Abstract

An organic dye-doped polymer laser with a novel wavelength-tuning mechanism is proposed. This device is a vertical cavity surface-emitting laser realized by using a couple of distributed Bragg reflectors (DBRs), on which a dye-doped polymer thin film and a polydimethylsiloxane film are deposited individually. One of the DBRs is electrically driven to vary the effective cavity length. Under the optical excitation, tunable lasing operation with high stability can be achieved when immersion oil is used for the refractive index matching in the cavity. Since the device operation mechanism proposed here is quite simple, it is promising for designing a compact laser device with wide, precise, and electrically driven wavelength tunability.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Very compact tunable solid-state laser utilizing a thin-film organic semiconductor

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer
Opt. Lett. 26(9) 593-595 (2001)

Continuously tunable polymer membrane laser

Alex Berdin, Heikki Rekola, Oksana Sakhno, Michael Wegener, and Arri Priimagi
Opt. Express 27(18) 25634-25646 (2019)

Wavelength bistability based on optical injection in a novel tunable dual mode laser

Hang Zhao, Yao Zhu, Feng Li, and Yonglin Yu
Opt. Express 24(4) 3817-3831 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: A Tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
    [Crossref]
  2. J. Buus, M.-C. Amann, and D. J. Blumenthal, Tunable laser diodes and related optical sources, 2nd ed. (John Wiley & Sons, 2005).
  3. F. J. Duarte, Tunable Laser Applications, 3rd ed. (CRC, 2016).
  4. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
    [Crossref]
  5. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
    [Crossref]
  6. D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for ophthalmic imaging,” J. Lightwave Technol. 33(16), 3461–3468 (2015).
    [Crossref]
  7. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [Crossref]
  8. C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
    [Crossref]
  9. S. Forget and S. Chénais, Organic solid-state lasers. (Springer, 2013).
  10. A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
    [Crossref]
  11. K. Nagai and K. Yamashita, “Wavelength tunability of plastic waveguide laser with asymmetric distributed Bragg reflectors,” J. Lightwave Technol. 33(22), 4600–4605 (2015).
    [Crossref]
  12. Y. Higase, S. Morita, T. Fujii, S. Takahashi, K. Yamashita, and F. Sasaki, “High-gain and wide-band optical amplifications induced by a coupled excited state of organic dye molecules co-doped in polymer waveguide,” Opt. Lett. 43(8), 1714–1717 (2018).
    [Crossref]
  13. K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(3A), L249–L251 (2003).
    [Crossref]
  14. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
    [Crossref]
  15. B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
    [Crossref]
  16. P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
    [Crossref]
  17. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001).
    [Crossref]
  18. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
    [Crossref]
  19. M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890–5895 (2010).
    [Crossref]
  20. S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
    [Crossref]
  21. B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
    [Crossref]
  22. Y. Yang, Y. Zhou, Z. Liao, J. Yu, Y. Cui, I. Garcia-Moreno, Z. Wang, A. Costela, and G. Qian, “Mechanically tunable organic vertical-cavity surface emitting lasers (VCSELs) for highly sensitive stress probing in dual-modes,” Opt. Express 23(4), 4385–4396 (2015).
    [Crossref]
  23. S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011).
    [Crossref]
  24. S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
    [Crossref]
  25. A. Camposeo, P. Del Carro, L. Persano, and D. Pisignano, “Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules,” Adv. Mater. 24(35), OP221–OP225 (2012).
    [Crossref]
  26. W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
    [Crossref]
  27. M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
    [Crossref]
  28. D. Gentili, G. Foschi, F. Valle, M. Cavallini, and F. Biscarini, “Applications of dewetting in micro and nanotechnology,” Chem. Soc. Rev. 41(12), 4430–4443 (2012).
    [Crossref]
  29. C. A. Curwen, J. L. Reno, and B. S. Williams, “Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL,” Nat. Photonics 10.1038/s41566-019-0518-z.

