Abstract

A hybrid adaptive optics (AO) system with an influence function (IF) optimization method is presented for high precision wavefront correction of a traditional Shack-Hartmann AO system. The hybrid AO system consists of a Shack-Hartmann wavefront sensor (SHWFS) and a deflectometry system (DS) to measure the wavefront of the laser beam and the IF of the deformable mirror, respectively. An IF optimization method is used to generate a hybrid IF (H-IF) through a position-calibration algorithm and a resolution-conversion algorithm by use of the original IFs measured by the SHWFS (S-IF) and the DS (D-IF). Configuration of the hybrid AO system is introduced. Principles and calculation results of the IF optimization method are presented. Comparison of the wavefront correction ability between the H-IF and the original IF is carried out in simulation. Closed-loop performance of the hybrid AO system using the H-IF is investigated in experiment. Simulation and experiment results show that for a traditional Shack-Hartmann AO system, the H-IF has better correction ability than the original S-IF and the IF optimization method could help improve closed-loop performance without sacrificing the simplicity of the system structure and the rapidity of the closed-loop correction.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavefront detection method of a single-sensor based adaptive optics system

Chongchong Wang, Lifa Hu, Huanyu Xu, Yukun Wang, Dayu Li, Shaoxin Wang, Quanquan Mu, Chengliang Yang, Zhaoliang Cao, Xinghai Lu, and Li Xuan
Opt. Express 23(16) 21403-21413 (2015)

Fast correction approach for wavefront sensorless adaptive optics based on a linear phase diversity technique

Dan Yue, Haitao Nie, Ye Li, and Changsheng Ying
Appl. Opt. 57(7) 1650-1656 (2018)

