Abstract

Circular dichroism (CD) is useful in polarization conversion, negative refraction chemical analysis, and bio-sensing. To achieve strong CD signals, researchers constantly break the symmetry of nanostructures. However, how to further enhance the CD based on a new mechanism has become a new challenge in this field. In this work, a hybrid plasmonic chiral system composed of an array of graphene ribbons (GRs) over h-shaped sliver chiral nanostructures (HSCNs) is theoretically investigated. Results demonstrate that the plasmonic coupling between HSCNs and GRs results in different enhanced absorptions for different circularly polarized lights. The absorbance of right circularly polarized light is enhanced to perfect absorption; the absorption of left circularly polarized light is enhanced weakly. It leads to the CD effect of HSCNs@GRs approaching 88%. The loss distributions of HSCNs and HSCNs@GRs reveal that the absorption is enhanced and transferred from HSCNs to GRs. Moreover, the current distributions of HSCNs@GRs are simplified to equivalent LC resonant circuits, which can qualitatively explain the change of CD signals by tuning geometrical parameters of HSCNs@GRs. The findings of this work provide a new method of enhancing chirality and benefit the design of graphene-based chiral optoelectronic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure

Yu Qu, Lishun Huang, Li Wang, and Zhongyue Zhang
Opt. Express 25(5) 5480-5487 (2017)

Enhanced circular dichroism of crossed nanorods with nanowire

Mingyan Wang, Fei Wang, Yu Qu, Tiankun Wang, Yuyan Chen, Yu Bai, and Zhongyue Zhang
Appl. Opt. 57(23) 6721-6724 (2018)

Strong circular dichroism in chiral plasmonic metasurfaces optimized by micro-genetic algorithm

Zhigang Li, Daniel Rosenmann, David A. Czaplewski, Xiaodong Yang, and Jie Gao
Opt. Express 27(20) 28313-28323 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Sherman, “Circular dichroism of long wavelength forms of chlorophyll a,” Nature 224(5224), 1108–1110 (1969).
    [Crossref]
  2. A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
    [Crossref]
  3. Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D: Appl. Phys. 49(40), 405104 (2016).
    [Crossref]
  4. X. T. Kong, L. K. Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroisms induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
    [Crossref]
  5. E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, G. Markovich, and O. Cheshnovsky, “Circular dichroism of single particles,” ACS Photonics 5(6), 2151–2159 (2018).
    [Crossref]
  6. X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
    [Crossref]
  7. J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
    [Crossref]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref]
  9. J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
    [Crossref]
  10. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [Crossref]
  11. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
    [Crossref]
  12. W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
    [Crossref]
  13. Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
    [Crossref]
  14. F. Hidalgo and C. Noguez, “Optical activity of achiral ligand SCH3 adsorbed on achiral Ag55 clusters: relationship between adsorption site and circular dichroism,” ACS Nano 7(1), 513–521 (2013).
    [Crossref]
  15. B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
    [Crossref]
  16. Y. Wang, F. Tong, T. Wang, Y. Li, and Z. Zhang, “Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures,” Carbon 120, 203–208 (2017).
    [Crossref]
  17. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
    [Crossref]
  18. S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
    [Crossref]
  19. M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
    [Crossref]
  20. S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
    [Crossref]
  21. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
    [Crossref]
  22. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
    [Crossref]
  23. Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  24. L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
    [Crossref]
  25. Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
    [Crossref]
  26. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
    [Crossref]
  27. G. Li, Q. Li, L. Yang, and L. Wu, “Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials,” Opt. Lett. 41(13), 2911 (2016).
    [Crossref]
  28. Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
    [Crossref]
  29. T. A. R. Purcell and T. Seideman, “Modeling the chiral imprinting response of oriented dipole moments on metal nanostructures,” ACS Photonics 5(12), 4801–4809 (2018).
    [Crossref]
  30. Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
    [Crossref]
  31. Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
    [Crossref]
  32. L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002 (2016).
    [Crossref]
  33. B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
    [Crossref]
  34. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
    [Crossref]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  36. L. A. Falkovsky, “Optical properties of graphene,” J. Phys.: Conf. Ser. 129, 012004 (2008).
    [Crossref]
  37. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref]
  38. F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref]
  39. Q. Hong, X. Feng, X. Wei, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
    [Crossref]

2019 (3)

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

2018 (5)

T. A. R. Purcell and T. Seideman, “Modeling the chiral imprinting response of oriented dipole moments on metal nanostructures,” ACS Photonics 5(12), 4801–4809 (2018).
[Crossref]

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

X. T. Kong, L. K. Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroisms induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref]

E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, G. Markovich, and O. Cheshnovsky, “Circular dichroism of single particles,” ACS Photonics 5(6), 2151–2159 (2018).
[Crossref]

