Abstract

We have developed and experimentally demonstrated a novel monolithic InAs/InP quantum-dash dual-wavelength distributed feedback (QD DW-DFB) C-band laser as a compact optical beat source to generate millimeter-wave (MMW) signals. The device uses a common gain medium in a single cavity structure for simultaneous correlated and stable dual-mode lasing in the 1550-nm wavelength range. A record narrow optical linewidth down to 15.83 kHz and average relative intensity noise (RIN) as low as -158.3 dB/Hz from 10 MHz to 20 GHz are experimentally demonstrated for the two optical modes generated by the laser. As a result, the beat note between these two lasing modes generates spectrally pure MMW signals between 46 GHz and 48 GHz. Such an efficient, coherent, and compact optical source is extremely attractive for applications in MMW systems, such as Radar and fiber-wireless integrated fronthaul for 5G and beyond.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Remote heterodyne millimeter-wave over fiber based OFDM-PON with master-to-slave injected dual-mode colorless FPLD pair

Hsiang-Yu Chen, Yu-Chieh Chi, and Gong-Ru Lin
Opt. Express 23(17) 22691-22705 (2015)

Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers

C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester
Opt. Express 17(22) 19739-19748 (2009)

High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module

Z. G. Lu, J. R. Liu, C. Y. Song, J. Weber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan
Opt. Express 26(2) 2160-2167 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
    [Crossref]
  2. C.-Y. Lin, Y.-C. Chi, C.-T. Tsai, H.-Y. Wang, H.-Y. Chen, M. Xu, G.-K. Chang, and G.-R. Lin, “Millimeter-Wave Carrier Embedded Dual-Color Laser Diode for 5G MMW oF Link,” J. Lightwave Technol. 35(12), 2409–2420 (2017).
    [Crossref]
  3. K. Zeb, X. Zhang, and Z. Lu, “High Capacity Mode Division Multiplexing Based MIMO Enabled All-Optical Analog Millimeter-Wave Over Fiber Fronthaul Architecture for 5G and Beyond,” IEEE Access 7, 89522–89533 (2019).
    [Crossref]
  4. C. Browning, H. H. Elwan, E. P. Martin, S. O’Duill, J. Poette, P. Sheridan, A. Farhang, B. Cabon, and L. P. Barry, “Gain-Switched Optical Frequency Combs for Future Mobile Radio-over-Fiber Millimeter-Wave Systems,” J. Lightwave Technol. 36(19), 4602–4610 (2018).
    [Crossref]
  5. H. H. Elwan, R. Khayatzadeh, J. Poette, and B. Cabon, “Impact of relative intensity noise on 60-GHz radio-over-fiber wireless transmission systems,” J. Lightwave Technol. 34(20), 4751–4757 (2016).
    [Crossref]
  6. J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
    [Crossref]
  7. L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60 GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express 24(16), 18252–18265 (2016).
    [Crossref]
  8. K. Balakier, M. J. Fice, F. v. Dijk, G. Kervella, G. Carpintero, A. J. Seeds, and C. C. Renaud, “Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz,” Opt. Express 22(24), 29404–29412 (2014).
    [Crossref]
  9. K. Balakier, M. J. Fice, L. Ponnampalam, A. J. Seeds, and C. C. Renaud, “Monolithically Integrated Optical Phase Lock Loop for Microwave Photonics,” J. Lightwave Technol. 32(20), 3893–3900 (2014).
    [Crossref]
  10. D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
    [Crossref]
  11. R. Paquet, S. Blin, M. Myara, L. L. Gratiet, M. Sellahi, B. Chomet, G. Beaudoin, I. Sagnes, and A. Garnache, “Coherent continuous-wave dual-frequency high-Q external-cavity semiconductor laser for GHz–THz applications,” Opt. Lett. 41(16), 3751–3754 (2016).
    [Crossref]
  12. T. Uusitalo, H. Virtanen, J. Viheriälä, and M. Dumitrescu, “Dual-mode DFB laser diodes with apodized surface gratings,” Opt. Express 26(13), 16303–16314 (2018).
    [Crossref]
  13. F. Pozzi, M. Richard, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE photonics Technol. Lett. 18(24), 2563–2565 (2006).
    [Crossref]
  14. N. Kim, S. P. Han, H. C. Ryu, H. Ko, J. W. Park, D. Lee, M. Y. Jeon, and K. H. Park, “Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation,” Opt. Express 20(16), 17496–17502 (2012).
    [Crossref]
  15. L. Hou, M. Haji, I. Eddie, H. Zhu, and J. H. Marsh, “Laterally coupled dual-grating distributed feedback lasers for generating mode-beat terahertz signals,” Opt. Lett. 40(2), 182–185 (2015).
    [Crossref]
  16. Z. G. Lu, “Quantum dot coherent comb lasers for Terabit optical networking systems,” Proc. SPIE 10921, 22 (2019).
    [Crossref]
  17. Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
    [Crossref]
  18. Y.-C. Chen, P.-H. Hsieh, and G. Lin, “Chirped multilayer quantum-dot mode-locked lasers with dual-wavelength and ground-state lasing emissions,” J. Nanophotonics 13(01), 1 (2019).
    [Crossref]
  19. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures (John Wiley & Sons, 1999).
  20. Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
    [Crossref]
  21. J. R. Liu, Z. G. Lu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett. 33(15), 1702–1704 (2008).
    [Crossref]
  22. Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express 17(16), 13609–13614 (2009).
    [Crossref]
  23. Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
    [Crossref]
  24. Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
    [Crossref]
  25. J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
    [Crossref]
  26. Z. G. Lu, J. R. Liu, C. Y. Song, J. Webber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan, “High performance InAs/inP quantum dot 34.462-GHz C-band coherent comb laser module,” Opt. Express 26(2), 2160–2167 (2018).
    [Crossref]
  27. Z. G. Lu, J. R. Liu, P. J. Poole, C. Y. Song, and S. D. Chang, “Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking,” Opt. Express 26(9), 11909–11914 (2018).
    [Crossref]
  28. Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
    [Crossref]
  29. Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, and P. J. Poole, “12.032 Tbit/s coherent transmission using an ultra-narrow linewidth quantum dot 34.46-GHz C-band coherent comb laser,” Proc. SPIE 10947, 23 (2019).
    [Crossref]
  30. P. J. Poole, K. Kaminska, P. Barrios, Z. G. Lu, and J. R. Liu, “Growth of InAs/InP-based quantum dots for 1.55 µm laser applications,” J. Cryst. Growth 311(6), 1482–1486 (2009).
    [Crossref]
  31. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C 2ndEdition: The art of scientific computing (Cambridge University, New York, NY, 1992).