Analysis of a holographic laser adaptive optics system using a deformable mirror

Kainan Yao, Jianli Wang, Xinyue Liu, Xudong Lin, and Lu Chen
Appl. Opt. 56(23) 6639-6648 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Rao, W. H. Jiang, and N. Ling, “Atmospheric characterization with Shack-Hartmann wave-front sensor for non-Kolmogorov turbulence,” Opt. Eng. 41(2), 534–541 (2002).
    [Crossref]
  2. F. Rigaut, B. L. Ellerbroek, and M. J. Northcott, “Comparison of curvature-based and Shack–Hartmann-based adaptive optics for the Gemini telescope,” Appl. Opt. 36(13), 2856–2868 (1997).
    [Crossref]
  3. R. M. Clare, M. Le Louarn, and C. Béchet, “Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes,” Appl. Opt. 50(4), 473–483 (2011).
    [Crossref]
  4. L. Huang, X. K. Ma, M. L. Gong, and Q. Bian, “Experimental investigation of the deformable mirror with bidirectional thermal actuators,” Opt. Express 23(13), 17520–17530 (2015).
    [Crossref]
  5. C. Sun, L. Huang, D. E. Wang, X. W. Deng, D. X. Hu, L. C. Sun, and Y. M. Zheng, “Theoretical research on the novel adaptive optics configuration based on the tubular deformable mirror for the aberration correction of the annular laser beam,” Opt. Express 27(6), 9215–9231 (2019).
    [Crossref]
  6. L. C. Sun, L. Huang, M. Yan, J. B. Fan, Y. M. Zheng, and C. Sun, “Intracavity deformable mirror for beam quality improvement and power enhancement of a passively Q-switched laser,” Opt. Express 26(7), 8594–8608 (2018).
    [Crossref]
  7. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15(26), 18209–18219 (2007).
    [Crossref]
  8. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
    [Crossref]
  9. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [Crossref]
  10. S. S. Niu, J. X. Shen, C. Liang, Y. H. Zhang, and B. M. Li, “High-resolution retinal imaging with micro adaptive optics system,” Appl. Opt. 50(22), 4365–4375 (2011).
    [Crossref]
  11. J. Z. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref]
  12. R. C. Baraas, J. Carroll, K. L. Gunther, M. Chung, D. R. Williams, D. H. Foster, and M. Neitz, “Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency,” J. Opt. Soc. Am. A 24(5), 1438–1447 (2007).
    [Crossref]
  13. J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
    [Crossref]
  14. Y. D. Zhang, N. Ling, Z. P. Yang, H. F. Duan, S. L. Jiao, and W. H. Jiang, “Adaptive optical system for ICF application,” Proc. SPIE 4494, 96–103 (2002).
    [Crossref]
  15. R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
    [Crossref]
  16. H. Shinto, Y. Saita, and T. Nomura, “Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method,” Appl. Opt. 55(20), 5413–5418 (2016).
    [Crossref]
  17. L. Huang, X. K. Ma, Q. Bian, T. H. Li, C. L. Zhou, and M. L. Gong, “High-precision system identification method for a deformable mirror in wavefront control,” Appl. Opt. 54(14), 4313–4317 (2015).
    [Crossref]
  18. M. Yan, L. Huang, L. C. Sun, and J. B. Fan, “Sub-regional wavefront hybrid algorithm for limited actuators deformable mirror,” Opt. Commun. 426, 435–442 (2018).
    [Crossref]
  19. J. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack–Hartmann wave-front sensor,” Appl. Opt. 44(23), 4838–4845 (2005).
    [Crossref]
  20. X. K. Ma, L. Huang, Q. Bian, and M. L. Gong, “Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide,” Appl. Opt. 53(26), 5917–5923 (2014).
    [Crossref]
  21. L. Huang, C. L. Zhou, X. K. Ma, M. Yan, and J. B. Fan, “Wavefront correction by a low-cost deformable mirror group in a small-aperture-beam fiber laser,” Appl. Opt. 56(8), 2176–2182 (2017).
    [Crossref]
  22. M. Aftab, H. Choi, R. G. Liang, and D. W. Kim, “Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations,” Opt. Express 26(26), 34428–34441 (2018).
    [Crossref]
  23. M. B. Roopashree, A. Vyas, and B. R. Prasad, “Influence Function Measurement of Continuous Membrane Deformable Mirror Actuators Using Shack Hartmann Sensor,” AIP Conf. Proc. 1391(1), 453–455 (2011).
    [Crossref]
  24. L. H. Huang, C. H. Rao, and W. H. Jiang, “Modified Gaussian influence function of deformable mirror actuators,” Opt. Express 16(1), 108–114 (2008).
    [Crossref]
  25. M. Z. Dominguez, L. R. Wang, P. Su, R. E. Parks, and J. H. Burge, “Software configurable optical test system for refractive optics,” Proc. SPIE 8011, 80116Q (2011).
    [Crossref]
  26. P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
    [Crossref]
  27. W. C. Zhao, L. R. Graves, R. Huang, W. H. Song, and D. W. Kim, “Iterative surface construction for blind deflectometry,” Proc. SPIE 9684, 96843X (2016).
    [Crossref]
  28. P. Su, Y. H. Wang, J. H. Burge, K. Kaznatcheev, and M. Idir, “Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach,” Opt. Express 20(11), 12393–12406 (2012).
    [Crossref]
  29. J. N. Choi, D. Ryu, S. W. Kim, L. Graves, P. Su, R. Huang, and D. W. Kim, “Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface,” Proc. SPIE 9575, 957513 (2015).
    [Crossref]
  30. L. Huang, C. L. Zhou, W. C. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
    [Crossref]
  31. R. Huang, P. Su, T. Home, G. Bruse, and J. H. Burge, “Optical metrology of a large deformable aspherical mirror using software configurable optical test system,” Opt. Eng. 53(8), 085106 (2014).
    [Crossref]
  32. C. Cánovas, P. M. Prieto, S. Manzanera, A. Mira, and P. Artal, “Hybrid adaptive-optics visual simulator,” Opt. Lett. 35(2), 196–198 (2010).
    [Crossref]
  33. W. Y. Zou, X. F. Qi, and S. A. Burns, “Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm,” Biomed. Opt. Express 2(7), 1986–2004 (2011).
    [Crossref]
  34. D. J. Wahl, P. F. Zhang, J. Mocci, M. Quintavalla, R. Muradore, Y. F. Jian, S. Bonora, M. V. Sarunic, and R. J. Zawadzki, “Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction,” Biomed. Opt. Express 10(9), 4757–4774 (2019).
    [Crossref]
  35. S. Y. Liu, M. R. E. Lamont, J. A. Mulligan, and S. G. Adie, “Hybrid adaptive optics for high throughput volumetric OCM, and suppression of multiple scattering and speckle (Conference Presentation),” Proc. SPIE 10867, 75 (2019).
    [Crossref]
  36. P. Su, R. E. Parks, L. R. Wang, R. P. Angel, and J. H. Burge, “Software configurable optical test system: a computerized revers Hartmann test,” Appl. Opt. 49(23), 4404–4412 (2010).
    [Crossref]
  37. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70(8), 998–1006 (1980).
    [Crossref]
  38. Z. W. Wu, A. Enmark, M. Owner-Petersen, and T. Andersen, “Comparison of wavefront sensor models for simulation of adaptive optics,” Opt. Express 17(22), 20575–20583 (2009).
    [Crossref]
  39. C. Sun, L. C. Sun, Y. M. Zheng, S. B. Lin, and L. Huang, “Theoretical and experimental research on temperature-induced surface distortion of deformable mirror,” Opt. Express 26(24), 32205–32224 (2018).
    [Crossref]

2019 (3)

2018 (4)

2017 (2)

L. Huang, C. L. Zhou, W. C. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

L. Huang, C. L. Zhou, X. K. Ma, M. Yan, and J. B. Fan, “Wavefront correction by a low-cost deformable mirror group in a small-aperture-beam fiber laser,” Appl. Opt. 56(8), 2176–2182 (2017).
[Crossref]

2016 (2)

W. C. Zhao, L. R. Graves, R. Huang, W. H. Song, and D. W. Kim, “Iterative surface construction for blind deflectometry,” Proc. SPIE 9684, 96843X (2016).
[Crossref]

