Abstract

Micro-grating accelerometer detecting small displacement by an optical system can be widely applied in inertial navigation and seismic monitoring. We proposed a micro-grating accelerometer prototype with a proof mass of gram-scale to decrease the thermal mechanical noise, which is the fundamental limit of a high-resolution accelerometer. The theoretical model for the contrast ratio of a micro-grating accelerometer is established based on Gaussian beam theory, and the adjustment method based on a scanning slit beam profiler improves the contrast ratio of 0th order effectively. Compared to our former prototype, experiment results indicate the noise floor is decreased from 0.9 mg/√Hz to 137 ng/√Hz, and the bias stability is decreased from 0.35 mg to 3.1 µg.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error

Yu Zhang, Shan Gao, Heng Xiong, and Lishuang Feng
Opt. Express 27(5) 6565-6579 (2019)

Noise suppression of a micro-grating accelerometer based on the dual modulation method

Tianhang Zhang, Huilan Liu, Lishuang Feng, Xiao Wang, and Yu Zhang
Appl. Opt. 56(36) 10003-10008 (2017)

Sensitivity improvement of micro-grating accelerometer based on differential detection method

Xiao Wang, Lishuang Feng, Baoyin Yao, and Xiaoyuan Ren
Appl. Opt. 52(18) 4091-4096 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
    [Crossref]
  2. G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7415 (1998).
    [Crossref]
  3. D. W. Carr, J. P. Sullivan, and T. A. Friedmann, “Laterally deformable nanomechanical zeroth-order grating: anomalous diffraction studied by rigorous coupled-wave analysis,” Opt. Lett. 28(18), 1636–1638 (2003).
    [Crossref]
  4. C. A. Savran, T. P. Burg, and J. Fritz, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83(8), 1659–1661 (2003).
    [Crossref]
  5. W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10(3), 643–651 (2004).
    [Crossref]
  6. W. Lee, N. A. Hall, and F. L. Degertekin, “A grating-assisted resonant-cavity-enhanced optical displacement detection method for micromachined sensors,” Appl. Phys. Lett. 85(15), 3032–3034 (2004).
    [Crossref]
  7. O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photonics Technol. Lett. 19(23), 1895–1897 (2007).
    [Crossref]
  8. Y. Yu, W. Yuan, B. Yan, and T. Li, “Development of a micromechanical grating optical modulator for optical network,” J. Lightwave Technol. 27(24), 5681–5686 (2009).
    [Crossref]
  9. E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
    [Crossref]
  10. N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
    [Crossref]
  11. N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
    [Crossref]
  12. U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
    [Crossref]
  13. Q. Lu, B. Jian, K. Wang, and S. He, “Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer,” J. Microelectromech. Syst. 26(4), C1–C4 (2017).
    [Crossref]
  14. T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Devices 40(5), 903–909 (1993).
    [Crossref]
  15. M. El Ner and H. Vogt, “Failure mechanisms of microbolometer thermal imager sensors using chip-scale packaging,” Microelectron. Reliab. 55(9-10), 1901–1905 (2015).
    [Crossref]
  16. L. Qian, H. Goosen, F. V. Keulen, J. V. Beek, and G. Zhang, “Assessment of testing methodologies for thin-film vacuum MEMS packages,” Microsyst. Technol. 15(1), 161–168 (2009).
    [Crossref]
  17. B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
    [Crossref]
  18. Q. Lu, C. Wang, J. Bai, K. Wang, S. Lou, X. Jiao, D. Han, G. Yang, D. Liu, and Y. Yang, “Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers,” Opt. Express 24(8), 9094–9111 (2016).
    [Crossref]
  19. Y. Zhang, S. Gao, H. Xiong, and L. Feng, “Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error,” Opt. Express 27(5), 6565–6579 (2019).
    [Crossref]
  20. N. A. Hall, W. Lee, and F. L. Degertekin, “Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection,” IEEE Trans. Sonics Ultrason. 50(11), 1570–1580 (2003).
    [Crossref]
  21. W. Chen, G. Yang, B. Jian, K. Wang, Q. Lu, S. Lou, W. Lian, and X. Jiao, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 3877–4196 (2015).
    [Crossref]
  22. W. H. Carter, “Electromagnetic field of a Gaussian beam with an elliptical cross section,” J. Opt. Soc. Am. 62(10), 1195–1201 (1972).
    [Crossref]
  23. Y. Li and E. Wolf, “Focal shift in focused truncated gaussian beams,” Opt. Commun. 42(3), 151–156 (1982).
    [Crossref]

