Abstract

The polarized spectra associated with 1.55 µm lasing in an Er:Yb:Ca3NbGa3Si2O14 crystal were investigated at room temperature. The crystal had a large absorption cross section of 3.60 × 10−20 cm2 at 978 nm, long fluorescence lifetime of 5.81 ms for the 4I13/2 multiplet of Er3+, and broad emission band at 1.55 µm with full width at half-maximum of 60 nm. End-pumped by a 975 nm diode laser, a 1555 nm continuous-wave microlaser with a maximum output power of 0.4 W and a slope efficiency of 10.6% was demonstrated in a c-cut, 2.5-mm-thick crystal. Combining with natures of the long fluorescence lifetime and the broad emission band, the Er:Yb:Ca3NbGa3Si2O14 crystal with a good thermal performance may be a promising gain medium for high-energy pulse and broadly tunable lasers around 1.55 µm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+:Ca3NbGa3Si2O14

Xuzhao Zhang, Pavel Loiko, Josep Maria Serres, Xavier Mateos, Junyu Ren, Zhengping Wang, Shiyi Guo, Xinguang Xu, Elena Vilejshikova, Uwe Griebner, Valentin Petrov, Magdalena Aguiló, and Francesc Díaz
Opt. Mater. Express 7(10) 3626-3633 (2017)

Efficient 1620 nm continuous-wave laser operation of Czochralski grown Er:Yb:Lu2Si2O7 crystal

Jianhua Huang, Yujin Chen, Han Wang, Yanfu Lin, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 25(20) 24001-24006 (2017)

Growth and spectroscopic properties of Er:Yb:KGd(PO3)4 crystal as a promising 1.55 μm laser gain medium

Guoliang Gong, Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Mater. Express 6(11) 3518-3526 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013), pp. 341–358.
  2. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
    [Crossref]
  3. N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
    [Crossref]
  4. Y. Chen, Y. Lin, Z. Yang, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Eye-safe 1.55 µm Er:Yb:YAl3(BO3)4 microchip laser,” OSA Continuum 2(1), 142–150 (2019).
    [Crossref]
  5. K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 µm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
    [Crossref]
  6. Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D Huang, “Enhanced performances of diode-pumped sapphire/Er3+:Yb3+:LuAl3(BO3)4/sapphire micro-laser at 1.5-1.6 µm,” Opt. Express 23(9), 12401–12406 (2015).
    [Crossref]
  7. Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 µm,” Opt. Express 25(16), 19320–19325 (2017).
    [Crossref]
  8. Y. Chen, F. Lin, H. Yang, E. Ma, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Temperature dependence of the spectroscopic properties of Er:Yb:YAl3(BO3)4 crystal between 300–800 K,” OSA Continuum 2(3), 615–620 (2019).
    [Crossref]
  9. Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
    [Crossref]
  10. J. Huang, Y. Chen, H. Wang, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Efficient 1620 nm continuous wave laser operation of Czochralski grown Er3+:Yb3+:Lu2Si2O7 crystal,” Opt. Express 25(20), 24001–24006 (2017).
    [Crossref]
  11. A. Jaffrès, P. Loiseau, G. Aka, B. Viana, C. Larat, and E. Lallier, “CW diode pumped Er, Yb, Ce:CAS single crystal 1.5 µm laser,” Laser Phys. 24(12), 125801 (2014).
    [Crossref]
  12. J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers,” Opt. Lett. 43(8), 1643–1646 (2018).
    [Crossref]
  13. A. Jaffrès, B. Viana, P. Loiseau, G. Aka, C. Larat, and E. Lallier, “Actively Q-switch operation of diode-pumped Er3+, Yb3+, Ce3+:Ca2Al2SiO7 single crystal laser at 1.5-1.6 µm,” in Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013), p. 6800961.
  14. X. Zhang, P. Loiko, J. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguilo, and F. Diaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+: Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
    [Crossref]
  15. L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
    [Crossref]
  16. B. Simondi-Teisseire, B. Viana, D. Vivien, and A. Lejus, “Optical investigation of Er:Ca2Al2SiO7 and Yb:Ca2Al2SiO7 for laser applications in the near infrared,” Phys. Status Solidi A 155(1), 249–262 (1996).
    [Crossref]
  17. X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
    [Crossref]
  18. X. Zhang, X. Zhang, S. Guo, J. He, K. Han, F. Lou, B. Zhang, R. Wang, and X. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
    [Crossref]
  19. C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
    [Crossref]
  20. G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
    [Crossref]
  21. H. Y. Zhu, D. Y. Tang, Y. M. Duan, D. W. Luo, and J. Zhang, “Laser operation of diode-pumped Er, Yb codoped YAG ceramics at 1.6 µm,” Opt. Express 21(22), 26955–26961 (2013).
    [Crossref]
  22. Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535-nm pulsed vortex beam in a diode-pumped Er:Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
    [Crossref]
  23. J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Generation investigation of “eye-safe” microchip lasers pumped by 974 nm and 939 nm wavelength,” Opt. Appl. 38(4), 657–668 (2008).
  24. Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectroscopic and laser properties of Er3+:Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 µm,” Opt. Express 18(13), 13700–13707 (2010).
    [Crossref]
  25. M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
    [Crossref]
  26. J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
    [Crossref]
  27. S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 µm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
    [Crossref]
  28. J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
    [Crossref]
  29. W. Koechner, “Solid-State Laser Engineering,” (Springer, New York, NY, 2006).
  30. F. Patel, E. Honea, J. Speth, S. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
    [Crossref]

