nonlinear magnetoplasmonic nanoparticles,” Phys. Rev. B 97(7), 075436 (2018).
[Crossref]

D. A. Smirnova, A. E. Miroshnichenko, Y. S. Kivshar, and A. B. Khanikaev, “Tunable nonlinear graphene metasurfaces,” Phys. Rev. B 92(16), 161406 (2015).
[Crossref]

Y. Huang and L. Gao, “Tunable Fano resonances and enhanced optical bistability in composites of coated cylinders due to nonlocality,” Phys. Rev. B 93(23), 235439 (2016).
[Crossref]

Phys. Rev. Lett. (2)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref]

C. Argyropoulos, P. Chen, F. Monticone, G. D. Aguanno, and A. Alù, “Nonlinear Plasmonic Cloaks to Realize Giant All-Optical Scattering Switching,” Phys. Rev. Lett. 108(26), 263905 (2012).
[Crossref]

Plasmonics (2)

J. Zhu, J. Li, and J. Zhao, “The Effect of Dielectric Coating on the Local Electric Field Enhancement of Au-Ag Core-Shell Nanoparticles,” Plasmonics 10(1), 1–8 (2015).
[Crossref]

Z. Jian, L. Jian-jun, and Z. Jun-wu, “Tuning the Dipolar Plasmon Hybridization of Multishell Metal-Dielectric Nanostructure: Gold Nanosphere in a Gold Nanoshell,” Plasmonics 6(3), 527–534 (2011).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (1)

M. Naserpour, C. J. Zapata-Rodriguez, S. M. Vukovic, H. Pashaeiadl, and M. R. Belic, “Tunable invisibility cloaking by using isolated graphene-coated nanowires and dimers,” Sci. Rep. 7(1), 12186 (2017).
[Crossref]

Science (1)

E. Prodan, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of dielectric-graphene-dielectric-graphene multilayer nano-shells structure. The radii of the inner and outer cylindrical are $a$ and $b$, respectively. (b) The cross-sectional view of Fig. 1(a). ${\varepsilon _c}$, ${\varepsilon _s}$ and ${\varepsilon _h}$ are the relative permittivity’s of the inner, outer dielectric layers and background medium, respectively. The chemical potential of the inner and outer graphene layers can be manipulated through applied voltages ${V_{g1}}$ and ${V_{g2}}$. The plane wave is polarized (electric field) along $y$ axis and is propagating along $x$ axis.
Fig. 2.
Fig. 2. The scattering property under different graphene layers of this system. Without graphene layers(black line), only inner graphene layer(red line), only outer graphene layer(green line) and there are two layers of graphene inside and outside(blue). Other parameters are $b = 250\;nm,{\kern 1pt} {\kern 1pt} \eta = 0.5,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\varepsilon _c} = {\varepsilon _s} = 3.9,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\varepsilon _h} = 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\tau _1} = {\tau _2} = 6.5ps,{\kern 1pt} {\kern 1pt} {\kern 1pt} {E_{F1}} = {E_{F2}} = 0.5\;eV$.
Fig. 3.
Fig. 3. (a) and (b): The scattering section of dielectric-graphene-dielectric-graphene multilayer nano-shells structure with different frequency, aspect ratio and chemical potential of the inner and outer graphene layers, (a) ${E_{F1}} = {E_{F2}} = 0.2{\kern 1pt} \;eV$, (b) ${E_{F1}} = {E_{F2}} = 0.5\;eV$. Figure 3(c) and (d): the local field distribution at points A and B of this model. (c) $\eta = 0.7,\;f = 5.7\;THz$ and (d) $\eta = 0.7,\;f = 16.2\;THz$. Other parameters are $b = 250\;nm,{\varepsilon _c} = {\varepsilon _s} = 3.9,{\varepsilon _h} = 1,{\tau _1} = {\tau _2} = 6.5ps$. The dotted circles represent the boundaries of the particles.
Fig. 4.
Fig. 4. (a) the scattering efficiency of the dielectric-graphene-dielectric-graphene structure as a function of the Fermi level of the inner and outer graphene layers, with ${E_{F1}} = {E_{F2}} = 0.5\;eV$ (red line), and ${E_{F1}} = {E_{F2}} = 0.8\;eV$ (green line). And Poynting vector $S$ distribution, lines of Poynting vector $S$, and singular points for (b) ${E_{F1}} = {E_{F2}} = 0.5\;eV$, the incident frequency $f = 7\;THz$. (c) ${E_{F1}} = {E_{F2}} = 0.5\;eV$, the incident frequency $f = 10THz$ and (d) ${E_{F1}} = {E_{F2}} = 0.8\;eV$, the incident frequency $f = 10\;THz$. Other parameters are $b = 250\;nm,\eta = 0.5,{\varepsilon _c} = {\varepsilon _s} = 3.9,{\varepsilon _h} = 1,{\tau _1} = {\tau _2} = 6.5ps$.
Fig. 5.
Fig. 5. (a) The scattering efficiency for various chemical potential of the inner and outer graphene layers. And (b) ${E_{F1}} = 0.98\;eV,{E_{F2}} = 0.53\;eV$ (red line) and ${E_{F1}} = 0.19\;eV,{E_{F2}} = 0.03\;eV$ (green line). The first Fano response and the second Fano response are labeled with $\textrm{I}$ and $\textrm{II}$ in corresponding colors. The fitting results (black dotted lines) of the first Fano response and the second Fano response in Fig. 5(b) with ${E_{F1}} = 0.98\;eV,{E_{F2}} = 0.53\;eV$. $|{{q_\textrm{I}}} |$ and $|{{q_{\textrm{II}}}} |$ are the Fano parameter of the first Fano response and the second Fano response, respectively. (c) The local electric fields with ${E_{F1}} = 0.98\;eV,{E_{F2}} = 0.53\;eV$, and (d) ${E_{F1}} = 0.19\;eV,{E_{F2}} = 0.03\;eV$. Other parameters are $b = 250\;nm,$ $\eta = 0.5,$ ${\varepsilon _c} = {\varepsilon _s} = 3.9,$ ${\varepsilon _h} = 1,$ ${\tau _1} = {\tau _2} = 6.5ps$ and the incident frequency $f = 10\;THz$.
Fig. 6.
Fig. 6. The numerical simulation results on Fig. 4(b) and Fig. 5(d). (a) The distribution of Poynting vector $S$, where the direction of arrow represents the direction of $S$. (b) The distribution of the local electric field. The distribution of colors in the figures indicates the numerical size of $S$ and local electric field. The corresponding parameters are the same as those in Fig. 4(b) and Fig. 5(d).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