2019 (1)

2017 (1)

Q. Lu, B. Jian, K. Wang, and S. He, “Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer,” J. Microelectromech. Syst. 26(4), C1–C4 (2017).
[Crossref]

2016 (1)

2015 (2)

2009 (3)

L. Qian, H. Goosen, F. V. Keulen, J. V. Beek, and G. Zhang, “Assessment of testing methodologies for thin-film vacuum MEMS packages,” Microsyst. Technol. 15(1), 161–168 (2009).
[Crossref]

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

Y. Yu, W. Yuan, B. Yan, and T. Li, “Development of a micromechanical grating optical modulator for optical network,” J. Lightwave Technol. 27(24), 5681–5686 (2009).
[Crossref]

2008 (2)

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
[Crossref]

2007 (1)

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photonics Technol. Lett. 19(23), 1895–1897 (2007).
[Crossref]

2004 (2)

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10(3), 643–651 (2004).
[Crossref]

W. Lee, N. A. Hall, and F. L. Degertekin, “A grating-assisted resonant-cavity-enhanced optical displacement detection method for micromachined sensors,” Appl. Phys. Lett. 85(15), 3032–3034 (2004).
[Crossref]

2003 (3)

N. A. Hall, W. Lee, and F. L. Degertekin, “Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection,” IEEE Trans. Sonics Ultrason. 50(11), 1570–1580 (2003).
[Crossref]

C. A. Savran, T. P. Burg, and J. Fritz, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83(8), 1659–1661 (2003).
[Crossref]

D. W. Carr, J. P. Sullivan, and T. A. Friedmann, “Laterally deformable nanomechanical zeroth-order grating: anomalous diffraction studied by rigorous coupled-wave analysis,” Opt. Lett. 28(18), 1636–1638 (2003).
[Crossref]

2002 (1)

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

2000 (1)

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
[Crossref]

1998 (1)

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7415 (1998).
[Crossref]

1996 (1)

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

1993 (1)

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Devices 40(5), 903–909 (1993).
[Crossref]

1982 (1)

Y. Li and E. Wolf, “Focal shift in focused truncated gaussian beams,” Opt. Commun. 42(3), 151–156 (1982).
[Crossref]

1972 (1)

Atalar, A.

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7415 (1998).
[Crossref]

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

Bai, J.

Baker, M. S.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
[Crossref]

Beek, J. V.

L. Qian, H. Goosen, F. V. Keulen, J. V. Beek, and G. Zhang, “Assessment of testing methodologies for thin-film vacuum MEMS packages,” Microsyst. Technol. 15(1), 161–168 (2009).
[Crossref]

Bicen, B.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

Bogart, G. R.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
[Crossref]

Burg, T. P.

C. A. Savran, T. P. Burg, and J. Fritz, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83(8), 1659–1661 (2003).
[Crossref]

Carr, D. W.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
[Crossref]

D. W. Carr, J. P. Sullivan, and T. A. Friedmann, “Laterally deformable nanomechanical zeroth-order grating: anomalous diffraction studied by rigorous coupled-wave analysis,” Opt. Lett. 28(18), 1636–1638 (2003).
[Crossref]

Carter, W. H.

Chen, W.

Clews, P. J.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
[Crossref]

Cooper, E. B.

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
[Crossref]

Cui, W.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

Degertekin, F. L.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10(3), 643–651 (2004).
[Crossref]

W. Lee, N. A. Hall, and F. L. Degertekin, “A grating-assisted resonant-cavity-enhanced optical displacement detection method for micromachined sensors,” Appl. Phys. Lett. 85(15), 3032–3034 (2004).
[Crossref]

N. A. Hall, W. Lee, and F. L. Degertekin, “Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection,” IEEE Trans. Sonics Ultrason. 50(11), 1570–1580 (2003).
[Crossref]

El Ner, M.

M. El Ner and H. Vogt, “Failure mechanisms of microbolometer thermal imager sensors using chip-scale packaging,” Microelectron. Reliab. 55(9-10), 1901–1905 (2015).
[Crossref]

Feng, L.

Ferhanoglu, O.