2019 (3)

2018 (3)

G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
[Crossref]

J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers,” Opt. Lett. 43(8), 1643–1646 (2018).
[Crossref]

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535-nm pulsed vortex beam in a diode-pumped Er:Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

2017 (4)

2016 (2)

K. N. Gorbachenya, V. E. Kisel, A. S. Yasukevich, V. V. Maltsev, N. I. Leonyuk, and N. V. Kuleshov, “Eye-safe 1.55 µm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser,” Opt. Lett. 41(5), 918–921 (2016).
[Crossref]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

2015 (2)

2014 (1)

A. Jaffrès, P. Loiseau, G. Aka, B. Viana, C. Larat, and E. Lallier, “CW diode pumped Er, Yb, Ce:CAS single crystal 1.5 µm laser,” Laser Phys. 24(12), 125801 (2014).
[Crossref]

2013 (1)

2011 (1)

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

2010 (1)

2009 (2)

M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
[Crossref]

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

2008 (1)

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Generation investigation of “eye-safe” microchip lasers pumped by 974 nm and 939 nm wavelength,” Opt. Appl. 38(4), 657–668 (2008).

2007 (1)

2005 (1)

L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
[Crossref]

2001 (2)

F. Patel, E. Honea, J. Speth, S. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 µm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

1999 (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[Crossref]

1996 (1)

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. Lejus, “Optical investigation of Er:Ca2Al2SiO7 and Yb:Ca2Al2SiO7 for laser applications in the near infrared,” Phys. Status Solidi A 155(1), 249–262 (1996).
[Crossref]

Aguilo, M.

Aka, G.

A. Jaffrès, P. Loiseau, G. Aka, B. Viana, C. Larat, and E. Lallier, “CW diode pumped Er, Yb, Ce:CAS single crystal 1.5 µm laser,” Laser Phys. 24(12), 125801 (2014).
[Crossref]

A. Jaffrès, B. Viana, P. Loiseau, G. Aka, C. Larat, and E. Lallier, “Actively Q-switch operation of diode-pumped Er3+, Yb3+, Ce3+:Ca2Al2SiO7 single crystal laser at 1.5-1.6 µm,” in Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013), p. 6800961.

Basset, G.

L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
[Crossref]

Bock, S.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
[Crossref]

Calvat, C.

L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
[Crossref]

Camy, P.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
[Crossref]

Chambaz, B.

L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
[Crossref]

Chen, Y.

