Abstract

In this study, the influence of speckle size on contrast-to-noise ratio (CNR) and resolution is examined based on the object dimensions in the macroscopic and microscopic regimes. This research shows that for microscopic samples the conventional scaling laws are no longer effective and the CNR does not counter-propagate in the same manner as the resolution. To our knowledge, a deviation in CNR scaling on speckle size is observed for the first time in the field of microscopic ghost imaging. This result was verified using two different sample shapes. In addition, numerical analysis revealed that the noise of the photodiode is a limiting factor for the CNR. Based on these findings, the conditions for identifying the parameter set that maximizes the CNR and provides high resolution images was defined, which achieving high-quality microscopic ghost images.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of thermal ghost imaging: high-order correlations vs. background subtraction

Kam Wai C. Chan, Malcolm N. O’Sullivan, and Robert W. Boyd
Opt. Express 18(6) 5562-5573 (2010)

Properties of high-order ghost imaging with natural light

Hong-Chao Liu and Jun Xiong
J. Opt. Soc. Am. A 30(5) 956-961 (2013)

High quality computational ghost imaging using multi-fluorescent screen

Hossein Ghanbari-Ghalehjoughi, Sohrab Ahmadi-Kandjani, and Mansour Eslami
J. Opt. Soc. Am. A 32(2) 323-328 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref]
  2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref]
  3. Y. Zhou, J. B. Liu, J. Simon, and Y. H. Shih, “Resolution enhancement of third-order thermal light ghost imaging in the photon counting regime,” J. Opt. Soc. Am. B 29(3), 377–381 (2012).
    [Crossref]
  4. X. H. Chen, W. Chen, S. Y. Meng, W. Wu, L. A. Wu, and G. J. Zhai, “Role of intensity fluctuations in third-order correlation double-slit interference of thermal light,” J. Opt. Soc. Am. A 30(7), 1422–1425 (2013).
    [Crossref]
  5. F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2), 024001 (2017).
    [Crossref]
  6. H. G. Li, Y. Wang, R. X. Zhang, D. J. Zhang, and J. Xiong, “Robust reflective ghost imaging against different partially polarized thermal light,” Opt. Commun. 410, 867–870 (2018).
    [Crossref]
  7. Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76(4), 043828 (2007).
    [Crossref]
  8. Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
    [Crossref]
  9. B. Cao and C. Zhang, “Third-order lensless ghost diffraction with classical fully incoherent light,” Opt. Lett. 35(12), 2091–2093 (2010).
    [Crossref]
  10. D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
    [Crossref]
  11. Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79(5), 053844 (2009).
    [Crossref]
  12. P. L. Zhang, W. L. Gong, X. Shen, D. J. Huang, and S. S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34(8), 1222–1224 (2009).
    [Crossref]
  13. H. Chen, T. Peng, and Y. H. Shih, “100% correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
    [Crossref]
  14. M. J. Sun, M. F. Li, and L. A. Wu, “Nonlocal imaging of a reflective object using positive and negative correlations,” Appl. Opt. 54(25), 7494–7499 (2015).
    [Crossref]
  15. F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
    [Crossref]
  16. K. W. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
    [Crossref]
  17. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
    [Crossref]
  18. K. W. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010).
    [Crossref]
  19. P. Zerom, Z. M. Shi, M. N. O’Sullivan, K. W. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86(6), 063817 (2012).
    [Crossref]
  20. J. Wang, R. L. Yu, Y. Xin, Y. M. Shao, Y. R. Chen, and Q. Zhao, “Ghost imaging with different speckle sizes of thermal light,” J. Opt. Soc. Korea 20(1), 8–12 (2016).
    [Crossref]
  21. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70(1), 013802 (2004).
    [Crossref]
  22. Y. Cai and S. Y. Zhu, “Ghost interference with partially coherent radiation,” Opt. Lett. 29(23), 2716–2718 (2004).
    [Crossref]
  23. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
    [Crossref]
  24. X. H. Shi, H. X. Li, Y. F. Bai, and X. Q. Fu, “Negative influence of detector noise on ghost imaging based on the photon counting technique at low light levels,” Appl. Opt. 56(26), 7320–7326 (2017).
    [Crossref]
  25. T. Helk, M. Zürch, and C. Spielmann, “Perspective: Towards single shot time-resolved microscopy using short wavelength table-top light sources,” Struct. Dyn. 6(1), 010902 (2019).
    [Crossref]
  26. H. C. Liu and J. Xiong, “The role of the degree of polarization in Nth-order thermal ghost imaging,” J. Phys. B: At., Mol. Opt. Phys. 47(14), 145503 (2014).
    [Crossref]
  27. A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: Theory,” Phys. Rev. A 78(6), 063806 (2008).
    [Crossref]
  28. D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: Experiment,” Phys. Rev. A 79(5), 053831 (2009).
    [Crossref]