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photonics Technol. Lett. 19(23), 1895–1897 (2007).
[Crossref]

Friedmann, T. A.

Fritz, J.

C. A. Savran, T. P. Burg, and J. Fritz, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83(8), 1659–1661 (2003).
[Crossref]

Gabrielson, T. B.

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Devices 40(5), 903–909 (1993).
[Crossref]

Gao, S.

Garcia, C. T.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

Goosen, H.

L. Qian, H. Goosen, F. V. Keulen, J. V. Beek, and G. Zhang, “Assessment of testing methodologies for thin-film vacuum MEMS packages,” Microsyst. Technol. 15(1), 161–168 (2009).
[Crossref]

Griffith, S.

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
[Crossref]

Hall, N. A.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10(3), 643–651 (2004).
[Crossref]

W. Lee, N. A. Hall, and F. L. Degertekin, “A grating-assisted resonant-cavity-enhanced optical displacement detection method for micromachined sensors,” Appl. Phys. Lett. 85(15), 3032–3034 (2004).
[Crossref]

N. A. Hall, W. Lee, and F. L. Degertekin, “Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection,” IEEE Trans. Sonics Ultrason. 50(11), 1570–1580 (2003).
[Crossref]

Han, D.

He, S.

Q. Lu, B. Jian, K. Wang, and S. He, “Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer,” J. Microelectromech. Syst. 26(4), C1–C4 (2017).
[Crossref]

Jeelani, K.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

Jian, B.

Q. Lu, B. Jian, K. Wang, and S. He, “Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer,” J. Microelectromech. Syst. 26(4), C1–C4 (2017).
[Crossref]

W. Chen, G. Yang, B. Jian, K. Wang, Q. Lu, S. Lou, W. Lian, and X. Jiao, “Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation,” Appl. Opt. 54(13), 3877–4196 (2015).
[Crossref]

Jiao, X.

Jolly, S.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

Keeler, G. A.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

Keulen, F. V.

L. Qian, H. Goosen, F. V. Keulen, J. V. Beek, and G. Zhang, “Assessment of testing methodologies for thin-film vacuum MEMS packages,” Microsyst. Technol. 15(1), 161–168 (2009).
[Crossref]

Krishnamoorthy, U.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
[Crossref]

Lee, W.

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10(3), 643–651 (2004).
[Crossref]

W. Lee, N. A. Hall, and F. L. Degertekin, “A grating-assisted resonant-cavity-enhanced optical displacement detection method for micromachined sensors,” Appl. Phys. Lett. 85(15), 3032–3034 (2004).
[Crossref]

N. A. Hall, W. Lee, and F. L. Degertekin, “Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection,” IEEE Trans. Sonics Ultrason. 50(11), 1570–1580 (2003).
[Crossref]

Levitan, J.

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
[Crossref]

Li, T.

Li, Y.

Y. Li and E. Wolf, “Focal shift in focused truncated gaussian beams,” Opt. Commun. 42(3), 151–156 (1982).
[Crossref]

Lian, W.

Littrell, R.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

Liu, D.

Loh, N. C.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

Lou, S.

Lu, Q.

Manalis, S. R.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
[Crossref]

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7415 (1998).
[Crossref]

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

Miles, R. N.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

Minne, S. C.

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

Okandan, M.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

Olsson, R. H.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
[Crossref]

Peterson, K.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

Post, E. R.

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
[Crossref]

Qian, L.

L. Qian, H. Goosen, F. V. Keulen, J. V. Beek, and G. Zhang, “Assessment of testing methodologies for thin-film vacuum MEMS packages,” Microsyst. Technol. 15(1), 161–168 (2009).
[Crossref]

Quate, C. F.

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
[Crossref]

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7415 (1998).
[Crossref]

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

Savran, C. A.

C. A. Savran, T. P. Burg, and J. Fritz, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83(8), 1659–1661 (2003).
[Crossref]

Schmidt, M. A.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
[Crossref]

Serkland, D. K.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

Su, Q.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

Sullivan, J. P.

Swiler, T. P.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
[Crossref]

Toy, M. F.

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photonics Technol. Lett. 19(23), 1895–1897 (2007).
[Crossref]

Urey, H.

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photonics Technol. Lett. 19(23), 1895–1897 (2007).
[Crossref]

Vogt, H.