H. Shinto, Y. Saita, and T. Nomura, “Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method,” Appl. Opt. 55(20), 5413–5418 (2016).
[Crossref]

2015 (3)

2014 (2)

X. K. Ma, L. Huang, Q. Bian, and M. L. Gong, “Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide,” Appl. Opt. 53(26), 5917–5923 (2014).
[Crossref]

R. Huang, P. Su, T. Home, G. Bruse, and J. H. Burge, “Optical metrology of a large deformable aspherical mirror using software configurable optical test system,” Opt. Eng. 53(8), 085106 (2014).
[Crossref]

2012 (2)

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

P. Su, Y. H. Wang, J. H. Burge, K. Kaznatcheev, and M. Idir, “Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach,” Opt. Express 20(11), 12393–12406 (2012).
[Crossref]

2011 (5)

2010 (2)

2009 (1)

2008 (1)

2007 (2)

2005 (2)

2003 (1)

2002 (2)

C. H. Rao, W. H. Jiang, and N. Ling, “Atmospheric characterization with Shack-Hartmann wave-front sensor for non-Kolmogorov turbulence,” Opt. Eng. 41(2), 534–541 (2002).
[Crossref]

Y. D. Zhang, N. Ling, Z. P. Yang, H. F. Duan, S. L. Jiao, and W. H. Jiang, “Adaptive optical system for ICF application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

2000 (1)

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

1997 (2)

1995 (1)

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

1980 (1)

Adie, S. G.

S. Y. Liu, M. R. E. Lamont, J. A. Mulligan, and S. G. Adie, “Hybrid adaptive optics for high throughput volumetric OCM, and suppression of multiple scattering and speckle (Conference Presentation),” Proc. SPIE 10867, 75 (2019).
[Crossref]

Aftab, M.

Andersen, T.

Angel, R. P.

Artal, P.

Atta, L. V.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

Baraas, R. C.

Béchet, C.

Bian, Q.

Bliss, E. S.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

Bonora, S.

Bower, B. A.

Bruse, G.

R. Huang, P. Su, T. Home, G. Bruse, and J. H. Burge, “Optical metrology of a large deformable aspherical mirror using software configurable optical test system,” Opt. Eng. 53(8), 085106 (2014).
[Crossref]

Burge, J. H.

R. Huang, P. Su, T. Home, G. Bruse, and J. H. Burge, “Optical metrology of a large deformable aspherical mirror using software configurable optical test system,” Opt. Eng. 53(8), 085106 (2014).
[Crossref]

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

P. Su, Y. H. Wang, J. H. Burge, K. Kaznatcheev, and M. Idir, “Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach,” Opt. Express 20(11), 12393–12406 (2012).
[Crossref]

M. Z. Dominguez, L. R. Wang, P. Su, R. E. Parks, and J. H. Burge, “Software configurable optical test system for refractive optics,” Proc. SPIE 8011, 80116Q (2011).
[Crossref]

P. Su, R. E. Parks, L. R. Wang, R. P. Angel, and J. H. Burge, “Software configurable optical test system: a computerized revers Hartmann test,” Appl. Opt. 49(23), 4404–4412 (2010).
[Crossref]

Burns, D.

Burns, S. A.

Byrd, J. L.

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

Cánovas, C.

Carroll, J.

Choi, H.

M. Aftab, H. Choi, R. G. Liang, and D. W. Kim, “Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations,” Opt. Express 26(26), 34428–34441 (2018).
[Crossref]

L. Huang, C. L. Zhou, W. C. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Choi, J. N.

J. N. Choi, D. Ryu, S. W. Kim, L. Graves, P. Su, R. Huang, and D. W. Kim, “Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface,” Proc. SPIE 9575, 957513 (2015).
[Crossref]

Choi, S.

Chung, M.

Clare, R. M.

Deng, X. W.

Descour, M. R.

Dominguez, M. Z.

M. Z. Dominguez, L. R. Wang, P. Su, R. E. Parks, and J. H. Burge, “Software configurable optical test system for refractive optics,” Proc. SPIE 8011, 80116Q (2011).
[Crossref]

Duan, H. F.

Y. D. Zhang, N. Ling, Z. P. Yang, H. F. Duan, S. L. Jiao, and W. H. Jiang, “Adaptive optical system for ICF application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Ellerbroek, B. L.

Enmark, A.

Evans, C. L.

Fan, J. B.

Feldman, M.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

Foster, D. H.

Freudiger, C. W.

Girkin, J. M.

Gong, M. L.

Graves, L.

L. Huang, C. L. Zhou, W. C. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

J. N. Choi, D. Ryu, S. W. Kim, L. Graves, P. Su, R. Huang, and D. W. Kim, “Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface,” Proc. SPIE 9575, 957513 (2015).
[Crossref]

Graves, L. R.

W. C. Zhao, L. R. Graves, R. Huang, W. H. Song, and D. W. Kim, “Iterative surface construction for blind deflectometry,” Proc. SPIE 9684, 96843X (2016).
[Crossref]

Grey, A.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

Gunther, K. L.