2019 (5)

K. Zeb, X. Zhang, and Z. Lu, “High Capacity Mode Division Multiplexing Based MIMO Enabled All-Optical Analog Millimeter-Wave Over Fiber Fronthaul Architecture for 5G and Beyond,” IEEE Access 7, 89522–89533 (2019).
[Crossref]

Z. G. Lu, “Quantum dot coherent comb lasers for Terabit optical networking systems,” Proc. SPIE 10921, 22 (2019).
[Crossref]

Y.-C. Chen, P.-H. Hsieh, and G. Lin, “Chirped multilayer quantum-dot mode-locked lasers with dual-wavelength and ground-state lasing emissions,” J. Nanophotonics 13(01), 1 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, and P. J. Poole, “12.032 Tbit/s coherent transmission using an ultra-narrow linewidth quantum dot 34.46-GHz C-band coherent comb laser,” Proc. SPIE 10947, 23 (2019).
[Crossref]

2018 (5)

2017 (1)

2016 (4)

2015 (1)

2014 (2)

2012 (3)

N. Kim, S. P. Han, H. C. Ryu, H. Ko, J. W. Park, D. Lee, M. Y. Jeon, and K. H. Park, “Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation,” Opt. Express 20(16), 17496–17502 (2012).
[Crossref]

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
[Crossref]

2011 (1)

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

2009 (2)

P. J. Poole, K. Kaminska, P. Barrios, Z. G. Lu, and J. R. Liu, “Growth of InAs/InP-based quantum dots for 1.55 µm laser applications,” J. Cryst. Growth 311(6), 1482–1486 (2009).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express 17(16), 13609–13614 (2009).
[Crossref]

2008 (2)

2006 (1)

F. Pozzi, M. Richard, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

1995 (1)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

1992 (1)

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Ahmad, H.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Alavi, S. E.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Amiri, I. S.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Balakier, K.