2019 (1)

T. Helk, M. Zürch, and C. Spielmann, “Perspective: Towards single shot time-resolved microscopy using short wavelength table-top light sources,” Struct. Dyn. 6(1), 010902 (2019).
[Crossref]

2018 (1)

H. G. Li, Y. Wang, R. X. Zhang, D. J. Zhang, and J. Xiong, “Robust reflective ghost imaging against different partially polarized thermal light,” Opt. Commun. 410, 867–870 (2018).
[Crossref]

2017 (2)

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2), 024001 (2017).
[Crossref]

X. H. Shi, H. X. Li, Y. F. Bai, and X. Q. Fu, “Negative influence of detector noise on ghost imaging based on the photon counting technique at low light levels,” Appl. Opt. 56(26), 7320–7326 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (1)

H. C. Liu and J. Xiong, “The role of the degree of polarization in Nth-order thermal ghost imaging,” J. Phys. B: At., Mol. Opt. Phys. 47(14), 145503 (2014).
[Crossref]

2013 (2)

2012 (2)

Y. Zhou, J. B. Liu, J. Simon, and Y. H. Shih, “Resolution enhancement of third-order thermal light ghost imaging in the photon counting regime,” J. Opt. Soc. Am. B 29(3), 377–381 (2012).
[Crossref]

P. Zerom, Z. M. Shi, M. N. O’Sullivan, K. W. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86(6), 063817 (2012).
[Crossref]

2010 (4)

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

B. Cao and C. Zhang, “Third-order lensless ghost diffraction with classical fully incoherent light,” Opt. Lett. 35(12), 2091–2093 (2010).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

K. W. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010).
[Crossref]

2009 (4)

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79(5), 053844 (2009).
[Crossref]

P. L. Zhang, W. L. Gong, X. Shen, D. J. Huang, and S. S. Han, “Improving resolution by the second-order correlation of light fields,” Opt. Lett. 34(8), 1222–1224 (2009).
[Crossref]

K. W. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: Experiment,” Phys. Rev. A 79(5), 053831 (2009).
[Crossref]

2008 (3)

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: Theory,” Phys. Rev. A 78(6), 063806 (2008).
[Crossref]

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

2007 (1)

Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76(4), 043828 (2007).
[Crossref]

2006 (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

2004 (2)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70(1), 013802 (2004).
[Crossref]

Y. Cai and S. Y. Zhu, “Ghost interference with partially coherent radiation,” Opt. Lett. 29(23), 2716–2718 (2004).
[Crossref]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Bache, M.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70(1), 013802 (2004).
[Crossref]

Bai, Y. F.

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Boyd, R. W.

P. Zerom, Z. M. Shi, M. N. O’Sullivan, K. W. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86(6), 063817 (2012).
[Crossref]

K. W. Chan, M. N. O’Sullivan, and R. W. Boyd, “Optimization of thermal ghost imaging: high-order correlations vs. background subtraction,” Opt. Express 18(6), 5562–5573 (2010).
[Crossref]

K. W. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Brambilla, E.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70(1), 013802 (2004).
[Crossref]

Cai, Y.