1 ε 0 ε n r ψ d d r ( r d ψ d r ) + 1 ε 0 ε n 1 Θ d 2 Θ d θ 2 + ω 2 μ 0 μ n = 0
H c z = m = A m J m ( k c r ) e i m θ ( r < a ) H s z = m = i m [ B m J m ( k s r ) + C m H m ( k s r ) ] e i m θ ( a < r < b ) ( r > b ) H h z = m = i m [ J m ( k h r ) + D m H m ( k h r ) ] e i m θ ( r > b )
D m = | k c ε c J m ( k c a ) i m k s ε s J m ( k s a ) i m k s ε s H m ( k s a ) 0 J m ( k c a ) + i k s σ 1 ω ε 0 ε c J m ( k c a ) i m J m ( k s a ) i m H m ( k s a ) 0 0 k s ε s J m ( k s b ) k s ε s H m ( k s b ) k h ε h J m ( k h b ) 0 J m ( k s b ) + i k s σ 2 ω ε 0 ε s J m ( k s b ) H m ( k s b ) + i k s σ 2 ω ε 0 ε s H m ( k s b ) J m ( k h b ) | | k c ε c J m ( k c a ) i m k s ε s J m ( k s a ) i m k s ε s H m ( k s a ) 0 J m ( k c a ) + i k s σ 1 ω ε 0 ε c J m ( k c a ) i m J m ( k s a ) i m H m ( k s a ) 0 0 k s ε s J m ( k s b ) k s ε s H m ( k s b ) k h ε h H m ( k h b ) 0 J m ( k s b ) + i k s σ 2 ω ε 0 ε s J m ( k s b ) H m ( k s b ) + i k s σ 2 ω ε 0 ε s H m ( k s b ) H m ( k h b ) |
Q s c a = 2 / k b ( | D 0 | 2 + 2 m = 1 | D m | 2 )
ϕ c = A E 0 r cos φ ϕ s = ( B r + C r ) E 0 cos φ ϕ o = ( r + D r ) E 0 cos φ
N u = 1 b 2 [ ( ε s ε c ) ( ε s + ε h ) ( ε s ε c ) i σ 2 ω b ε 0 ( ε s + ε h ) i σ 1 ω a ε 0 σ 1 σ 2 ω 2 ε 0 2 a b ] 1 a 2 [ ( ε s + ε c ) ( ε s ε h ) + ( ε s + ε c ) i σ 2 ω b ε 0 + ( ε s ε h ) i σ 1 ω a ε 0 σ 1 σ 2 ω 2 ε 0 2 a b ]
D e = 1 b 4 [ ( ε s ε c ) ( ε s ε h ) ( ε s ε c ) i σ 2 ω b ε 0 ( ε s ε h ) i σ 1 ω a ε 0 σ 1 σ 2 ω 2 ε 0 2 a b ] 1 a 2 b 2 [ ( ε s + ε c ) ( ε s + ε h ) + ( ε s + ε c ) i σ 2 ω b ε 0 + ( ε s + ε h ) i σ 1 ω a ε 0 σ 1 σ 2 ω 2 ε 0 2 a b ]
N u = b 2 [ i ( ε s ε h ) σ 2 ω ε 0 b ]
D e = i ( ε s + ε h ) σ 2 ω ε 0 b
Q s c a = π 2 ( k b ) 3 / 4 | D / b 2 | 2

Metrics