Barrios, P.

P. J. Poole, K. Kaminska, P. Barrios, Z. G. Lu, and J. R. Liu, “Growth of InAs/InP-based quantum dots for 1.55 µm laser applications,” J. Cryst. Growth 311(6), 1482–1486 (2009).
[Crossref]

Barrios, P. J.

Z. G. Lu, J. R. Liu, C. Y. Song, J. Webber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan, “High performance InAs/inP quantum dot 34.462-GHz C-band coherent comb laser module,” Opt. Express 26(2), 2160–2167 (2018).
[Crossref]

J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
[Crossref]

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express 17(16), 13609–13614 (2009).
[Crossref]

J. R. Liu, Z. G. Lu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett. 33(15), 1702–1704 (2008).
[Crossref]

Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
[Crossref]

Barry, L. P.

Beaudoin, G.

Bimberg, D.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures (John Wiley & Sons, 1999).

Blin, S.

Browning, C.

Caballero, J.

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

Cabon, B.

Carpintero, G.

Chang, G.-K.

Chang, S. D.

Chen, H. M.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Chen, H.-Y.

Chen, J.

Chen, Y.-C.

Y.-C. Chen, P.-H. Hsieh, and G. Lin, “Chirped multilayer quantum-dot mode-locked lasers with dual-wavelength and ground-state lasing emissions,” J. Nanophotonics 13(01), 1 (2019).
[Crossref]

Chi, Y.-C.

Chomet, B.

Davies, P. A.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Dijk, F. v.

Ding, H. P.

Dumitrescu, M.

Eddie, I.

Elwan, H. H.

Fan, L.

Farhang, A.

Fice, M. J.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C 2ndEdition: The art of scientific computing (Cambridge University, New York, NY, 1992).

Garnache, A.

Grant, P.

Gratiet, L. L.

Grundmann, M.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures (John Wiley & Sons, 1999).

Haji, M.

Han, S. P.

Heidemann, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Hofstetter, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Hou, L.

Hsieh, P.-H.

Y.-C. Chen, P.-H. Hsieh, and G. Lin, “Chirped multilayer quantum-dot mode-locked lasers with dual-wavelength and ground-state lasing emissions,” J. Nanophotonics 13(01), 1 (2019).
[Crossref]

Huang, Y. Q.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Janz, S.

Jeon, M. Y.

Jiang, C.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Jiao, Z. J.

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

Kaminska, K.

P. J. Poole, K. Kaminska, P. Barrios, Z. G. Lu, and J. R. Liu, “Growth of InAs/InP-based quantum dots for 1.55 µm laser applications,” J. Cryst. Growth 311(6), 1482–1486 (2009).
[Crossref]

Kervella, G.

Khalily, M.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Khayatzadeh, R.

Kim, N.

Ko, H.

Lane, P. M.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Ledentsov, N. N.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures (John Wiley & Sons, 1999).

Lee, D.

Li, Q.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Li, X.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Liang, Q.

Lima, C. R.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Lin, C.-Y.

Lin, G.

Y.-C. Chen, P.-H. Hsieh, and G. Lin, “Chirped multilayer quantum-dot mode-locked lasers with dual-wavelength and ground-state lasing emissions,” J. Nanophotonics 13(01), 1 (2019).
[Crossref]

Lin, G.-R.

Liu, J. R.

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, and P. J. Poole, “12.032 Tbit/s coherent transmission using an ultra-narrow linewidth quantum dot 34.46-GHz C-band coherent comb laser,” Proc. SPIE 10947, 23 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, C. Y. Song, and S. D. Chang, “Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking,” Opt. Express 26(9), 11909–11914 (2018).
[Crossref]

Z. G. Lu, J. R. Liu, C. Y. Song, J. Webber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan, “High performance InAs/inP quantum dot 34.462-GHz C-band coherent comb laser module,” Opt. Express 26(2), 2160–2167 (2018).
[Crossref]

J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
[Crossref]

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express 17(16), 13609–13614 (2009).
[Crossref]

P. J. Poole, K. Kaminska, P. Barrios, Z. G. Lu, and J. R. Liu, “Growth of InAs/InP-based quantum dots for 1.55 µm laser applications,” J. Cryst. Growth 311(6), 1482–1486 (2009).
[Crossref]

Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
[Crossref]

J. R. Liu, Z. G. Lu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett. 33(15), 1702–1704 (2008).
[Crossref]

Lu, Z.