Cao, B.

Cao, D. Z.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Chan, K. W.

Chen, H.

H. Chen, T. Peng, and Y. H. Shih, “100% correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
[Crossref]

Chen, W.

Chen, X. H.

X. H. Chen, W. Chen, S. Y. Meng, W. Wu, L. A. Wu, and G. J. Zhai, “Role of intensity fluctuations in third-order correlation double-slit interference of thermal light,” J. Opt. Soc. Am. A 30(7), 1422–1425 (2013).
[Crossref]

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79(5), 053844 (2009).
[Crossref]

Chen, Y. R.

Denis, S.

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2), 024001 (2017).
[Crossref]

Devaux, F.

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2), 024001 (2017).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: Experiment,” Phys. Rev. A 79(5), 053831 (2009).
[Crossref]

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: Theory,” Phys. Rev. A 78(6), 063806 (2008).
[Crossref]

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

Fu, X. Q.

Gao, L.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: Experiment,” Phys. Rev. A 79(5), 053831 (2009).
[Crossref]

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: Theory,” Phys. Rev. A 78(6), 063806 (2008).
[Crossref]

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70(1), 013802 (2004).
[Crossref]

Gong, W. L.

Han, S. S.

Helk, T.

T. Helk, M. Zürch, and C. Spielmann, “Perspective: Towards single shot time-resolved microscopy using short wavelength table-top light sources,” Struct. Dyn. 6(1), 010902 (2019).
[Crossref]

Huang, D. J.

Huy, K. P.

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2), 024001 (2017).
[Crossref]

Krogstad, M.

P. Zerom, Z. M. Shi, M. N. O’Sullivan, K. W. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86(6), 063817 (2012).
[Crossref]

Lantz, E.

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2), 024001 (2017).
[Crossref]

Li, H. G.

H. G. Li, Y. Wang, R. X. Zhang, D. J. Zhang, and J. Xiong, “Robust reflective ghost imaging against different partially polarized thermal light,” Opt. Commun. 410, 867–870 (2018).
[Crossref]

Li, H. X.

Li, M. F.

Lin, L. F.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Liu, H. C.

H. C. Liu and J. Xiong, “The role of the degree of polarization in Nth-order thermal ghost imaging,” J. Phys. B: At., Mol. Opt. Phys. 47(14), 145503 (2014).
[Crossref]

Liu, J. B.

Y. Zhou, J. B. Liu, J. Simon, and Y. H. Shih, “Resolution enhancement of third-order thermal light ghost imaging in the photon counting regime,” J. Opt. Soc. Am. B 29(3), 377–381 (2012).
[Crossref]

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

Liu, Q.

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79(5), 053844 (2009).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70(1), 013802 (2004).
[Crossref]

Luo, K. H.

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79(5), 053844 (2009).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: Experiment,” Phys. Rev. A 79(5), 053831 (2009).
[Crossref]

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: Theory,” Phys. Rev. A 78(6), 063806 (2008).
[Crossref]

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

Meng, S. Y.

Moreau, P. A.

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2), 024001 (2017).
[Crossref]

O’Sullivan, M. N.

Peng, T.

H. Chen, T. Peng, and Y. H. Shih, “100% correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Sala, V. G.

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Shao, Y. M.

Shapiro, J. H.

P. Zerom, Z. M. Shi, M. N. O’Sullivan, K. W. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86(6), 063817 (2012).
[Crossref]

Shen, X.

Shi, X. H.

Shi, Z. M.

P. Zerom, Z. M. Shi, M. N. O’Sullivan, K. W. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86(6), 063817 (2012).
[Crossref]

Shih, Y. H.