Y. Chen, F. Lin, H. Yang, E. Ma, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Temperature dependence of the spectroscopic properties of Er:Yb:YAl3(BO3)4 crystal between 300–800 K,” OSA Continuum 2(3), 615–620 (2019).
[Crossref]

Y. Chen, Y. Lin, Z. Yang, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Eye-safe 1.55 µm Er:Yb:YAl3(BO3)4 microchip laser,” OSA Continuum 2(1), 142–150 (2019).
[Crossref]

J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers,” Opt. Lett. 43(8), 1643–1646 (2018).
[Crossref]

G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 µm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref]

J. Huang, Y. Chen, H. Wang, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Efficient 1620 nm continuous wave laser operation of Czochralski grown Er3+:Yb3+:Lu2Si2O7 crystal,” Opt. Express 25(20), 24001–24006 (2017).
[Crossref]

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectroscopic and laser properties of Er3+:Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 µm,” Opt. Express 18(13), 13700–13707 (2010).
[Crossref]

Chen, Y. J.

Cheng, X.

C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
[Crossref]

Denker, B.

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013), pp. 341–358.

Diaz, F.

Doualan, J.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
[Crossref]

Duan, Y. M.

Equall, R.

F. Patel, E. Honea, J. Speth, S. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Ferrand, B.

L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
[Crossref]

Galagan, B.

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013), pp. 341–358.

Gao, C.

C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
[Crossref]

Gong, G.

G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
[Crossref]

Gong, M.

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535-nm pulsed vortex beam in a diode-pumped Er:Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

Gong, X.

Y. Chen, Y. Lin, Z. Yang, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Eye-safe 1.55 µm Er:Yb:YAl3(BO3)4 microchip laser,” OSA Continuum 2(1), 142–150 (2019).
[Crossref]

Y. Chen, F. Lin, H. Yang, E. Ma, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Temperature dependence of the spectroscopic properties of Er:Yb:YAl3(BO3)4 crystal between 300–800 K,” OSA Continuum 2(3), 615–620 (2019).
[Crossref]

G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
[Crossref]

J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers,” Opt. Lett. 43(8), 1643–1646 (2018).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 µm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref]

J. Huang, Y. Chen, H. Wang, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Efficient 1620 nm continuous wave laser operation of Czochralski grown Er3+:Yb3+:Lu2Si2O7 crystal,” Opt. Express 25(20), 24001–24006 (2017).
[Crossref]

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectroscopic and laser properties of Er3+:Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 µm,” Opt. Express 18(13), 13700–13707 (2010).
[Crossref]

Gong, X. H.

Gorbachenya, K. N.

Griebner, U.

Guo, S.

C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
[Crossref]

X. Zhang, P. Loiko, J. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguilo, and F. Diaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+: Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

X. Zhang, X. Zhang, S. Guo, J. He, K. Han, F. Lou, B. Zhang, R. Wang, and X. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
[Crossref]

Han, K.

He, J.

Honea, E.

F. Patel, E. Honea, J. Speth, S. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Hou, Q.

Huang, J.

Y. Chen, F. Lin, H. Yang, E. Ma, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Temperature dependence of the spectroscopic properties of Er:Yb:YAl3(BO3)4 crystal between 300–800 K,” OSA Continuum 2(3), 615–620 (2019).
[Crossref]

Y. Chen, Y. Lin, Z. Yang, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Eye-safe 1.55 µm Er:Yb:YAl3(BO3)4 microchip laser,” OSA Continuum 2(1), 142–150 (2019).
[Crossref]

G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
[Crossref]

J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers,” Opt. Lett. 43(8), 1643–1646 (2018).
[Crossref]

J. Huang, Y. Chen, H. Wang, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Efficient 1620 nm continuous wave laser operation of Czochralski grown Er3+:Yb3+:Lu2Si2O7 crystal,” Opt. Express 25(20), 24001–24006 (2017).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 µm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref]

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectroscopic and laser properties of Er3+:Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 µm,” Opt. Express 18(13), 13700–13707 (2010).
[Crossref]

Huang, J. H.

Huang, Y.