K. Zeb, X. Zhang, and Z. Lu, “High Capacity Mode Division Multiplexing Based MIMO Enabled All-Optical Analog Millimeter-Wave Over Fiber Fronthaul Architecture for 5G and Beyond,” IEEE Access 7, 89522–89533 (2019).
[Crossref]

Lu, Z. G.

Z. G. Lu, “Quantum dot coherent comb lasers for Terabit optical networking systems,” Proc. SPIE 10921, 22 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, and P. J. Poole, “12.032 Tbit/s coherent transmission using an ultra-narrow linewidth quantum dot 34.46-GHz C-band coherent comb laser,” Proc. SPIE 10947, 23 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, C. Y. Song, and S. D. Chang, “Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking,” Opt. Express 26(9), 11909–11914 (2018).
[Crossref]

Z. G. Lu, J. R. Liu, C. Y. Song, J. Webber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan, “High performance InAs/inP quantum dot 34.462-GHz C-band coherent comb laser module,” Opt. Express 26(2), 2160–2167 (2018).
[Crossref]

J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
[Crossref]

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express 17(16), 13609–13614 (2009).
[Crossref]

P. J. Poole, K. Kaminska, P. Barrios, Z. G. Lu, and J. R. Liu, “Growth of InAs/InP-based quantum dots for 1.55 µm laser applications,” J. Cryst. Growth 311(6), 1482–1486 (2009).
[Crossref]

J. R. Liu, Z. G. Lu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett. 33(15), 1702–1704 (2008).
[Crossref]

Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
[Crossref]

Mao, Y.

Mao, Y. X.

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, and P. J. Poole, “12.032 Tbit/s coherent transmission using an ultra-narrow linewidth quantum dot 34.46-GHz C-band coherent comb laser,” Proc. SPIE 10947, 23 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
[Crossref]

Marsh, J. H.

Martin, E. P.

Min, J. H.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Myara, M.

Ning, J. Q.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

O’Duill, S.

O’Reilly, J. J.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

O’Sullivan, M.

Pakulski, G.

Paquet, R.

Park, J. W.

Park, K. H.

Peng, Y.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Poette, J.

Poitras, D.

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, C. Y. Song, J. Webber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan, “High performance InAs/inP quantum dot 34.462-GHz C-band coherent comb laser module,” Opt. Express 26(2), 2160–2167 (2018).
[Crossref]

J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
[Crossref]

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express 17(16), 13609–13614 (2009).
[Crossref]

J. R. Liu, Z. G. Lu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett. 33(15), 1702–1704 (2008).
[Crossref]

Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
[Crossref]

Ponnampalam, L.

Poole, P. J.

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, and P. J. Poole, “12.032 Tbit/s coherent transmission using an ultra-narrow linewidth quantum dot 34.46-GHz C-band coherent comb laser,” Proc. SPIE 10947, 23 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, C. Y. Song, J. Webber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan, “High performance InAs/inP quantum dot 34.462-GHz C-band coherent comb laser module,” Opt. Express 26(2), 2160–2167 (2018).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, C. Y. Song, and S. D. Chang, “Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking,” Opt. Express 26(9), 11909–11914 (2018).
[Crossref]

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express 17(16), 13609–13614 (2009).
[Crossref]

P. J. Poole, K. Kaminska, P. Barrios, Z. G. Lu, and J. R. Liu, “Growth of InAs/InP-based quantum dots for 1.55 µm laser applications,” J. Cryst. Growth 311(6), 1482–1486 (2009).
[Crossref]

Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
[Crossref]

J. R. Liu, Z. G. Lu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “Dual-wavelength 92.5 GHz self-mode-locked InP-based quantum dot laser,” Opt. Lett. 33(15), 1702–1704 (2008).
[Crossref]

Pozzi, F.

F. Pozzi, M. Richard, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C 2ndEdition: The art of scientific computing (Cambridge University, New York, NY, 1992).

Raymond, S.

Renaud, C. C.

Richard, M.

F. Pozzi, M. Richard, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

Roy-Guay, D.

Ryu, H. C.

Sagnes, I.