2018 (1)

2017 (1)

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

2016 (1)

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

2015 (3)

2014 (1)

W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
[Crossref]

2012 (4)

A. Camposeo, P. Del Carro, L. Persano, and D. Pisignano, “Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules,” Adv. Mater. 24(35), OP221–OP225 (2012).
[Crossref]

D. Gentili, G. Foschi, F. Valle, M. Cavallini, and F. Biscarini, “Applications of dewetting in micro and nanotechnology,” Chem. Soc. Rev. 41(12), 4430–4443 (2012).
[Crossref]

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
[Crossref]

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

2011 (3)

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011).
[Crossref]

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

2010 (2)

M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, and U. Lemmer, “Intermediate high index layer for laser mode tuning in organic semiconductor lasers,” Opt. Express 18(6), 5890–5895 (2010).
[Crossref]

B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

2008 (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
[Crossref]

2006 (1)

2004 (3)

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, “Tunable semiconductor lasers: A Tutorial,” J. Lightwave Technol. 22(1), 193–202 (2004).
[Crossref]

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

2003 (1)

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(3A), L249–L251 (2003).
[Crossref]

2001 (1)

2000 (1)

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

Akselrod, G. M.

W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
[Crossref]

Akulova, Y.

Amann, M.-C.

J. Buus, M.-C. Amann, and D. J. Blumenthal, Tunable laser diodes and related optical sources, 2nd ed. (John Wiley & Sons, 2005).

Barton, J. S.

Becker, E.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Berleb, S.

Biscarini, F.

D. Gentili, G. Foschi, F. Valle, M. Cavallini, and F. Biscarini, “Applications of dewetting in micro and nanotechnology,” Chem. Soc. Rev. 41(12), 4430–4443 (2012).
[Crossref]

Blumenthal, D. J.

J. Buus, M.-C. Amann, and D. J. Blumenthal, Tunable laser diodes and related optical sources, 2nd ed. (John Wiley & Sons, 2005).

Bocksrocker, T.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011).
[Crossref]

Bräse, S.

Brütting, W.

Bulovic, V.

W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
[Crossref]

Burgner, C. B.

Buus, J.

J. Buus, M.-C. Amann, and D. J. Blumenthal, Tunable laser diodes and related optical sources, 2nd ed. (John Wiley & Sons, 2005).

Cable, A. E.

Camposeo, A.

A. Camposeo, P. Del Carro, L. Persano, and D. Pisignano, “Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules,” Adv. Mater. 24(35), OP221–OP225 (2012).
[Crossref]

Cavallini, M.

D. Gentili, G. Foschi, F. Valle, M. Cavallini, and F. Biscarini, “Applications of dewetting in micro and nanotechnology,” Chem. Soc. Rev. 41(12), 4430–4443 (2012).
[Crossref]

Chang, W.

W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
[Crossref]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

Chénais, S.

S. Forget and S. Chénais, Organic solid-state lasers. (Springer, 2013).

Choi, W. J.

Coldren, C. W.

Coldren, L. A.

Costela, A.

Cui, Y.

Curwen, C. A.

C. A. Curwen, J. L. Reno, and B. S. Williams, “Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL,” Nat. Photonics 10.1038/s41566-019-0518-z.

Del Carro, P.

A. Camposeo, P. Del Carro, L. Persano, and D. Pisignano, “Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules,” Adv. Mater. 24(35), OP221–OP225 (2012).
[Crossref]

Dobbertin, T.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Döring, S.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

Duarte, F. J.

F. J. Duarte, Tunable Laser Applications, 3rd ed. (CRC, 2016).

Feldmann, J.

Fish, G. A.

Forberich, K.

Forget, S.

S. Forget and S. Chénais, Organic solid-state lasers. (Springer, 2013).

Foschi, G.

D. Gentili, G. Foschi, F. Valle, M. Cavallini, and F. Biscarini, “Applications of dewetting in micro and nanotechnology,” Chem. Soc. Rev. 41(12), 4430–4443 (2012).
[Crossref]

Franke, M.

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

Friend, R. H.

B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Fröb, H.

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
[Crossref]

Fujii, T.

Fujimoto, J. G.

Garcia-Moreno, I.

Gather, M. C.

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

Geislhöringer, F.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011).
[Crossref]

Gentili, D.