Y. Chen, Y. Lin, Z. Yang, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Eye-safe 1.55 µm Er:Yb:YAl3(BO3)4 microchip laser,” OSA Continuum 2(1), 142–150 (2019).
[Crossref]

Y. Chen, F. Lin, H. Yang, E. Ma, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Temperature dependence of the spectroscopic properties of Er:Yb:YAl3(BO3)4 crystal between 300–800 K,” OSA Continuum 2(3), 615–620 (2019).
[Crossref]

J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers,” Opt. Lett. 43(8), 1643–1646 (2018).
[Crossref]

G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
[Crossref]

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

J. Huang, Y. Chen, H. Wang, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Efficient 1620 nm continuous wave laser operation of Czochralski grown Er3+:Yb3+:Lu2Si2O7 crystal,” Opt. Express 25(20), 24001–24006 (2017).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 µm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 µm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref]

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectroscopic and laser properties of Er3+:Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 µm,” Opt. Express 18(13), 13700–13707 (2010).
[Crossref]

Huang, Y. D

Hutcheson, R.

F. Patel, E. Honea, J. Speth, S. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Jaffrès, A.

A. Jaffrès, P. Loiseau, G. Aka, B. Viana, C. Larat, and E. Lallier, “CW diode pumped Er, Yb, Ce:CAS single crystal 1.5 µm laser,” Laser Phys. 24(12), 125801 (2014).
[Crossref]

A. Jaffrès, B. Viana, P. Loiseau, G. Aka, C. Larat, and E. Lallier, “Actively Q-switch operation of diode-pumped Er3+, Yb3+, Ce3+:Ca2Al2SiO7 single crystal laser at 1.5-1.6 µm,” in Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013), p. 6800961.

Kahn-Harari, A.

L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
[Crossref]

Karlsson, G.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 µm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Kisel, V. E.

Koechner, W.

W. Koechner, “Solid-State Laser Engineering,” (Springer, New York, NY, 2006).

Kopczynski, K.

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Generation investigation of “eye-safe” microchip lasers pumped by 974 nm and 939 nm wavelength,” Opt. Appl. 38(4), 657–668 (2008).

Koporulina, E. V.

Kuleshov, N. V.

Kurilchik, S. V.

Lallier, E.

A. Jaffrès, P. Loiseau, G. Aka, B. Viana, C. Larat, and E. Lallier, “CW diode pumped Er, Yb, Ce:CAS single crystal 1.5 µm laser,” Laser Phys. 24(12), 125801 (2014).
[Crossref]

A. Jaffrès, B. Viana, P. Loiseau, G. Aka, C. Larat, and E. Lallier, “Actively Q-switch operation of diode-pumped Er3+, Yb3+, Ce3+:Ca2Al2SiO7 single crystal laser at 1.5-1.6 µm,” in Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013), p. 6800961.

Laporta, P.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 µm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[Crossref]

Larat, C.

A. Jaffrès, P. Loiseau, G. Aka, B. Viana, C. Larat, and E. Lallier, “CW diode pumped Er, Yb, Ce:CAS single crystal 1.5 µm laser,” Laser Phys. 24(12), 125801 (2014).
[Crossref]

A. Jaffrès, B. Viana, P. Loiseau, G. Aka, C. Larat, and E. Lallier, “Actively Q-switch operation of diode-pumped Er3+, Yb3+, Ce3+:Ca2Al2SiO7 single crystal laser at 1.5-1.6 µm,” in Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013), p. 6800961.

Laurell, T.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 µm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Lejus, A.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. Lejus, “Optical investigation of Er:Ca2Al2SiO7 and Yb:Ca2Al2SiO7 for laser applications in the near infrared,” Phys. Status Solidi A 155(1), 249–262 (1996).
[Crossref]

Leonyuk, N. I.

Lin, F.

Lin, Y.

Y. Chen, F. Lin, H. Yang, E. Ma, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Temperature dependence of the spectroscopic properties of Er:Yb:YAl3(BO3)4 crystal between 300–800 K,” OSA Continuum 2(3), 615–620 (2019).
[Crossref]

Y. Chen, Y. Lin, Z. Yang, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Eye-safe 1.55 µm Er:Yb:YAl3(BO3)4 microchip laser,” OSA Continuum 2(1), 142–150 (2019).
[Crossref]

J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers,” Opt. Lett. 43(8), 1643–1646 (2018).
[Crossref]

G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 µm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref]

J. Huang, Y. Chen, H. Wang, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Efficient 1620 nm continuous wave laser operation of Czochralski grown Er3+:Yb3+:Lu2Si2O7 crystal,” Opt. Express 25(20), 24001–24006 (2017).
[Crossref]

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectroscopic and laser properties of Er3+:Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 µm,” Opt. Express 18(13), 13700–13707 (2010).
[Crossref]

Lin, Y. F.