Seeds, A. J.

Sellahi, M.

Sheridan, P.

Soltanian, M. R. K.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Song, C. Y.

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, and P. J. Poole, “12.032 Tbit/s coherent transmission using an ultra-narrow linewidth quantum dot 34.46-GHz C-band coherent comb laser,” Proc. SPIE 10947, 23 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, C. Y. Song, and S. D. Chang, “Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking,” Opt. Express 26(9), 11909–11914 (2018).
[Crossref]

Z. G. Lu, J. R. Liu, C. Y. Song, J. Webber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan, “High performance InAs/inP quantum dot 34.462-GHz C-band coherent comb laser module,” Opt. Express 26(2), 2160–2167 (2018).
[Crossref]

Sorel, M.

F. Pozzi, M. Richard, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

Supa’at, A. S. M.

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Tang, X.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C 2ndEdition: The art of scientific computing (Cambridge University, New York, NY, 1992).

Tsai, C.-T.

Uusitalo, T.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C 2ndEdition: The art of scientific computing (Cambridge University, New York, NY, 1992).

Viheriälä, J.

Virtanen, H.

Wake, D.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Wang, H.-Y.

Wang, X.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Webber, J.

Weber, J.

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, and P. J. Poole, “12.032 Tbit/s coherent transmission using an ultra-narrow linewidth quantum dot 34.46-GHz C-band coherent comb laser,” Proc. SPIE 10947, 23 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
[Crossref]

Wu, Z.

Xia, G.

Xu, M.

Zeb, K.

K. Zeb, X. Zhang, and Z. Lu, “High Capacity Mode Division Multiplexing Based MIMO Enabled All-Optical Analog Millimeter-Wave Over Fiber Fronthaul Architecture for 5G and Beyond,” IEEE Access 7, 89522–89533 (2019).
[Crossref]

Zhang, K.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Zhang, R. Y.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Zhang, X.

K. Zeb, X. Zhang, and Z. Lu, “High Capacity Mode Division Multiplexing Based MIMO Enabled All-Optical Analog Millimeter-Wave Over Fiber Fronthaul Architecture for 5G and Beyond,” IEEE Access 7, 89522–89533 (2019).
[Crossref]

Zhang, X. P.

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

Zhang, Z. Y.

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Zhu, H.

Electron. Lett. (1)

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

IEEE Access (1)

K. Zeb, X. Zhang, and Z. Lu, “High Capacity Mode Division Multiplexing Based MIMO Enabled All-Optical Analog Millimeter-Wave Over Fiber Fronthaul Architecture for 5G and Beyond,” IEEE Access 7, 89522–89533 (2019).
[Crossref]

IEEE photonics Technol. Lett. (1)

F. Pozzi, M. Richard, and M. Sorel, “Dual-wavelength InAlGaAs–InP laterally coupled distributed feedback laser,” IEEE photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

Z. J. Jiao, J. R. Liu, Z. G. Lu, X. P. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, “Tunable Terahertz Beat Signal Generation From an InAs/InP Quantum-Dot Mode-Locked Laser Combined With External-Cavity,” IEEE Photonics Technol. Lett. 24(6), 518–520 (2012).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

J. Cryst. Growth (1)

P. J. Poole, K. Kaminska, P. Barrios, Z. G. Lu, and J. R. Liu, “Growth of InAs/InP-based quantum dots for 1.55 µm laser applications,” J. Cryst. Growth 311(6), 1482–1486 (2009).
[Crossref]

J. Lightwave Technol. (4)

J. Nanophotonics (1)

Y.-C. Chen, P.-H. Hsieh, and G. Lin, “Chirped multilayer quantum-dot mode-locked lasers with dual-wavelength and ground-state lasing emissions,” J. Nanophotonics 13(01), 1 (2019).
[Crossref]

Nanoscale Res. Lett. (1)

Q. Li, Y. Q. Huang, J. Q. Ning, C. Jiang, X. Wang, H. M. Chen, X. Li, R. Y. Zhang, K. Zhang, J. H. Min, Y. Peng, and Z. Y. Zhang, “InAs/GaAs Quantum Dot Dual-Mode Distributed Feedback Laser Towards Large Tuning Range Continuous-Wave Terahertz Application,” Nanoscale Res. Lett. 13(1), 267 (2018).
[Crossref]