D. Gentili, G. Foschi, F. Valle, M. Cavallini, and F. Biscarini, “Applications of dewetting in micro and nanotechnology,” Chem. Soc. Rev. 41(12), 4430–4443 (2012).
[Crossref]

Gerken, M.

Gombert, A.

Görrn, P.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Gothe, H.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
[Crossref]

Grivas, C.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

Haase, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Heussner, N.

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011).
[Crossref]

Higase, Y.

Hintschich, S. I.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Huska, K.

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
[Crossref]

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011).
[Crossref]

Jayaraman, V.

Johannes, H.-H.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Johansson, L.

John, D. D.

Kern, W.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Klinkhammer, S.

Kofod, G.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

Kollosche, M.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

Kowalsky, W.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Koyama, F.

Kröger, M.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Kuehne, A. J. C.

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

Kumagai, M.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(3A), L249–L251 (2003).
[Crossref]

Lang, J. H.

W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
[Crossref]

Langer, G.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Lee, B. K.

Lehnhardt, M.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Lemmer, U.

Leo, K.

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
[Crossref]

Liao, Z.

Liu, X.

Lyssenko, V. G.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
[Crossref]

Mappes, T.

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
[Crossref]

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011).
[Crossref]

Mehner, P. J.

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

Morita, S.

Mückl, A. G.

Murarka, A.

W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
[Crossref]

Nagai, K.

Packard, C.

W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
[Crossref]

Paschew, G.

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

Persano, L.

A. Camposeo, P. Del Carro, L. Persano, and D. Pisignano, “Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules,” Adv. Mater. 24(35), OP221–OP225 (2012).
[Crossref]

Pisignano, D.

A. Camposeo, P. Del Carro, L. Persano, and D. Pisignano, “Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules,” Adv. Mater. 24(35), OP221–OP225 (2012).
[Crossref]

Pogantsch, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Pollnau, M.

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

Potsaid, B.

Qian, G.

Rabe, T.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Reno, J. L.

C. A. Curwen, J. L. Reno, and B. S. Williams, “Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL,” Nat. Photonics 10.1038/s41566-019-0518-z.

Richter, A.

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

Riechel, S.

Riedl, T.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Robertson, M. E.

Sasaki, F.

Schneider, D.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

Schütte, B.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
[Crossref]

Seida, Y.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(3A), L249–L251 (2003).
[Crossref]

Shen, Y.

Shimizu, K.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(3A), L249–L251 (2003).
[Crossref]

Slowik, I.

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

Stroisch, M.

Stumpe, J.

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

Sudzius, M.

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
[Crossref]

Suzuki, K.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(3A), L249–L251 (2003).
[Crossref]

Takahashi, K.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(3A), L249–L251 (2003).
[Crossref]

Takahashi, S.

Taniguchi, Y.

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(3A), L249–L251 (2003).
[Crossref]

Teiwes-Morin, C.

Tétreault, N.

B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Valle, F.

D. Gentili, G. Foschi, F. Valle, M. Cavallini, and F. Biscarini, “Applications of dewetting in micro and nanotechnology,” Chem. Soc. Rev. 41(12), 4430–4443 (2012).
[Crossref]

Valouch, S.

Vanderheiden, S.

Vannahme, C.

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
[Crossref]

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011).
[Crossref]

Voigt, A.

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

Wagner, S.

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Wang, A.

W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
[Crossref]

Wang, Z.

Weinberger, M. R.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

Welland, M. E.

B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Wenger, B.

B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

Williams, B. S.

C. A. Curwen, J. L. Reno, and B. S. Williams, “Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL,” Nat. Photonics 10.1038/s41566-019-0518-z.

Wittwer, V.

Woggon, T.

Yamashita, K.

Yang, Y.

Yu, J.

Zhou, Y.