Lin, Z.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 µm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref]

Liu, X.

Loiko, P.

Loiseau, P.

A. Jaffrès, P. Loiseau, G. Aka, B. Viana, C. Larat, and E. Lallier, “CW diode pumped Er, Yb, Ce:CAS single crystal 1.5 µm laser,” Laser Phys. 24(12), 125801 (2014).
[Crossref]

A. Jaffrès, B. Viana, P. Loiseau, G. Aka, C. Larat, and E. Lallier, “Actively Q-switch operation of diode-pumped Er3+, Yb3+, Ce3+:Ca2Al2SiO7 single crystal laser at 1.5-1.6 µm,” in Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013), p. 6800961.

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[Crossref]

Lou, F.

Lu, D.

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Luo, D. W.

Luo, Z.

Y. Chen, Y. Lin, Z. Yang, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Eye-safe 1.55 µm Er:Yb:YAl3(BO3)4 microchip laser,” OSA Continuum 2(1), 142–150 (2019).
[Crossref]

Y. Chen, F. Lin, H. Yang, E. Ma, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Temperature dependence of the spectroscopic properties of Er:Yb:YAl3(BO3)4 crystal between 300–800 K,” OSA Continuum 2(3), 615–620 (2019).
[Crossref]

G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
[Crossref]

J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “940 mW 1564 nm multi-longitudinal-mode and 440 mW 1537 nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers,” Opt. Lett. 43(8), 1643–1646 (2018).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 µm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref]

J. Huang, Y. Chen, H. Wang, Y. Lin, X. Gong, Z. Luo, and Y. Huang, “Efficient 1620 nm continuous wave laser operation of Czochralski grown Er3+:Yb3+:Lu2Si2O7 crystal,” Opt. Express 25(20), 24001–24006 (2017).
[Crossref]

Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectroscopic and laser properties of Er3+:Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 µm,” Opt. Express 18(13), 13700–13707 (2010).
[Crossref]

Luo, Z. D.

Ma, C.

C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
[Crossref]

Ma, E.

Malinowska, M.

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Maltsev, V. V.

Mateos, X.

Meng, Y.

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535-nm pulsed vortex beam in a diode-pumped Er:Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

Mierczyk, Z.

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Generation investigation of “eye-safe” microchip lasers pumped by 974 nm and 939 nm wavelength,” Opt. Appl. 38(4), 657–668 (2008).

Mlynczak, J.

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Generation investigation of “eye-safe” microchip lasers pumped by 974 nm and 939 nm wavelength,” Opt. Appl. 38(4), 657–668 (2008).

Moncorge, R.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
[Crossref]

Osiwianski, P.

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

Patel, F.

F. Patel, E. Honea, J. Speth, S. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Payne, S.

F. Patel, E. Honea, J. Speth, S. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Petrov, V.

Pidol, L.

L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
[Crossref]

Pilipenko, O. V.

Prokhorov, A.

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013), pp. 341–358.

Ren, J.

X. Zhang, P. Loiko, J. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguilo, and F. Diaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+: Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Schramm, U.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
[Crossref]

Serres, J.

Shen, Y.

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535-nm pulsed vortex beam in a diode-pumped Er:Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

Siebold, M.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
[Crossref]

Simondi-Teisseire, B.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. Lejus, “Optical investigation of Er:Ca2Al2SiO7 and Yb:Ca2Al2SiO7 for laser applications in the near infrared,” Phys. Status Solidi A 155(1), 249–262 (1996).
[Crossref]

Sorbello, G.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 µm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Speth, J.

F. Patel, E. Honea, J. Speth, S. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

Sun, S.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Sun, Z.

C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
[Crossref]

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[Crossref]

Svelto, O.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[Crossref]

Sverchkov, S.

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013), pp. 341–358.

Taccheo, S.

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 µm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[Crossref]

Tang, D. Y.

Tolstik, N. A.

Viana, B.

