Abstract

Ground-based, network-deployable remote sensing instruments for thermodynamic profiling in the lower troposphere are needed by the atmospheric science research community. The recent development of a low-cost diode-laser-based (DLB) micro-pulse differential absorption lidar (DIAL) has begun to address the need for ground-based remote sensing instruments for water vapor profiling in the lower troposphere. Now, taking advantage of the broad spectral coverage of the DLB architecture, an enhancement to the water vapor micro-pulse DIAL (MPD) instrument is proposed to enable atmospheric temperature profiling. The new instrument is based on measuring a temperature-dependent oxygen (O2) absorption coefficient and using this to retrieve the range-resolved temperature profile. In this paper, a retrieval method is proposed based on the recently developed perturbative solution to the DIAL equation that takes into account the Doppler broadening of the molecularly backscattered signal. This perturbative solution relies on an ancillary high spectral resolution lidar (HSRL) measurement of the backscatter ratio. Data from an operational water vapor MPD combined with a DLB-HSRL were used to create an atmosphere model, from which return signals for the O2-MPD were generated. The perturbative retrieval was then applied to these data and a comparison of the retrieved temperature and the model temperature profile allowed the efficacy of retrieval to be evaluated. The results indicate that the temperature profile may be retrieved from a theoretical O2-MPD instrument with a ${\pm} $1 K accuracy up to 2.5 km and ${\pm} $3 K accuracy up to 4.5 km with a 150 m range resolution and 30-minute averaging time. Using data from a recently developed O2-MPD in combination with a WV-MPD, and a DLB-HSRL, an initial temperature retrieval is demonstrated. The results of this initial demonstration are consistent with the performance modeling.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient

Catharine E. Bunn, Kevin S. Repasky, Matthew Hayman, Robert A. Stillwell, and Scott M. Spuler
Appl. Opt. 57(16) 4440-4450 (2018)

Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature

Robert A. Stillwell, Scott M. Spuler, Matthew Hayman, Kevin S. Repasky, and Catharine E. Bunn
Opt. Express 28(1) 71-93 (2020)