Q. Hong, X. Feng, X. Wei, Z. Zhu, K. Liu, X. Yuan, J. Zhang, and S. Qin, “Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer,” Opt. Express 26(17), 22528–22535 (2018).
[Crossref]

2017 (4)

Y. Wang, F. Tong, T. Wang, Y. Li, and Z. Zhang, “Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures,” Carbon 120, 203–208 (2017).
[Crossref]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

2016 (6)

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002 (2016).
[Crossref]

G. Li, Q. Li, L. Yang, and L. Wu, “Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials,” Opt. Lett. 41(13), 2911 (2016).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
[Crossref]

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref]

Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D: Appl. Phys. 49(40), 405104 (2016).
[Crossref]

2015 (4)

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

2014 (3)

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref]

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

2013 (2)

F. Hidalgo and C. Noguez, “Optical activity of achiral ligand SCH3 adsorbed on achiral Ag55 clusters: relationship between adsorption site and circular dichroism,” ACS Nano 7(1), 513–521 (2013).
[Crossref]

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref]

2012 (3)

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
[Crossref]

2011 (1)

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

2010 (1)

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref]

2009 (3)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

2008 (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys.: Conf. Ser. 129, 012004 (2008).
[Crossref]

2004 (1)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1969 (1)

G. M. Sherman, “Circular dichroism of long wavelength forms of chlorophyll a,” Nature 224(5224), 1108–1110 (1969).
[Crossref]

Albertini, F.

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Bao, Y.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref]

Barnea, A. R.

E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, G. Markovich, and O. Cheshnovsky, “Circular dichroism of single particles,” ACS Photonics 5(6), 2151–2159 (2018).
[Crossref]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Ben-Moshe, A.

E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, G. Markovich, and O. Cheshnovsky, “Circular dichroism of single particles,” ACS Photonics 5(6), 2151–2159 (2018).
[Crossref]

Berova, N.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Bulyáki, É.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Cabral, H.

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

Cai, W.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Cao, E.

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Chang, H.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref]

Chen, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chen, Y.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Cheng, X.

Cheshnovsky, O.

E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, G. Markovich, and O. Cheshnovsky, “Circular dichroism of single particles,” ACS Photonics 5(6), 2151–2159 (2018).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Cui, Y.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

Cuscunà, M.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Deng, J.

Ding, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref]

Dominici, L.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Dong, J.

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Ellestad, G.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

Esposito, M.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys.: Conf. Ser. 129, 012004 (2008).
[Crossref]

Fan, Z.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref]

Fang, Z.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Feng, X.

Fu, T.

Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
[Crossref]

Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D: Appl. Phys. 49(40), 405104 (2016).
[Crossref]

Fukushima, S.

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

Gansel, J. K.

J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Gao, W.

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Garcia de Abajo, F. J.

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Giorgia, M. D.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Goto, Y.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Govorov, A. O.

X. T. Kong, L. K. Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroisms induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref]

Guo, S.

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

Han, Q.

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref]

Hidalgo, F.

F. Hidalgo and C. Noguez, “Optical activity of achiral ligand SCH3 adsorbed on achiral Ag55 clusters: relationship between adsorption site and circular dichroism,” ACS Nano 7(1), 513–521 (2013).
[Crossref]

Hong, Q.

Hu, F.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Huang, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Jia, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jin, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kang, L.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

Kardos, J.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Kaschke, J.

Kataoka, K.

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

Khorashad, L. K.

X. T. Kong, L. K. Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroisms induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref]

Kong, X. T.

X. T. Kong, L. K. Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroisms induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref]

Koppens, F. H.

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Kotov, N. A.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref]

Kuang, H.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref]

Kun, J.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Lan, S.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

Lee, K. T.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

Lee, Y-H.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Li, G.

Li, Q.

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Li, Y.

Y. Wang, F. Tong, T. Wang, Y. Li, and Z. Zhang, “Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures,” Carbon 120, 203–208 (2017).
[Crossref]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Liu, C.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Liu, K.

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Liu, Y.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Ma, W.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref]

Maoz, B. M.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

Markovich, G.

E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, G. Markovich, and O. Cheshnovsky, “Circular dichroism of single particles,” ACS Photonics 5(6), 2151–2159 (2018).
[Crossref]

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

Meijer, E. W.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

Micsonai, A.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Miura, Y.

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

Mochida, Y.

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

Moussong, É.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Naik, R. R.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref]

Nishiyama, N.

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

Noguez, C.

F. Hidalgo and C. Noguez, “Optical activity of achiral ligand SCH3 adsorbed on achiral Ag55 clusters: relationship between adsorption site and circular dichroism,” ACS Nano 7(1), 513–521 (2013).
[Crossref]

Osada, K.

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

Panuski, P. W.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref]

Plum, E.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Purcell, T. A. R.