Home, T.

R. Huang, P. Su, T. Home, G. Bruse, and J. H. Burge, “Optical metrology of a large deformable aspherical mirror using software configurable optical test system,” Opt. Eng. 53(8), 085106 (2014).
[Crossref]

Hu, D. X.

Huang, L.

C. Sun, L. Huang, D. E. Wang, X. W. Deng, D. X. Hu, L. C. Sun, and Y. M. Zheng, “Theoretical research on the novel adaptive optics configuration based on the tubular deformable mirror for the aberration correction of the annular laser beam,” Opt. Express 27(6), 9215–9231 (2019).
[Crossref]

C. Sun, L. C. Sun, Y. M. Zheng, S. B. Lin, and L. Huang, “Theoretical and experimental research on temperature-induced surface distortion of deformable mirror,” Opt. Express 26(24), 32205–32224 (2018).
[Crossref]

L. C. Sun, L. Huang, M. Yan, J. B. Fan, Y. M. Zheng, and C. Sun, “Intracavity deformable mirror for beam quality improvement and power enhancement of a passively Q-switched laser,” Opt. Express 26(7), 8594–8608 (2018).
[Crossref]

M. Yan, L. Huang, L. C. Sun, and J. B. Fan, “Sub-regional wavefront hybrid algorithm for limited actuators deformable mirror,” Opt. Commun. 426, 435–442 (2018).
[Crossref]

L. Huang, C. L. Zhou, W. C. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

L. Huang, C. L. Zhou, X. K. Ma, M. Yan, and J. B. Fan, “Wavefront correction by a low-cost deformable mirror group in a small-aperture-beam fiber laser,” Appl. Opt. 56(8), 2176–2182 (2017).
[Crossref]

L. Huang, X. K. Ma, Q. Bian, T. H. Li, C. L. Zhou, and M. L. Gong, “High-precision system identification method for a deformable mirror in wavefront control,” Appl. Opt. 54(14), 4313–4317 (2015).
[Crossref]

L. Huang, X. K. Ma, M. L. Gong, and Q. Bian, “Experimental investigation of the deformable mirror with bidirectional thermal actuators,” Opt. Express 23(13), 17520–17530 (2015).
[Crossref]

X. K. Ma, L. Huang, Q. Bian, and M. L. Gong, “Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide,” Appl. Opt. 53(26), 5917–5923 (2014).
[Crossref]

Huang, L. H.

Huang, R.

W. C. Zhao, L. R. Graves, R. Huang, W. H. Song, and D. W. Kim, “Iterative surface construction for blind deflectometry,” Proc. SPIE 9684, 96843X (2016).
[Crossref]

J. N. Choi, D. Ryu, S. W. Kim, L. Graves, P. Su, R. Huang, and D. W. Kim, “Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface,” Proc. SPIE 9575, 957513 (2015).
[Crossref]

R. Huang, P. Su, T. Home, G. Bruse, and J. H. Burge, “Optical metrology of a large deformable aspherical mirror using software configurable optical test system,” Opt. Eng. 53(8), 085106 (2014).
[Crossref]

Idir, M.

Izatt, J. A.

Jian, Y. F.

Jiang, W. H.

L. H. Huang, C. H. Rao, and W. H. Jiang, “Modified Gaussian influence function of deformable mirror actuators,” Opt. Express 16(1), 108–114 (2008).
[Crossref]

C. H. Rao, W. H. Jiang, and N. Ling, “Atmospheric characterization with Shack-Hartmann wave-front sensor for non-Kolmogorov turbulence,” Opt. Eng. 41(2), 534–541 (2002).
[Crossref]

Y. D. Zhang, N. Ling, Z. P. Yang, H. F. Duan, S. L. Jiao, and W. H. Jiang, “Adaptive optical system for ICF application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Jiao, S. L.

Y. D. Zhang, N. Ling, Z. P. Yang, H. F. Duan, S. L. Jiao, and W. H. Jiang, “Adaptive optical system for ICF application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Jones, S. M.

Kartz, M. W.

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

Kaznatcheev, K.

Khreishi, M.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

Kim, D.

L. Huang, C. L. Zhou, W. C. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Kim, D. W.

M. Aftab, H. Choi, R. G. Liang, and D. W. Kim, “Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations,” Opt. Express 26(26), 34428–34441 (2018).
[Crossref]

W. C. Zhao, L. R. Graves, R. Huang, W. H. Song, and D. W. Kim, “Iterative surface construction for blind deflectometry,” Proc. SPIE 9684, 96843X (2016).
[Crossref]

J. N. Choi, D. Ryu, S. W. Kim, L. Graves, P. Su, R. Huang, and D. W. Kim, “Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface,” Proc. SPIE 9575, 957513 (2015).
[Crossref]

Kim, S. W.