References

  • View by:
  • |
  • |
  • |

  1. National Research Council (U.S.), “Committee on Developing Mesoscale Meteorological Observational Capabilities to Meet Multiple National Needs,” Observing weather and climate from the ground up: a nationwide network of networks (National Academies Press, Washington, D.C., 2009), pp. xvi, 234 p.
  2. National Research Council (U.S.), “Committee on Progress and Priorities of U.S. Weather Research and Research-to-Operations Activities,” When weather matters: science and services to meet critical societal needs (National Academies Press, Washington, D.C., 2010), pp. xvi, 181 p.
  3. R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).
  4. V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
    [Crossref]
  5. R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
    [Crossref]
  6. R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
    [Crossref]
  7. D. D. Turner and U. Löhnert, “Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI),” J. Appl. Meteor. Climatol. 53(3), 752–771 (2014).
    [Crossref]
  8. W. G. Blumberg, D. D. Turner, U. Löhnert, and S. Castleberry, “Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions,” J. Appl. Meteor. Climatol. 54(11), 2305–2319 (2015).
    [Crossref]
  9. T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 33(11), 2353–2372 (2016).
    [Crossref]
  10. A. Cohen, J. A. Cooney, and K. N. Geller, “Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering,” Appl. Opt. 15(11), 2896–2901 (1976).
    [Crossref]
  11. U. Wandinger, “Chapter 9: Raman Lidar,” Lidar: range-resolved optical remote sensing of the atmosphere. C. Weitkamp (Ed.) Springer series in optical sciences, (Springer, New York, 2005). 241–271.
  12. A. Behrendt, “Chapter 10: Temperature Measurements with Lidar,” Lidar: range-resolved optical remote sensing of the atmosphere. C. Weitkamp (Ed.) Springer series in optical sciences, (Springer, New York, 2005). 273–305.
  13. A. Behrendt, T. Nakamura, Y. Sawai, M. Onishi, and T. Tsuda, “Rotational vibrational-rotational Raman lidar: Design and performance of the RASC Raman lidar at Shigaraki, Japan (34.8 degrees N, 136.1 degrees E),” Lidar Remote Sensing for Industry and Environment Monitoring II (Vol. 4484, pp. 151–163). International Society for Optics and Photonics (2002).
  14. A. Behrendt, T. Nakamura, T. Tsuda, and V. Wulfmeyer, “Rotational Raman temperature lidar: New experimental results and performance expected for future ground-based and airborne systems,” 22nd Internation Laser Radar Conference (ILRC), Vol. 561, p. 33, (2004).
  15. P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
    [Crossref]
  16. S. Y. Chen, Z. J. Qiu, Y. C. Zhang, H. Chen, and Y. Z. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112(2), 304–309 (2011).
    [Crossref]
  17. R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar,” J. Atmos. Oceanic Technol. 30(8), 1616–1634 (2013).
    [Crossref]
  18. E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
    [Crossref]
  19. D. D. Turner and J. E. M. Goldsmith, “Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. 16(8), 1062–1076 (1999).
    [Crossref]
  20. J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).
    [Crossref]
  21. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22(19), 2984–2990 (1983).
    [Crossref]
  22. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
    [Crossref]
  23. D. N. Whiteman, W. F. Murphy, N. W. Walsh, and K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18(3), 247–249 (1993).
    [Crossref]
  24. D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
    [Crossref]
  25. D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42(15), 2593–2608 (2003).
    [Crossref]
  26. D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
    [Crossref]
  27. E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, and W. M. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles,” Appl. Opt. 22(4), 522–534 (1983).
    [Crossref]
  28. R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23(15), 2545–2553 (1984).
    [Crossref]
  29. F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar,” Atmos. Chem. Phys. Discuss. 14(21), 29057–29099 (2014).
    [Crossref]
  30. K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti: sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44(24), 5120–5126 (2005).
    [Crossref]
  31. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).
  32. A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).
  33. H. Vogelmann and T. Trickl, “Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station,” Appl. Opt. 47(12), 2116–2132 (2008).
    [Crossref]
  34. M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B: Lasers Opt. 96(1), 201–213 (2009).
    [Crossref]
  35. A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Oceanic Technol. 28(2), 131–147 (2011).
    [Crossref]
  36. A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Micropulse water vapor differential absorption lidar: transmitter design and performance,” Opt. Express 20(22), 25137–25151 (2012).
    [Crossref]
  37. A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 26(4), 733–745 (2009).
    [Crossref]
  38. K. S. Repasky, D. Moen, S. Spuler, A. R. Nehrir, and J. L. Carlsten, “Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere,” Remote Sens. 5(12), 6241–6259 (2013).
    [Crossref]
  39. S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
    [Crossref]
  40. J. Bösenberg, “Chapter 8: Differential-Absorption Lidar for Water Vapor and Temperature Profiling,” Lidar: range-resolved optical remote sensing of the atmosphere, C. Weitkamp (Ed.) Springer series in optical sciences, (Springer, New York, 2005). pp. 213–239.
  41. C. L. Korb and C. Y. Weng, “A Theoretical-Study of a 2-Wavelength Lidar Technique for the Measurement of Atmospheric-Temperature Profiles,” J. Appl. Meteorol. 21(9), 1346–1355 (1982).
    [Crossref]
  42. F. A. Theopold and J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: Theory and experiment,” J. Atmos. Oceanic Technol. 10(2), 165–179 (1993).
    [Crossref]
  43. J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37(18), 3845–3860 (1998).
    [Crossref]
  44. C. E. Bunn, K. S. Repasky, M. Hayman, R. A. Stillwell, and S. M. Spuler, “Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient,” Appl. Opt. 57(16), 4440–4450 (2018).
    [Crossref]
  45. M. Hayman and S. Spuler, “Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols,” Opt. Express 25(24), A1096–A1110 (2017).
    [Crossref]
  46. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
    [Crossref]
  47. R. A. Stillwell, S. M. Spuler, M. Hayman, C. E. Bunn, and K. S. Repasky, “Towards developing a micropulse differential absorption lidar to measure atmospheric temperature,” 29th International Laser Radar Conference (ILRC) (2019).
  48. R. A. Stilwell, National Center for Atmospheric Research, 1850 Table Mesa Dr, Boulder, CO 80305, S. M. Spuler, M. Hayman, K. S. Repasky, and C. E. Bunn are preparing a manuscript to be called “Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature” (submitted to Optics Express, October 2019).
  49. E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17(4), 624–630 (1978).
    [Crossref]
  50. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
    [Crossref]
  51. W. M. O. Oscar “OSCAR Observing Systems Capability Analysis and Review Tool,” (2019).