H. Chen, T. Peng, and Y. H. Shih, “100% correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
[Crossref]

Y. Zhou, J. B. Liu, J. Simon, and Y. H. Shih, “Resolution enhancement of third-order thermal light ghost imaging in the photon counting regime,” J. Opt. Soc. Am. B 29(3), 377–381 (2012).
[Crossref]

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Simon, J.

Y. Zhou, J. B. Liu, J. Simon, and Y. H. Shih, “Resolution enhancement of third-order thermal light ghost imaging in the photon counting regime,” J. Opt. Soc. Am. B 29(3), 377–381 (2012).
[Crossref]

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

Spielmann, C.

T. Helk, M. Zürch, and C. Spielmann, “Perspective: Towards single shot time-resolved microscopy using short wavelength table-top light sources,” Struct. Dyn. 6(1), 010902 (2019).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Sun, M. J.

Wang, J.

Wang, K. G.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Wang, Y.

H. G. Li, Y. Wang, R. X. Zhang, D. J. Zhang, and J. Xiong, “Robust reflective ghost imaging against different partially polarized thermal light,” Opt. Commun. 410, 867–870 (2018).
[Crossref]

Wu, L. A.

Wu, W.

X. H. Chen, W. Chen, S. Y. Meng, W. Wu, L. A. Wu, and G. J. Zhai, “Role of intensity fluctuations in third-order correlation double-slit interference of thermal light,” J. Opt. Soc. Am. A 30(7), 1422–1425 (2013).
[Crossref]

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79(5), 053844 (2009).
[Crossref]

Xin, Y.

Xiong, J.

H. G. Li, Y. Wang, R. X. Zhang, D. J. Zhang, and J. Xiong, “Robust reflective ghost imaging against different partially polarized thermal light,” Opt. Commun. 410, 867–870 (2018).
[Crossref]

H. C. Liu and J. Xiong, “The role of the degree of polarization in Nth-order thermal ghost imaging,” J. Phys. B: At., Mol. Opt. Phys. 47(14), 145503 (2014).
[Crossref]

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Yu, R. L.

Zerom, P.

P. Zerom, Z. M. Shi, M. N. O’Sullivan, K. W. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86(6), 063817 (2012).
[Crossref]

Zhai, G. J.

Zhang, C.

Zhang, D. J.

H. G. Li, Y. Wang, R. X. Zhang, D. J. Zhang, and J. Xiong, “Robust reflective ghost imaging against different partially polarized thermal light,” Opt. Commun. 410, 867–870 (2018).
[Crossref]

Zhang, P. L.

Zhang, R. X.

H. G. Li, Y. Wang, R. X. Zhang, D. J. Zhang, and J. Xiong, “Robust reflective ghost imaging against different partially polarized thermal light,” Opt. Commun. 410, 867–870 (2018).
[Crossref]

Zhang, S. H.

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

Zhao, Q.

Zhou, Y.

Y. Zhou, J. B. Liu, J. Simon, and Y. H. Shih, “Resolution enhancement of third-order thermal light ghost imaging in the photon counting regime,” J. Opt. Soc. Am. B 29(3), 377–381 (2012).
[Crossref]

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

Zhu, S. Y.

Zürch, M.

T. Helk, M. Zürch, and C. Spielmann, “Perspective: Towards single shot time-resolved microscopy using short wavelength table-top light sources,” Struct. Dyn. 6(1), 010902 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92(26), 261109 (2008).
[Crossref]

D. Z. Cao, J. Xiong, S. H. Zhang, L. F. Lin, L. Gao, and K. G. Wang, “Enhancing visibility and resolution in Nth-order intensity correlation of thermal light,” Appl. Phys. Lett. 92(20), 201102 (2008).
[Crossref]

J. Mod. Opt. (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53(5-6), 739–760 (2006).
[Crossref]

J. Opt. (1)

F. Devaux, K. P. Huy, S. Denis, E. Lantz, and P. A. Moreau, “Temporal ghost imaging with pseudo-thermal speckle light,” J. Opt. 19(2), 024001 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