T. A. R. Purcell and T. Seideman, “Modeling the chiral imprinting response of oriented dipole moments on metal nanostructures,” ACS Photonics 5(12), 4801–4809 (2018).
[Crossref]

Qi, J.

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Qin, S.

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Qu, Y.

Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
[Crossref]

Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D: Appl. Phys. 49(40), 405104 (2016).
[Crossref]

Réfrégiers, M.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Ren, K.

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Rodrigues, S. P.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Seideman, T.

T. A. R. Purcell and T. Seideman, “Modeling the chiral imprinting response of oriented dipole moments on metal nanostructures,” ACS Photonics 5(12), 4801–4809 (2018).
[Crossref]

Sherman, G. M.

G. M. Sherman, “Circular dichroism of long wavelength forms of chlorophyll a,” Nature 224(5224), 1108–1110 (1969).
[Crossref]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Slocik, J. M.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref]

Soukoulis, C. M.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Sun, M.

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Sun, Z.

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref]

Taghinejad, M.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

Tang, L.

Tarantini, I.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Tong, F.

Y. Wang, F. Tong, T. Wang, Y. Li, and Z. Zhang, “Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures,” Carbon 120, 203–208 (2017).
[Crossref]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Urbas, A.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

Urbas, A. M.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

van der Weegen, R.

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

Vestler, D.

E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, G. Markovich, and O. Cheshnovsky, “Circular dichroism of single particles,” ACS Photonics 5(6), 2151–2159 (2018).
[Crossref]

Vinegrad, E.

E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, G. Markovich, and O. Cheshnovsky, “Circular dichroism of single particles,” ACS Photonics 5(6), 2151–2159 (2018).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Wang, G.

Wang, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref]

Wang, Q.

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

Wang, S.

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

Wang, T.

Y. Wang, F. Tong, T. Wang, Y. Li, and Z. Zhang, “Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures,” Carbon 120, 203–208 (2017).
[Crossref]

Wang, W.

L. Zhang, L. Tang, W. Wei, X. Cheng, W. Wang, and H. Zhang, “Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure,” Opt. Express 24(18), 20002 (2016).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Wang, Y.

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

Y. Wang, F. Tong, T. Wang, Y. Li, and Z. Zhang, “Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures,” Carbon 120, 203–208 (2017).
[Crossref]

Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
[Crossref]

Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D: Appl. Phys. 49(40), 405104 (2016).
[Crossref]

Wang, Z.

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

X. T. Kong, L. K. Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroisms induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Wegener, M.

J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Wei, W.

Wei, X.

Wen, X.

Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D: Appl. Phys. 49(40), 405104 (2016).
[Crossref]

Werner, D. H.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

Wien, F.

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Wu, L.

Xu, C.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref]

Xu, L.

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Xu, X.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yang, L.

Yao, K.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Yao, Z.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yu, L.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yuan, X.

Zhang, H.

Zhang, J.

Zhang, L.

Zhang, Z.

Y. Wang, F. Tong, T. Wang, Y. Li, and Z. Zhang, “Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures,” Carbon 120, 203–208 (2017).
[Crossref]

Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D: Appl. Phys. 49(40), 405104 (2016).
[Crossref]

Y. Wang, J. Deng, G. Wang, T. Fu, Y. Qu, and Z. Zhang, “Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness,” Opt. Express 24(3), 2307–2317 (2016).
[Crossref]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, J. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, X.

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Zheludev, N. I.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Zhou, S.

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

Zhu, Z.

Zu, S.

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref]

ACS Nano (4)

Y. Mochida, H. Cabral, Y. Miura, F. Albertini, S. Fukushima, K. Osada, N. Nishiyama, and K. Kataoka, “Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor,” ACS Nano 8(7), 6724–6738 (2014).
[Crossref]

F. Hidalgo and C. Noguez, “Optical activity of achiral ligand SCH3 adsorbed on achiral Ag55 clusters: relationship between adsorption site and circular dichroism,” ACS Nano 7(1), 513–521 (2013).
[Crossref]

Z. Sun and H. Chang, “Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology,” ACS Nano 8(5), 4133–4156 (2014).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

ACS Photonics (4)

B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

T. A. R. Purcell and T. Seideman, “Modeling the chiral imprinting response of oriented dipole moments on metal nanostructures,” ACS Photonics 5(12), 4801–4809 (2018).
[Crossref]

E. Vinegrad, D. Vestler, A. Ben-Moshe, A. R. Barnea, G. Markovich, and O. Cheshnovsky, “Circular dichroism of single particles,” ACS Photonics 5(6), 2151–2159 (2018).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Appl. Mater. Today (1)

X. Zhao, J. Dong, E. Cao, Q. Han, W. Gao, Y. Wang, J. Qi, and M. Sun, “Plasmon-exciton couplingby hybrids between graphene and gold nanorodsverticalarray for sensor,” Appl. Mater. Today 14, 166–174 (2019).
[Crossref]