2018 (1)

2017 (2)

M. Hayman and S. Spuler, “Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols,” Opt. Express 25(24), A1096–A1110 (2017).
[Crossref]

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

2016 (1)

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 33(11), 2353–2372 (2016).
[Crossref]

2015 (4)

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

W. G. Blumberg, D. D. Turner, U. Löhnert, and S. Castleberry, “Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions,” J. Appl. Meteor. Climatol. 54(11), 2305–2319 (2015).
[Crossref]

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

2014 (2)

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar,” Atmos. Chem. Phys. Discuss. 14(21), 29057–29099 (2014).
[Crossref]

D. D. Turner and U. Löhnert, “Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI),” J. Appl. Meteor. Climatol. 53(3), 752–771 (2014).
[Crossref]

2013 (2)

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar,” J. Atmos. Oceanic Technol. 30(8), 1616–1634 (2013).
[Crossref]

K. S. Repasky, D. Moen, S. Spuler, A. R. Nehrir, and J. L. Carlsten, “Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere,” Remote Sens. 5(12), 6241–6259 (2013).
[Crossref]

2012 (2)

2011 (2)

S. Y. Chen, Z. J. Qiu, Y. C. Zhang, H. Chen, and Y. Z. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112(2), 304–309 (2011).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Oceanic Technol. 28(2), 131–147 (2011).
[Crossref]

2010 (1)

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

2009 (2)

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 26(4), 733–745 (2009).
[Crossref]

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B: Lasers Opt. 96(1), 201–213 (2009).
[Crossref]

2008 (2)

H. Vogelmann and T. Trickl, “Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station,” Appl. Opt. 47(12), 2116–2132 (2008).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

2005 (1)

2004 (3)

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

2003 (2)

1999 (1)

D. D. Turner and J. E. M. Goldsmith, “Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. 16(8), 1062–1076 (1999).
[Crossref]

1998 (1)

1993 (2)

F. A. Theopold and J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: Theory and experiment,” J. Atmos. Oceanic Technol. 10(2), 165–179 (1993).
[Crossref]

D. N. Whiteman, W. F. Murphy, N. W. Walsh, and K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18(3), 247–249 (1993).
[Crossref]

1984 (1)

1983 (3)

1982 (1)

C. L. Korb and C. Y. Weng, “A Theoretical-Study of a 2-Wavelength Lidar Technique for the Measurement of Atmospheric-Temperature Profiles,” J. Appl. Meteorol. 21(9), 1346–1355 (1982).
[Crossref]

1978 (1)

1976 (1)

Ackerman, T.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Adam, M.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Allen, R. J.

Antill, C. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Arshinov, Y. F.

Barnes, J. C.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Bauer, H.

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).

Begbie, R.

Behrendt, A.

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar,” Atmos. Chem. Phys. Discuss. 14(21), 29057–29099 (2014).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

A. Behrendt, T. Nakamura, T. Tsuda, and V. Wulfmeyer, “Rotational Raman temperature lidar: New experimental results and performance expected for future ground-based and airborne systems,” 22nd Internation Laser Radar Conference (ILRC), Vol. 561, p. 33, (2004).

A. Behrendt, “Chapter 10: Temperature Measurements with Lidar,” Lidar: range-resolved optical remote sensing of the atmosphere. C. Weitkamp (Ed.) Springer series in optical sciences, (Springer, New York, 2005). 273–305.

A. Behrendt, T. Nakamura, Y. Sawai, M. Onishi, and T. Tsuda, “Rotational vibrational-rotational Raman lidar: Design and performance of the RASC Raman lidar at Shigaraki, Japan (34.8 degrees N, 136.1 degrees E),” Lidar Remote Sensing for Industry and Environment Monitoring II (Vol. 4484, pp. 151–163). International Society for Optics and Photonics (2002).

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).

Benedetti, A.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Bernath, P. F.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Best, F. A.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

Birk, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Blumberg, W. G.

W. G. Blumberg, D. D. Turner, U. Löhnert, and S. Castleberry, “Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions,” J. Appl. Meteor. Climatol. 54(11), 2305–2319 (2015).
[Crossref]

Bobrovnikov, S. M.

Bösenberg, J.

K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti: sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44(24), 5120–5126 (2005).
[Crossref]

J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37(18), 3845–3860 (1998).
[Crossref]

F. A. Theopold and J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: Theory and experiment,” J. Atmos. Oceanic Technol. 10(2), 165–179 (1993).
[Crossref]

J. Bösenberg, “Chapter 8: Differential-Absorption Lidar for Water Vapor and Temperature Profiling,” Lidar: range-resolved optical remote sensing of the atmosphere, C. Weitkamp (Ed.) Springer series in optical sciences, (Springer, New York, 2005). pp. 213–239.

Boudon, V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Browell, E. V.

E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, and W. M. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles,” Appl. Opt. 22(4), 522–534 (1983).
[Crossref]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Brown, K. E.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Bunn, C. E.