M. El Ner and H. Vogt, “Failure mechanisms of microbolometer thermal imager sensors using chip-scale packaging,” Microelectron. Reliab. 55(9-10), 1901–1905 (2015).
[Crossref]

Wang, C.

Wang, K.

Wolf, E.

Y. Li and E. Wolf, “Focal shift in focused truncated gaussian beams,” Opt. Commun. 42(3), 151–156 (1982).
[Crossref]

Xiong, H.

Yan, B.

Yang, G.

Yang, Y.

Yaralioglu, G. G.

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7415 (1998).
[Crossref]

Yu, Y.

Yuan, W.

Zhang, G.

L. Qian, H. Goosen, F. V. Keulen, J. V. Beek, and G. Zhang, “Assessment of testing methodologies for thin-film vacuum MEMS packages,” Microsyst. Technol. 15(1), 161–168 (2009).
[Crossref]

Zhang, Y.

Zhou, Z.

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10(3), 643–651 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69(25), 3944–3946 (1996).
[Crossref]

C. A. Savran, T. P. Burg, and J. Fritz, “Microfabricated mechanical biosensor with inherently differential readout,” Appl. Phys. Lett. 83(8), 1659–1661 (2003).
[Crossref]

E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Manalis, M. A. Schmidt, and C. F. Quate, “High-resolution micromachined interferometric accelerometer,” Appl. Phys. Lett. 76(22), 3316–3318 (2000).
[Crossref]

W. Lee, N. A. Hall, and F. L. Degertekin, “A grating-assisted resonant-cavity-enhanced optical displacement detection method for micromachined sensors,” Appl. Phys. Lett. 85(15), 3032–3034 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10(3), 643–651 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

O. Ferhanoglu, M. F. Toy, and H. Urey, “Two-wavelength grating interferometry for MEMS sensors,” IEEE Photonics Technol. Lett. 19(23), 1895–1897 (2007).
[Crossref]

IEEE Sens. J. (1)

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9(12), 1933–1941 (2009).
[Crossref]

IEEE Trans. Electron Devices (1)

T. B. Gabrielson, “Mechanical-thermal noise in micromachined acoustic and vibration sensors,” IEEE Trans. Electron Devices 40(5), 903–909 (1993).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

N. A. Hall, W. Lee, and F. L. Degertekin, “Capacitive micromachined ultrasonic transducers with diffraction-based integrated optical displacement detection,” IEEE Trans. Sonics Ultrason. 50(11), 1570–1580 (2003).
[Crossref]

J. Appl. Phys. (1)

G. G. Yaralioglu, A. Atalar, S. R. Manalis, and C. F. Quate, “Analysis and design of an interdigital cantilever as a displacement sensor,” J. Appl. Phys. 83(12), 7405–7415 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (3)

Q. Lu, B. Jian, K. Wang, and S. He, “Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer,” J. Microelectromech. Syst. 26(4), C1–C4 (2017).
[Crossref]

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10 cm3 interferometric accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11(3), 182–187 (2002).
[Crossref]

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17(1), 37–44 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

Microelectron. Reliab. (1)

M. El Ner and H. Vogt, “Failure mechanisms of microbolometer thermal imager sensors using chip-scale packaging,” Microelectron. Reliab. 55(9-10), 1901–1905 (2015).
[Crossref]

Microsyst. Technol. (1)

L. Qian, H. Goosen, F. V. Keulen, J. V. Beek, and G. Zhang, “Assessment of testing methodologies for thin-film vacuum MEMS packages,” Microsyst. Technol. 15(1), 161–168 (2009).
[Crossref]

Opt. Commun. (1)

Y. Li and E. Wolf, “Focal shift in focused truncated gaussian beams,” Opt. Commun. 42(3), 151–156 (1982).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sens. Actuators, A (1)