Appl. Phys. Lett. (2)

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

Carbon (2)

Y. Wang, F. Tong, T. Wang, Y. Li, and Z. Zhang, “Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures,” Carbon 120, 203–208 (2017).
[Crossref]

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

B. M. Maoz, R. van der Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, and G. Markovich, “Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies,” J. Am. Chem. Soc. 134(42), 17807–17813 (2012).
[Crossref]

J. Phys. Chem. C (1)

Y. Wang, Z. Wang, Q. Wang, S. Zhou, Q. Han, W. Gao, K. Ren, J. Qi, and J. Dong, “Active control and biosensing application of induced chirality between symmetric metal and graphene nanostructures,” J. Phys. Chem. C 123(40), 24754–24762 (2019).
[Crossref]

J. Phys. D: Appl. Phys. (1)

Y. Wang, X. Wen, Y. Qu, T. Fu, and Z. Zhang, “Direct and indirect coupling mechanisms in a chiral plasmonic system,” J. Phys. D: Appl. Phys. 49(40), 405104 (2016).
[Crossref]

J. Phys.: Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys.: Conf. Ser. 129, 012004 (2008).
[Crossref]

Nano Lett. (4)

F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

X. T. Kong, L. K. Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroisms induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref]

Nanoscale (2)

S. Zu, Y. Bao, and Z. Fang, “Planar plasmonic chiral nanostructures,” Nanoscale 8(7), 3900–3905 (2016).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, M. D. Giorgia, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(43), 18081–18088 (2015).
[Crossref]

Nanoscale Res. Lett. (1)

J. Dong, X. Zhao, W. Gao, Q. Han, J. Qi, Y. Wang, S. Guo, and M. Sun, “Nanoscale vertical arrays of gold nanorodsby self-Assembly: physical mechanism and application,” Nanoscale Res. Lett. 14(1), 118 (2019).
[Crossref]

Nat. Commun. (3)

W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar DNA detection with chiral nanorod assemblies,” Nat. Commun. 4(1), 2689 (2013).
[Crossref]

S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and W. Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nat. Commun. 8(1), 14602 (2017).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref]

Nature (1)

G. M. Sherman, “Circular dichroism of long wavelength forms of chlorophyll a,” Nature 224(5224), 1108–1110 (1969).
[Crossref]

Nucleic Acids Res. (1)

A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y-H. Lee, Y. Goto, M. Réfrégiers, and J. Kardos, “BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra,” Nucleic Acids Res. 46(W1), W315–W322 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Phys. Rev. Lett. (1)

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102(11), 113902 (2009).
[Crossref]

Science (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of (a) HSCNs@GRs and parameters definition, where the unit cell with the associated geometric features is designated in (b) the x-y plane.
Fig. 2.
Fig. 2. (a) The absorption and (b) CD of HSCNs alone, GRs alone, and HSCNs@GRs; the absorption and CD of (c) the GRs part and (d) the HSCNs part of HSCNs@GRs.
Fig. 3.
Fig. 3. The loss distributions (color distributions) and surface current distributions (magenta arrows) excited by LCP and RCP lights at resonant wavelengths for (a)-(d) HSCNs alone and (e)-(f) HSCNs@GRs, where green arrows denote main surface current distributions.
Fig. 4.
Fig. 4. The absorption and CD of HSCNs with the different graphene sheets: (a) covering the whole HSCNs, (b) covering the ridges of HSCNs, (c) covering the trenches of HSCNs, and (d) covering the right half of HSCNs.
Fig. 5.
Fig. 5. (a) The schematic unit cell of HSCNs@GRs in the x-z plane with the corresponding schematics of equivalent LC circuit excited by RCP light at (b) λI and (c) λII.
Fig. 6.
Fig. 6. CD maps of HSCNs@GRs with different (a) g, (b) tAg, (c) l1, and (d) l2.
Fig. 7.
Fig. 7. CD maps of HSCNs@GRs with different (a) t, (b) w, (c) px, and (d) py.
Fig. 8.
Fig. 8. (a) The schematic of HSCNs@GRs with displacement dx and (b) CD spectra of HSCNs@GRs with different displacement dx.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω )   =   2 i e 2 k B T π 2 ( ω   +   i τ 1 )   ln [ 2 cosh ( E f 2 k B T ) ]   +   e 2 4 { 1 2 +   1 π arctan ( ω 2 E f 2 k B T ) i 2 π ln [ ( ω + 2 E f ) 2 ( ω 2 E f ) 2 + ( 2 k B T ) 2 ] ,
λ I 2 π c 0 L tot - I C tot - I .
λ II 2 π c 0 L tot - II C tot - II .

Metrics