Zojer, E.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. Franke, I. Slowik, P. J. Mehner, G. Paschew, A. Voigt, H. Fröb, K. Leo, and A. Richter, “Electrically tunable dye emission via microcavity integrated PDMS gel actuator,” ACS Appl. Mater. Interfaces 9(34), 29193–29202 (2017).
[Crossref]

Adv. Mater. (4)

S. Döring, M. Kollosche, T. Rabe, J. Stumpe, and G. Kofod, “Electrically tunable polymer DFB laser,” Adv. Mater. 23(37), 4265–4269 (2011).
[Crossref]

A. Camposeo, P. Del Carro, L. Persano, and D. Pisignano, “Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules,” Adv. Mater. 24(35), OP221–OP225 (2012).
[Crossref]

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. 16(2), 130–133 (2004).
[Crossref]

P. Görrn, M. Lehnhardt, W. Kowalsky, T. Riedl, and S. Wagner, “Elastically tunable self-organized organic lasers,” Adv. Mater. 23(7), 869–872 (2011).
[Crossref]

Appl. Phys. Lett. (5)

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, and W. Kowalsky, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004).
[Crossref]

S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett. 99(2), 023307 (2011).
[Crossref]

B. Wenger, N. Tétreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[Crossref]

W. Chang, A. Wang, A. Murarka, G. M. Akselrod, C. Packard, J. H. Lang, and V. Bulović, “Electrically tunable organic vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 105(7), 073303 (2014).
[Crossref]

B. Schütte, H. Gothe, S. I. Hintschich, M. Sudzius, H. Fröb, V. G. Lyssenko, and K. Leo, “Continuously tunable laser emission from a wedge-shaped organic microcavity,” Appl. Phys. Lett. 92(16), 163309 (2008).
[Crossref]

Chem. Rev. (1)

A. J. C. Kuehne and M. C. Gather, “Organic lasers: recent developments on materials, device geometries, and fabrication techniques,” Chem. Rev. 116(21), 12823–12864 (2016).
[Crossref]

Chem. Soc. Rev. (1)

D. Gentili, G. Foschi, F. Valle, M. Cavallini, and F. Biscarini, “Applications of dewetting in micro and nanotechnology,” Chem. Soc. Rev. 41(12), 4430–4443 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

J. Lightwave Technol. (4)

Jpn. J. Appl. Phys. (1)

K. Suzuki, K. Takahashi, Y. Seida, K. Shimizu, M. Kumagai, and Y. Taniguchi, “A continuously tunable organic solid-state laser based on a flexible distributed-feedback resonator,” Jpn. J. Appl. Phys. 42(3A), L249–L251 (2003).
[Crossref]

Laser Photonics Rev. (1)

C. Grivas and M. Pollnau, “Organic solid-state integrated amplifiers and lasers,” Laser Photonics Rev. 6(4), 419–462 (2012).
[Crossref]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (4)

J. Buus, M.-C. Amann, and D. J. Blumenthal, Tunable laser diodes and related optical sources, 2nd ed. (John Wiley & Sons, 2005).

F. J. Duarte, Tunable Laser Applications, 3rd ed. (CRC, 2016).

S. Forget and S. Chénais, Organic solid-state lasers. (Springer, 2013).

C. A. Curwen, J. L. Reno, and B. S. Williams, “Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL,” Nat. Photonics 10.1038/s41566-019-0518-z.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. A schematic of tunable organic laser proposed in this study.
Fig. 2.
Fig. 2. (a) Optically-pumped emission spectra of organic VCSELs with an active layer of DCM-doped polymer film. The red and black curves show the results with and without emersion oil, respectively. Inset shows fluence dependence of output emission intensity. (b) Temporal stabilities in output intensity (closed circles) and emission wavelength (open triangles) for one of the lasing modes.
Fig. 3.
Fig. 3. (a) VCSEL lasing spectra depending on change in cavity length ΔL. (b) Lasing wavelength of VCSEL as a function of ΔL. Results for two devices were presented by circles and triangles. Dashed lines show functions of Eq. (2) where the cavity length L was individually estimated from ${\lambda _{sep}}$.
Fig. 4.
Fig. 4. (a) A schematic of organic VCSEL integrated with a piezoelectric actuator. (b) VCSEL lasing spectra depending on displacement of the piezoelectric actuator ΔP.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 n e f f L m
λ m ( Δ L ) = L + Δ L L λ m ( 0 )
Δ λ m = Δ L L λ m ( 0 ) .

Metrics