J. Phys. B: At., Mol. Opt. Phys. (1)

H. C. Liu and J. Xiong, “The role of the degree of polarization in Nth-order thermal ghost imaging,” J. Phys. B: At., Mol. Opt. Phys. 47(14), 145503 (2014).
[Crossref]

Opt. Commun. (1)

H. G. Li, Y. Wang, R. X. Zhang, D. J. Zhang, and J. Xiong, “Robust reflective ghost imaging against different partially polarized thermal light,” Opt. Commun. 410, 867–870 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (9)

H. Chen, T. Peng, and Y. H. Shih, “100% correlation of chaotic thermal light,” Phys. Rev. A 88(2), 023808 (2013).
[Crossref]

Q. Liu, X. H. Chen, K. H. Luo, W. Wu, and L. A. Wu, “Role of multiphoton bunching in high-order ghost imaging with thermal light sources,” Phys. Rev. A 79(5), 053844 (2009).
[Crossref]

Y. F. Bai and S. S. Han, “Ghost imaging with thermal light by third-order correlation,” Phys. Rev. A 76(4), 043828 (2007).
[Crossref]

Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81(4), 043831 (2010).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

P. Zerom, Z. M. Shi, M. N. O’Sullivan, K. W. Chan, M. Krogstad, J. H. Shapiro, and R. W. Boyd, “Thermal ghost imaging with averaged speckle patterns,” Phys. Rev. A 86(6), 063817 (2012).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70(1), 013802 (2004).
[Crossref]

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: Theory,” Phys. Rev. A 78(6), 063806 (2008).
[Crossref]

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: Experiment,” Phys. Rev. A 79(5), 053831 (2009).
[Crossref]

Phys. Rev. Lett. (2)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

Struct. Dyn. (1)

T. Helk, M. Zürch, and C. Spielmann, “Perspective: Towards single shot time-resolved microscopy using short wavelength table-top light sources,” Struct. Dyn. 6(1), 010902 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Resolution measurement of a ghost image. Because of the noisy image, all line-outs must be calculated by averaging the pixels parallel to the edge of the objects. By fitting the line-out with an error function and applying the 10% to 90% criterion, the resolution R can be retrieved.
Fig. 2.
Fig. 2. (a) Schematic of the microscopic ghost imaging experimental setup with variable speckles size generation (aperture + diffusor). (b) Objects used; because of the laser-cutting fabrication process, the object sizes must be validated by conventional microscopy.
Fig. 3.
Fig. 3. Exemplary retrieved CNR vs. speckle size for object 2. After a maximum at ∼45 µm speckle size, the CNR begins dropping.
Fig. 4.
Fig. 4. CNR as a function of the number Nobj of the speckles falling onto the object 1 and the test slit 1. (a) object 2 and test slit 2; (b) object 3 and test slit 3; (c) The resolutions (green bars) of the retrieved ghost images of the “µ” shaped objects increase with higher Nobj. Note: ghost images of an object are imaged in the same dynamic range.
Fig. 5.
Fig. 5. Results of the noise dependent CNR simulation. (a) Retrieved ghost images as a function of detector noise and number of speckles falling onto the object Nobj; (b) Calculated CNR of the ghost images as a function of Nobj for different relative noise levels. In Fig. 5(a) and 5(b) the same colors are used for the same RNL. With the increasing detector noise, the CNR starts to drop for larger speckle sizes, marked with the dashed white boxes in the reconstructions (maximum of CNR) in (a). For negative RNL, the CNR follows a growth in a square root scaling, whereas with increasing noise, the CNR starts to follow a concave function. The resolution which is marked by green dashed line, increases with the number of speckles corresponding to the experiment.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G ( p ) = ( I ( p ) ( p ) 1 ) ( S S S I S I )
C N R = I obj I b g σ G I
R N L = n s min s max s min

Metrics