Opt. Commun. (2)

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011).
[Crossref]

J. R. Liu, Z. G. Lu, P. J. Poole, P. J. Barrios, D. Poitras, Z. J. Jiao, and X. P. Zhang, “THz optical pulses from a coupled-cavity quantum-dot laser,” Opt. Commun. 285(6), 1323–1325 (2012).
[Crossref]

Opt. Express (8)

Z. G. Lu, J. R. Liu, C. Y. Song, J. Webber, Y. Mao, S. D. Chang, H. P. Ding, P. J. Poole, P. J. Barrios, D. Poitras, S. Janz, and M. O’Sullivan, “High performance InAs/inP quantum dot 34.462-GHz C-band coherent comb laser module,” Opt. Express 26(2), 2160–2167 (2018).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, C. Y. Song, and S. D. Chang, “Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking,” Opt. Express 26(9), 11909–11914 (2018).
[Crossref]

T. Uusitalo, H. Virtanen, J. Viheriälä, and M. Dumitrescu, “Dual-mode DFB laser diodes with apodized surface gratings,” Opt. Express 26(13), 16303–16314 (2018).
[Crossref]

K. Balakier, M. J. Fice, F. v. Dijk, G. Kervella, G. Carpintero, A. J. Seeds, and C. C. Renaud, “Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz,” Opt. Express 22(24), 29404–29412 (2014).
[Crossref]

L. Fan, G. Xia, J. Chen, X. Tang, Q. Liang, and Z. Wu, “High-purity 60 GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation,” Opt. Express 24(16), 18252–18265 (2016).
[Crossref]

Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
[Crossref]

Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay, “An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses,” Opt. Express 17(16), 13609–13614 (2009).
[Crossref]

N. Kim, S. P. Han, H. C. Ryu, H. Ko, J. W. Park, D. Lee, M. Y. Jeon, and K. H. Park, “Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation,” Opt. Express 20(16), 17496–17502 (2012).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (3)

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, D. Poitras, and P. J. Poole, “2.24 Tbit/s PAM-4 transmission by an InAs/InP quantum dot mode-locked laser,” Proc. SPIE 10946, 9 (2019).
[Crossref]

Z. G. Lu, J. R. Liu, Y. X. Mao, C. Y. Song, J. Weber, and P. J. Poole, “12.032 Tbit/s coherent transmission using an ultra-narrow linewidth quantum dot 34.46-GHz C-band coherent comb laser,” Proc. SPIE 10947, 23 (2019).
[Crossref]

Z. G. Lu, “Quantum dot coherent comb lasers for Terabit optical networking systems,” Proc. SPIE 10921, 22 (2019).
[Crossref]

Sci. Rep. (1)

S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily, A. S. M. Supa’at, and H. Ahmad, “Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,” Sci. Rep. 6(1), 19891 (2016).
[Crossref]

Other (2)

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures (John Wiley & Sons, 1999).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C 2ndEdition: The art of scientific computing (Cambridge University, New York, NY, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. SEM pictures: (a) top view of quantum dashes layer, (b) front cross section of the Buried heterostructure laser with inset showing lateral cross section of a portion of the synthesized grating at the middle of the mesa along the optical waveguide, (c) synthesized grating on the bottom of 5 quantum dashes layers.
Fig. 2.
Fig. 2. Reflection spectrum of a QD DW-DFB laser cavity.
Fig. 3.
Fig. 3. Measured (a) L-I characteristics (inset shows the optical spectrum at 360 mA), (b) variation of the emitted dual-modes, FWM and their corresponding output powers as a function of bias current, and (c) spectra at different bias currents of the QD DW-DFB laser.
Fig. 4.
Fig. 4. Measured (a) optical frequency noise spectra and (b) RIN spectra of the QD DW-DFB laser at a bias current of 360 mA.
Fig. 5.
Fig. 5. Measured spectra (in red) with smoothing version of the results (in black) for -3 dB and -20 dB linewidth measurements of (a) 46.82639 GHz MMW signal at 300 mA (resolution bandwidth (RBW) = 51 kHz, video bandwidth (VBW) = 1 kHz) and (b) 47.16556 GHz MMW signal at 360 mA (RBW = 51 kHz, VBW = 510 Hz).

Metrics