J. N. Choi, D. Ryu, S. W. Kim, L. Graves, P. Su, R. Huang, and D. W. Kim, “Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface,” Proc. SPIE 9575, 957513 (2015).
[Crossref]

Koch, J. A.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

Lamont, M. R. E.

S. Y. Liu, M. R. E. Lamont, J. A. Mulligan, and S. G. Adie, “Hybrid adaptive optics for high throughput volumetric OCM, and suppression of multiple scattering and speckle (Conference Presentation),” Proc. SPIE 10867, 75 (2019).
[Crossref]

Laut, S.

Law, K.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

Le Louarn, M.

Lee, J.

Li, B. M.

Li, T. H.

Liang, C.

Liang, J. Z.

Liang, R. G.

Lin, S. B.

Ling, N.

C. H. Rao, W. H. Jiang, and N. Ling, “Atmospheric characterization with Shack-Hartmann wave-front sensor for non-Kolmogorov turbulence,” Opt. Eng. 41(2), 534–541 (2002).
[Crossref]

Y. D. Zhang, N. Ling, Z. P. Yang, H. F. Duan, S. L. Jiao, and W. H. Jiang, “Adaptive optical system for ICF application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Liu, S. Y.

S. Y. Liu, M. R. E. Lamont, J. A. Mulligan, and S. G. Adie, “Hybrid adaptive optics for high throughput volumetric OCM, and suppression of multiple scattering and speckle (Conference Presentation),” Proc. SPIE 10867, 75 (2019).
[Crossref]

Ma, X. K.

Manzanera, S.

Marsh, P. N.

Martin, H.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

Miller, D. T.

Mira, A.

Mocci, J.

Mulligan, J. A.

S. Y. Liu, M. R. E. Lamont, J. A. Mulligan, and S. G. Adie, “Hybrid adaptive optics for high throughput volumetric OCM, and suppression of multiple scattering and speckle (Conference Presentation),” Proc. SPIE 10867, 75 (2019).
[Crossref]

Muradore, R.

Neitz, M.

Niu, S. S.

Nomura, T.

Northcott, M. J.

Olivier, S. S.

Owner-Petersen, M.

Parks, R. E.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

M. Z. Dominguez, L. R. Wang, P. Su, R. E. Parks, and J. H. Burge, “Software configurable optical test system for refractive optics,” Proc. SPIE 8011, 80116Q (2011).
[Crossref]

P. Su, R. E. Parks, L. R. Wang, R. P. Angel, and J. H. Burge, “Software configurable optical test system: a computerized revers Hartmann test,” Appl. Opt. 49(23), 4404–4412 (2010).
[Crossref]

Poland, S. P.

Prasad, B. R.

M. B. Roopashree, A. Vyas, and B. R. Prasad, “Influence Function Measurement of Continuous Membrane Deformable Mirror Actuators Using Shack Hartmann Sensor,” AIP Conf. Proc. 1391(1), 453–455 (2011).
[Crossref]

Prieto, P. M.

Qi, X. F.

Quintavalla, M.

Rao, C. H.

L. H. Huang, C. H. Rao, and W. H. Jiang, “Modified Gaussian influence function of deformable mirror actuators,” Opt. Express 16(1), 108–114 (2008).
[Crossref]

C. H. Rao, W. H. Jiang, and N. Ling, “Atmospheric characterization with Shack-Hartmann wave-front sensor for non-Kolmogorov turbulence,” Opt. Eng. 41(2), 534–541 (2002).
[Crossref]

Rascon, M.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

Rigaut, F.

Roopashree, M. B.

M. B. Roopashree, A. Vyas, and B. R. Prasad, “Influence Function Measurement of Continuous Membrane Deformable Mirror Actuators Using Shack Hartmann Sensor,” AIP Conf. Proc. 1391(1), 453–455 (2011).
[Crossref]

Ryu, D.

J. N. Choi, D. Ryu, S. W. Kim, L. Graves, P. Su, R. Huang, and D. W. Kim, “Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface,” Proc. SPIE 9575, 957513 (2015).
[Crossref]

Sacks, R. A.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

Saita, Y.

Salmon, J. T.

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

Sarunic, M. V.

Shack, R. V.

Shen, J. X.

Shinto, H.

Song, W. H.

W. C. Zhao, L. R. Graves, R. Huang, W. H. Song, and D. W. Kim, “Iterative surface construction for blind deflectometry,” Proc. SPIE 9684, 96843X (2016).
[Crossref]

Southwell, W. H.

Stolz, C. J.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

Su, P.