A. Jaffrès, P. Loiseau, G. Aka, B. Viana, C. Larat, and E. Lallier, “CW diode pumped Er, Yb, Ce:CAS single crystal 1.5 µm laser,” Laser Phys. 24(12), 125801 (2014).
[Crossref]

L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
[Crossref]

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. Lejus, “Optical investigation of Er:Ca2Al2SiO7 and Yb:Ca2Al2SiO7 for laser applications in the near infrared,” Phys. Status Solidi A 155(1), 249–262 (1996).
[Crossref]

A. Jaffrès, B. Viana, P. Loiseau, G. Aka, C. Larat, and E. Lallier, “Actively Q-switch operation of diode-pumped Er3+, Yb3+, Ce3+:Ca2Al2SiO7 single crystal laser at 1.5-1.6 µm,” in Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013), p. 6800961.

Vilejshikova, E.

Vivien, D.

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. Lejus, “Optical investigation of Er:Ca2Al2SiO7 and Yb:Ca2Al2SiO7 for laser applications in the near infrared,” Phys. Status Solidi A 155(1), 249–262 (1996).
[Crossref]

Wang, H.

Wang, R.

Wang, Y.

C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
[Crossref]

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535-nm pulsed vortex beam in a diode-pumped Er:Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

Wang, Z.

X. Zhang, P. Loiko, J. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguilo, and F. Diaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+: Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Xu, B.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
[Crossref]

Xu, X.

X. Zhang, P. Loiko, J. Serres, X. Mateos, J. Ren, Z. Wang, S. Guo, X. Xu, E. Vilejshikova, U. Griebner, V. Petrov, M. Aguilo, and F. Diaz, “Highly-efficient laser operation of a novel trigonal silicate crystal Yb3+: Ca3NbGa3Si2O14,” Opt. Mater. Express 7(10), 3626–3633 (2017).
[Crossref]

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Xue, M.

C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
[Crossref]

Yang, H.

Yang, Z.

Yasukevich, A. S.

Yu, H.

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Yuan, F.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Zhang, B.

C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
[Crossref]

X. Zhang, X. Zhang, S. Guo, J. He, K. Han, F. Lou, B. Zhang, R. Wang, and X. Liu, “Growth and optical properties of a new CGG-type laser crystal Nd3+:CNGS,” Opt. Mater. Express 5(5), 977–985 (2015).
[Crossref]

Zhang, J.

Zhang, L.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Zhang, X.

Zhou, Y.

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

Zhu, H. Y.

Appl. Phys. B: Lasers Opt. (1)

M. Siebold, S. Bock, U. Schramm, B. Xu, J. Doualan, P. Camy, and R. Moncorge, “Yb:CaF2 – a new old laser crystal,” Appl. Phys. B: Lasers Opt. 97(2), 327–338 (2009).
[Crossref]

CrystEngComm (2)

X. Zhang, Y. Zhou, J. Ren, D. Lu, H. Yu, Z. Wang, S. Guo, and X. Xu, “Growth, thermal and laser properties of a new self-frequency-doubling Yb:CNGS crystal,” CrystEngComm 18(28), 5338–5343 (2016).
[Crossref]

C. Ma, Y. Wang, C. Gao, X. Cheng, M. Xue, Z. Sun, S. Guo, and B. Zhang, “Growth, thermal and spectral properties, and laser performance of Tm3+:CNGS crystal,” CrystEngComm 21(5), 866–875 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

F. Patel, E. Honea, J. Speth, S. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Taccheo, G. Sorbello, P. Laporta, G. Karlsson, and T. Laurell, “230-mW diode-pumped single-frequency Er:Yb laser at 1.5 µm,” IEEE Photonics Technol. Lett. 13(1), 19–21 (2001).
[Crossref]

Y. Wang, Y. Shen, Y. Meng, and M. Gong, “Generation of 1535-nm pulsed vortex beam in a diode-pumped Er:Yb:glass microchip laser,” IEEE Photonics Technol. Lett. 30(10), 891–894 (2018).
[Crossref]