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators, A 145-146, 283–290 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic diagram of the micro-grating accelerometer.
Fig. 2.
Fig. 2. Beam path diagram of 0 order in diffraction grating interferometry.
Fig. 3.
Fig. 3. Schematic diagram of light spots electric field amplitude distribution at detector plane before and after light interference.
Fig. 4.
Fig. 4. Numerical evaluation for ${C_\alpha }$ as a function of duty ratio D and the ratio of R1/R2 with a shadow zone in general grating interferometry parameters.
Fig. 5.
Fig. 5. Schematic diagram of light spots electric field amplitude and interference field distribution at detector plane when the spots separation distances are one-fifth of MFD and one-half of MFD.
Fig. 6.
Fig. 6. Numerical evaluation for ${C_\beta }$ as a function of $\Delta d$.
Fig. 7.
Fig. 7. Beam path diagram of an interference point of 0 order light at the detector plane.
Fig. 8.
Fig. 8. Schematic diagram of interference fringes and numerical evaluation for light intensity as a function of phase when the number of interference fringes is exactly one to three.
Fig. 9.
Fig. 9. Numerical evaluation for ${C_\gamma }$ as a function of $\theta$.
Fig. 10.
Fig. 10. (a) Schematic diagram of the experimental setup for testing the 0th order interference filed distribution (b) Cross-sectional structure of the sensing probe (c) Photograph of the fabricated sensing probe.
Fig. 11.
Fig. 11. Interference filed distribution of 0th order at different distances detected by beam profiler before (a) and after (b) adjustment.
Fig. 12.
Fig. 12. (a) Schematic diagram of the experimental configuration for the static gravity measurement (b) experimental curves for the 0th order and 1st order intensity versus acceleration.
Fig. 13.
Fig. 13. The noise floor (a) and the Allan deviation (b) of the accelerometer.

Tables (2)

Tables Icon

Table 1. The system parameters of the actual design

Tables Icon

Table 2. Comparison of parameters and test result

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

a t m = 8 π k b T f 0 m Q
I 0 = I i n cos 2 ( 2 π d λ ) , I ± 1 = 4 I i n π 2 sin 2 ( 2 π d λ ) ,
C = I max I min I max + I min ,
E ( x , y , z ) = A ω ( z ) exp [ ( x 2 + y 2 ) ω 2 ( z ) ] × exp { i k [ x 2 + y 2 2 R ( z ) + z ] + i φ ( z ) } ,
ω ( z ) = ω 0 1 + ( λ z π ω 0 2 ) 2
R ( z ) = z [ 1 + ( π ω 0 2 λ z ) 2 ]
φ ( z ) = arctan λ z π ω 0 2
ω ( z ) ω 0 .
x 2 + y 2 2 R ( z ) 0.
φ ( z ) 0.
E ( x , y ) = A ω 0 exp [ x 2 + y 2 ω 0 2 ] ,
E 1 ( x , y ) = A 1 ω 0 exp [ ( x Δ d / Δ d 2 2 ) 2 + y 2 ω 0 2 ] , E 2 ( x , y ) = A 2 ω 0 exp [ ( x + Δ d / Δ d 2 2 ) 2 + y 2 ω 0 2 ] .
E 3 ( x , y ) = 2 E 1 E 2 = A 3 ω 0 exp [ x 2 + y 2 ω 0 2 ] ,
A 3 = 2 A 1 A 2 exp ( Δ d 2 4 ω 0 2 ) .
A 1 R 1 D , A 2 R 2 ( 1 D ) .
C α = 2 A 1 A 2 A 1 2 + A 2 2 .
d 1 = d tan φ + d tan ( φ + 2 θ ) ,
d 2 = d 1 + h ( 1 n 2 / n 2 sin 2 ( φ + 2 θ ) 1 sin 2 ( φ + 2 θ ) 1 1 n 2 / n 2 sin 2 φ 1 sin 2 φ 1 ) ,
Δ d = d 2 cos φ + ( L d 2 sin φ ) tan ( 2 θ ) .
d 2 = d 1 + 2 n 2 cos φ ( n 2 sin 2 φ ) 3 2 θ h .
d 1 = 2 ( φ + θ ) d ,
d 2 = 2 ( φ + θ ) d + 2 θ h n ,
Δ d = 2 d φ + ( L + h n + d ) 2 θ .
C β = [ + + E 1 ( x , y ) E 2 ( x , y ) d x d y ] 2 + + E 1 2 ( x , y ) d x d y + + E 2 2 ( x , y ) d x d y .
ϕ = 4 π d λ .
d / d x 1 x 1 = θ .
Δ x 1 = λ 2 θ .
I = + + 1 / 1 2 2 [ 1 + sin ( 2 π x / x Δ x 1 Δ x 1 + 4 π d / 4 π d λ λ ) ] E 3 2 ( x , y ) d x d y + + E 3 2 ( x , y ) d x d y .
C γ = I max I min .
C = C α C β C γ .

Metrics