J. N. Choi, D. Ryu, S. W. Kim, L. Graves, P. Su, R. Huang, and D. W. Kim, “Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface,” Proc. SPIE 9575, 957513 (2015).
[Crossref]

R. Huang, P. Su, T. Home, G. Bruse, and J. H. Burge, “Optical metrology of a large deformable aspherical mirror using software configurable optical test system,” Opt. Eng. 53(8), 085106 (2014).
[Crossref]

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

P. Su, Y. H. Wang, J. H. Burge, K. Kaznatcheev, and M. Idir, “Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach,” Opt. Express 20(11), 12393–12406 (2012).
[Crossref]

M. Z. Dominguez, L. R. Wang, P. Su, R. E. Parks, and J. H. Burge, “Software configurable optical test system for refractive optics,” Proc. SPIE 8011, 80116Q (2011).
[Crossref]

P. Su, R. E. Parks, L. R. Wang, R. P. Angel, and J. H. Burge, “Software configurable optical test system: a computerized revers Hartmann test,” Appl. Opt. 49(23), 4404–4412 (2010).
[Crossref]

Su, T. Q.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

Sun, C.

Sun, L. C.

Toeppen, J. S.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

Vyas, A.

M. B. Roopashree, A. Vyas, and B. R. Prasad, “Influence Function Measurement of Continuous Membrane Deformable Mirror Actuators Using Shack Hartmann Sensor,” AIP Conf. Proc. 1391(1), 453–455 (2011).
[Crossref]

Wahl, D. J.

Wang, D. E.

Wang, L. R.

M. Z. Dominguez, L. R. Wang, P. Su, R. E. Parks, and J. H. Burge, “Software configurable optical test system for refractive optics,” Proc. SPIE 8011, 80116Q (2011).
[Crossref]

P. Su, R. E. Parks, L. R. Wang, R. P. Angel, and J. H. Burge, “Software configurable optical test system: a computerized revers Hartmann test,” Appl. Opt. 49(23), 4404–4412 (2010).
[Crossref]

Wang, S. S.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

Wang, Y. H.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

P. Su, Y. H. Wang, J. H. Burge, K. Kaznatcheev, and M. Idir, “Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach,” Opt. Express 20(11), 12393–12406 (2012).
[Crossref]

Werner, J. S.

Williams, D. R.

Winters, S.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

Wonterghem, B. M. V.

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

Woods, B. W.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

Wright, A. J.

Wu, Z. W.

Xie, X. S.

Yan, M.

Yang, Z. P.

Y. D. Zhang, N. Ling, Z. P. Yang, H. F. Duan, S. L. Jiao, and W. H. Jiang, “Adaptive optical system for ICF application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Zacharias, R. A.

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

Zawadzki, R. J.

Zhang, P. F.

Zhang, Y. D.

Y. D. Zhang, N. Ling, Z. P. Yang, H. F. Duan, S. L. Jiao, and W. H. Jiang, “Adaptive optical system for ICF application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

Zhang, Y. H.

Zhao, M. T.

Zhao, W. C.

L. Huang, C. L. Zhou, W. C. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

W. C. Zhao, L. R. Graves, R. Huang, W. H. Song, and D. W. Kim, “Iterative surface construction for blind deflectometry,” Proc. SPIE 9684, 96843X (2016).
[Crossref]

Zheng, Y. M.

Zhou, C. L.

Zhou, P.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

Zobrist, T.

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

Zou, W. Y.

AIP Conf. Proc. (1)

M. B. Roopashree, A. Vyas, and B. R. Prasad, “Influence Function Measurement of Continuous Membrane Deformable Mirror Actuators Using Shack Hartmann Sensor,” AIP Conf. Proc. 1391(1), 453–455 (2011).
[Crossref]

Appl. Opt. (9)

F. Rigaut, B. L. Ellerbroek, and M. J. Northcott, “Comparison of curvature-based and Shack–Hartmann-based adaptive optics for the Gemini telescope,” Appl. Opt. 36(13), 2856–2868 (1997).
[Crossref]

J. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack–Hartmann wave-front sensor,” Appl. Opt. 44(23), 4838–4845 (2005).
[Crossref]

P. Su, R. E. Parks, L. R. Wang, R. P. Angel, and J. H. Burge, “Software configurable optical test system: a computerized revers Hartmann test,” Appl. Opt. 49(23), 4404–4412 (2010).
[Crossref]

R. M. Clare, M. Le Louarn, and C. Béchet, “Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes,” Appl. Opt. 50(4), 473–483 (2011).
[Crossref]

S. S. Niu, J. X. Shen, C. Liang, Y. H. Zhang, and B. M. Li, “High-resolution retinal imaging with micro adaptive optics system,” Appl. Opt. 50(22), 4365–4375 (2011).
[Crossref]

H. Shinto, Y. Saita, and T. Nomura, “Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method,” Appl. Opt. 55(20), 5413–5418 (2016).
[Crossref]

L. Huang, C. L. Zhou, X. K. Ma, M. Yan, and J. B. Fan, “Wavefront correction by a low-cost deformable mirror group in a small-aperture-beam fiber laser,” Appl. Opt. 56(8), 2176–2182 (2017).
[Crossref]

X. K. Ma, L. Huang, Q. Bian, and M. L. Gong, “Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide,” Appl. Opt. 53(26), 5917–5923 (2014).
[Crossref]

L. Huang, X. K. Ma, Q. Bian, T. H. Li, C. L. Zhou, and M. L. Gong, “High-precision system identification method for a deformable mirror in wavefront control,” Appl. Opt. 54(14), 4313–4317 (2015).
[Crossref]