J. Alloys Compd. (1)

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

J. Cryst. Growth (1)

L. Pidol, A. Kahn-Harari, B. Viana, G. Basset, C. Calvat, B. Chambaz, and B. Ferrand, “Czochralski growth and physical properties of cerium-doped lutetium pyrosilicate scintillators Ce3+:Lu2Si2O7,” J. Cryst. Growth 275(1-2), e899–e904 (2005).
[Crossref]

Laser Phys. (1)

A. Jaffrès, P. Loiseau, G. Aka, B. Viana, C. Larat, and E. Lallier, “CW diode pumped Er, Yb, Ce:CAS single crystal 1.5 µm laser,” Laser Phys. 24(12), 125801 (2014).
[Crossref]

Laser Phys. Lett. (1)

G. Gong, Y. Chen, Y. Lin, J. Huang, X. Gong, Z. Luo, and Y. Huang, “Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm,” Laser Phys. Lett. 15(4), 045805 (2018).
[Crossref]

Opt. Appl. (1)

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Generation investigation of “eye-safe” microchip lasers pumped by 974 nm and 939 nm wavelength,” Opt. Appl. 38(4), 657–668 (2008).

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[Crossref]

Opt. Mater. Express (2)

Opto-Electron. Rev. (2)

J. Mlynczak, K. Kopczynski, Z. Mierczyk, M. Malinowska, and P. Osiwianski, “Comparison of cw laser generation in Er3+,Yb3+:glass microchip lasers with different types of glasses,” Opto-Electron. Rev. 19(4), 491–495 (2011).
[Crossref]

J. Mlynczak, K. Kopczynski, and Z. Mierczyk, “Wavelength tuning in Er3+,Yb3+:glass microchip lasers,” Opto-Electron. Rev. 17(1), 84–88 (2009).
[Crossref]

OSA Continuum (2)

Phys. Status Solidi A (1)

B. Simondi-Teisseire, B. Viana, D. Vivien, and A. Lejus, “Optical investigation of Er:Ca2Al2SiO7 and Yb:Ca2Al2SiO7 for laser applications in the near infrared,” Phys. Status Solidi A 155(1), 249–262 (1996).
[Crossref]

Other (3)

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013), pp. 341–358.

A. Jaffrès, B. Viana, P. Loiseau, G. Aka, C. Larat, and E. Lallier, “Actively Q-switch operation of diode-pumped Er3+, Yb3+, Ce3+:Ca2Al2SiO7 single crystal laser at 1.5-1.6 µm,” in Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC) (IEEE, 2013), p. 6800961.

W. Koechner, “Solid-State Laser Engineering,” (Springer, New York, NY, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Room-temperature polarized absorption cross-section spectra of Er:Yb:CNGS crystal at 875–1050 nm.
Fig. 2.
Fig. 2. Room-temperature polarized spectra of Er:Yb:CNGS crystal around 1.55 µm. (a) Absorption cross-section spectra at 1410–1650 nm. (b) Emission cross-section spectra at 1450–1650 nm.
Fig. 3.
Fig. 3. (a) Room-temperature α-polarized gain cross-section spectra of Er:Yb:CNGS crystal at 1500–1640 nm for different values of inversion parameter β. (b) Room-temperature polarized gain cross-section spectra of Er:Yb:CNGS crystal at 1510–1650 nm for β = 0.6.
Fig. 4.
Fig. 4. Experimental setup of the cw 975-nm-diode-pumped Er:Yb:CNGS 1.55 µm microlaser.
Fig. 5.
Fig. 5. (a) CW output power realized in c-cut Er:Yb:CNGS crystal as a function of absorbed pump power for different OM transmissions T. The inset shows the laser spectrum at an absorbed pump power of 4.15 W for 4.0% OM transmission. (b) Squared beam radius ω2 of output laser as a function of the distance Z from the focusing lens at absorbed pump powers of 4.15 and 1.43 W for 4.0% OM transmission. The insets show two-dimensional and three-dimensional images of the output beam transversal profile.
Fig. 6.
Fig. 6. CW output power versus absorbed pump power at an OM transmission of 4.0% when c-cut Er:Yb:CNGS, a-cut Er:Yb:CNGS, and c-cut Er:Yb:Ce:CNGS crystals were used as gain media under identical experimental conditions, respectively.

Metrics