Biomed. Opt. Express (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

M. Yan, L. Huang, L. C. Sun, and J. B. Fan, “Sub-regional wavefront hybrid algorithm for limited actuators deformable mirror,” Opt. Commun. 426, 435–442 (2018).
[Crossref]

L. Huang, C. L. Zhou, W. C. Zhao, H. Choi, L. Graves, and D. Kim, “Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system,” Opt. Commun. 393, 83–88 (2017).
[Crossref]

Opt. Eng. (2)

R. Huang, P. Su, T. Home, G. Bruse, and J. H. Burge, “Optical metrology of a large deformable aspherical mirror using software configurable optical test system,” Opt. Eng. 53(8), 085106 (2014).
[Crossref]

C. H. Rao, W. H. Jiang, and N. Ling, “Atmospheric characterization with Shack-Hartmann wave-front sensor for non-Kolmogorov turbulence,” Opt. Eng. 41(2), 534–541 (2002).
[Crossref]

Opt. Express (11)

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref]

P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
[Crossref]

A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15(26), 18209–18219 (2007).
[Crossref]

L. H. Huang, C. H. Rao, and W. H. Jiang, “Modified Gaussian influence function of deformable mirror actuators,” Opt. Express 16(1), 108–114 (2008).
[Crossref]

Z. W. Wu, A. Enmark, M. Owner-Petersen, and T. Andersen, “Comparison of wavefront sensor models for simulation of adaptive optics,” Opt. Express 17(22), 20575–20583 (2009).
[Crossref]

P. Su, Y. H. Wang, J. H. Burge, K. Kaznatcheev, and M. Idir, “Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach,” Opt. Express 20(11), 12393–12406 (2012).
[Crossref]

L. Huang, X. K. Ma, M. L. Gong, and Q. Bian, “Experimental investigation of the deformable mirror with bidirectional thermal actuators,” Opt. Express 23(13), 17520–17530 (2015).
[Crossref]

L. C. Sun, L. Huang, M. Yan, J. B. Fan, Y. M. Zheng, and C. Sun, “Intracavity deformable mirror for beam quality improvement and power enhancement of a passively Q-switched laser,” Opt. Express 26(7), 8594–8608 (2018).
[Crossref]

C. Sun, L. C. Sun, Y. M. Zheng, S. B. Lin, and L. Huang, “Theoretical and experimental research on temperature-induced surface distortion of deformable mirror,” Opt. Express 26(24), 32205–32224 (2018).
[Crossref]

M. Aftab, H. Choi, R. G. Liang, and D. W. Kim, “Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations,” Opt. Express 26(26), 34428–34441 (2018).
[Crossref]

C. Sun, L. Huang, D. E. Wang, X. W. Deng, D. X. Hu, L. C. Sun, and Y. M. Zheng, “Theoretical research on the novel adaptive optics configuration based on the tubular deformable mirror for the aberration correction of the annular laser beam,” Opt. Express 27(6), 9215–9231 (2019).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (8)

S. Y. Liu, M. R. E. Lamont, J. A. Mulligan, and S. G. Adie, “Hybrid adaptive optics for high throughput volumetric OCM, and suppression of multiple scattering and speckle (Conference Presentation),” Proc. SPIE 10867, 75 (2019).
[Crossref]

J. T. Salmon, E. S. Bliss, J. L. Byrd, M. Feldman, M. W. Kartz, J. S. Toeppen, B. M. V. Wonterghem, and S. Winters, “Adaptive optics system for solid state laser systems used in inertial confinement fusion,” Proc. SPIE 2633, 105–113 (1995).
[Crossref]

Y. D. Zhang, N. Ling, Z. P. Yang, H. F. Duan, S. L. Jiao, and W. H. Jiang, “Adaptive optical system for ICF application,” Proc. SPIE 4494, 96–103 (2002).
[Crossref]

R. A. Zacharias, E. S. Bliss, S. Winters, R. A. Sacks, M. Feldman, A. Grey, J. A. Koch, C. J. Stolz, J. S. Toeppen, L. V. Atta, and B. W. Woods, “Wavefront control of high-power laser beams in the National Ignition Facility (NIF),” Proc. SPIE 3889, 332–343 (2000).
[Crossref]

M. Z. Dominguez, L. R. Wang, P. Su, R. E. Parks, and J. H. Burge, “Software configurable optical test system for refractive optics,” Proc. SPIE 8011, 80116Q (2011).
[Crossref]

P. Su, S. S. Wang, M. Khreishi, Y. H. Wang, T. Q. Su, P. Zhou, R. E. Parks, K. Law, M. Rascon, T. Zobrist, H. Martin, and J. H. Burge, “SCOTS: a reverse Hartmann test with high dynamic range for Giant Magellan Telescope primary mirror segments,” Proc. SPIE 8450, 84500W (2012).
[Crossref]

W. C. Zhao, L. R. Graves, R. Huang, W. H. Song, and D. W. Kim, “Iterative surface construction for blind deflectometry,” Proc. SPIE 9684, 96843X (2016).
[Crossref]

J. N. Choi, D. Ryu, S. W. Kim, L. Graves, P. Su, R. Huang, and D. W. Kim, “Integrated Ray Tracing (IRT) simulation of SCOTS measurement of GMT fast steering mirror surface,” Proc. SPIE 9575, 957513 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Configuration of the hybrid AO system. Fiber laser generates a laser beam. L1, L2 and L3 are collimating lenses. DM is a deformable mirror. The laser beam is split by a beam splitter and two split beams enter into power collector and SHWFS. The DS consists of an LCD and a charge-coupled device (CCD) with a lens (L4). The SHWFS consists of an MLA and a CCD. Wavefront and IF data measured by SHWFS and DS are transmitted into a personal computer (PC). After calculating, control signals are obtained and sent into high-voltage driver by the PC. Finally, the DM is driven by corresponding driving voltages and the compensation wavefront is generated.
Fig. 2.
Fig. 2. Configuration and fringe patterns of the DS. (a) Simplified configuration of the DS. (b) Reference fringes along y-direction on the CCD. (c) Deformed fringes on the CCD. (d) Deformed fringes on the CCD, local enlarged.
Fig. 3.
Fig. 3. (a) Effective fringe area of the LCD and (b) corresponding highlighted area of the CCD.
Fig. 4.
Fig. 4. Comparison of S-IF and D-IF. (a) Distribution of 49 actuators of the DM. d is the distance between each actuator. (b) 10th S-IF; (c) 10th D-IF; (d) 39th S-IF; (e) 39th D-IF.
Fig. 5.
Fig. 5. Position-calibration for the D-IF. (a) 9th D-IF; (b) 9th S-IF; (c) 9th, 13th and 37th D-IF; (d) 9th, 13th and 37th S-IF; (e) Spliced matrix for D-IF; (f) Spliced matrix for S-IF; (g) 9th calibrated D-IF.
Fig. 6.
Fig. 6. Sub-block computation of the resolution-conversion algorithm.
Fig. 7.
Fig. 7. Three types of resolution-conversion algorithms with different coefficient distributions. (a) Type 1: Uniform distribution; (b) Type 2: Linear distribution; (c) Type 3: Normal distribution.
Fig. 8.
Fig. 8. Results of three types of resolution-conversion algorithms for the IF of the 17th actuator. (a) D-IF; (b) H-IF1 using Type 1 conversion algorithm; (c) H-IF2 using Type 2 conversion algorithm; (d) H-IF3 using Type 3 conversion algorithm.
Fig. 9.
Fig. 9. Simulation result of the 3rd Zernike mode aberration correction. (a) Initial aberration. Residual errors corrected by (b) S-IF, (c) H-IF1, (d) H-IF2, and (e) H-IF3.
Fig. 10.
Fig. 10. (a) PV and (b) RMS result comparison of the 3rd to 10th Zernike mode aberration correction.
Fig. 11.
Fig. 11. Correction result of the random aberration in simulation. (a) Initial aberration and (b) Zernike mode decomposition coefficients. Residual errors corrected by using (c) S-IF, (d) H-IF1, (e) H-IF2 and (f) H-IF3.
Fig. 12.
Fig. 12. (a) PV and (b) RMS values comparison after the random wavefront aberration correction.
Fig. 13.
Fig. 13. Schematic diagram of actual structure of a hybrid AO system. The fiber laser generates a 1053 nm laser beam, and collimating lens L1 changes the beam into a parallel one. After the transmission of collimating lens L2 (1050 mm focal length) and L3 (75 mm focal length), the laser beam enters into the SHWFS and the wavefront aberration is measured. An LCD and a CCD with a lens form the DS part to measure the IF of the DM. The DM generates deformed surface shape to compensate the wavefront aberration of the laser beam. Red lines show the SHWFS measurement part, and the blue lines show the DS measurement part.
Fig. 14.
Fig. 14. Correction result of the beam aberration in experiment. (a) Initial aberration and (b) Zernike mode decomposition coefficients. Residual errors corrected by using (c) S-IF, (d) H-IF1, (e) H-IF2 and (f) H-IF3.
Fig. 15.
Fig. 15. (a) PV and (b) RMS values comparison after correction of the beam aberration.

Tables (1)

Tables Icon

Table 1. Resolutions of different IFs and the measured wavefront

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R 1 = p D 1 S 1 p S 1
b = i = 1 15 j = 1 15 k i , j a i , j
k i , j = 1 h , h = 225
k i , j = p 1 ( m | m i | ) ( m | m j | ) , m = 8 , p 1 = 2.4414 × 10 4
k i , j = p 2 1 2 π σ 2 exp [ 1 2 ( i 2 σ 2 + j 2 σ 2 ) ] , σ = 7 3 , p 2 = 1.0024
S c = V I
V = ( I T I ) 1 I T S o
S e = S o S c

Metrics