C. E. Bunn, K. S. Repasky, M. Hayman, R. A. Stillwell, and S. M. Spuler, “Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient,” Appl. Opt. 57(16), 4440–4450 (2018).
[Crossref]

R. A. Stillwell, S. M. Spuler, M. Hayman, C. E. Bunn, and K. S. Repasky, “Towards developing a micropulse differential absorption lidar to measure atmospheric temperature,” 29th International Laser Radar Conference (ILRC) (2019).

Butler, C. F.

Cadeddu, M. P.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Cadirola, M.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Campargue, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Carbone, R. E.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Carlsten, J. L.

K. S. Repasky, D. Moen, S. Spuler, A. R. Nehrir, and J. L. Carlsten, “Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere,” Remote Sens. 5(12), 6241–6259 (2013).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Micropulse water vapor differential absorption lidar: transmitter design and performance,” Opt. Express 20(22), 25137–25151 (2012).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Oceanic Technol. 28(2), 131–147 (2011).
[Crossref]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 26(4), 733–745 (2009).
[Crossref]

Carr, F.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Carter, A. F.

Castleberry, S.

W. G. Blumberg, D. D. Turner, U. Löhnert, and S. Castleberry, “Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions,” J. Appl. Meteor. Climatol. 54(11), 2305–2319 (2015).
[Crossref]

Chance, K. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Chen, H.

S. Y. Chen, Z. J. Qiu, Y. C. Zhang, H. Chen, and Y. Z. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112(2), 304–309 (2011).
[Crossref]

Chen, S. Y.

S. Y. Chen, Z. J. Qiu, Y. C. Zhang, H. Chen, and Y. Z. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112(2), 304–309 (2011).
[Crossref]

Ciganovich, N. C.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

Cimini, D.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Cohen, A.

Connell, R.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Cooney, J. A.

Crewell, S.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Dedecker, R. G.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

Demoz, B.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Demoz, B. B.

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Di Girolamo, P.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Dirkx, T. P.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

Drouin, B. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Edwards, W. C.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Ehret, G.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B: Lasers Opt. 96(1), 201–213 (2009).
[Crossref]

Ellington, S. C.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

Eloranta, E. W.

Ertel, K.

Evans, K. D.

Fabry, F.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Feltz, W.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Feltz, W. F.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

Fix, A.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B: Lasers Opt. 96(1), 201–213 (2009).
[Crossref]

Garcia, R. K.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

Geller, K. N.

Goldsmith, J. E. M.

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar,” J. Atmos. Oceanic Technol. 30(8), 1616–1634 (2013).
[Crossref]

D. D. Turner and J. E. M. Goldsmith, “Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. 16(8), 1062–1076 (1999).
[Crossref]

Gordley, L. L.

Gordon, I. E.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Hall, W. M.

E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, and W. M. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles,” Appl. Opt. 22(4), 522–534 (1983).
[Crossref]

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Hammann, E.

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

Hardesty, R. M.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23(15), 2545–2553 (1984).
[Crossref]

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Hayman, M.

C. E. Bunn, K. S. Repasky, M. Hayman, R. A. Stillwell, and S. M. Spuler, “Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient,” Appl. Opt. 57(16), 4440–4450 (2018).
[Crossref]

M. Hayman and S. Spuler, “Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols,” Opt. Express 25(24), A1096–A1110 (2017).
[Crossref]

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

R. A. Stillwell, S. M. Spuler, M. Hayman, C. E. Bunn, and K. S. Repasky, “Towards developing a micropulse differential absorption lidar to measure atmospheric temperature,” 29th International Laser Radar Conference (ILRC) (2019).

Hilber, B.

Hill, C.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Hoff, R. M.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Howell, H. B.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

Jones, I. W.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Klein, V.

Knupp, K.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Knuteson, R. O.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

Koch, S.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Kochanov, R. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Korb, C. L.

C. L. Korb and C. Y. Weng, “A Theoretical-Study of a 2-Wavelength Lidar Technique for the Measurement of Atmospheric-Temperature Profiles,” J. Appl. Meteorol. 21(9), 1346–1355 (1982).
[Crossref]

Le Mounier, F.

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

Linné, H.

Little, A. D.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Löhnert, U.

W. G. Blumberg, D. D. Turner, U. Löhnert, and S. Castleberry, “Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions,” J. Appl. Meteor. Climatol. 54(11), 2305–2319 (2015).
[Crossref]

D. D. Turner and U. Löhnert, “Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI),” J. Appl. Meteor. Climatol. 53(3), 752–771 (2014).
[Crossref]

Luck, W. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Mahnke, P.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B: Lasers Opt. 96(1), 201–213 (2009).
[Crossref]

Marchese, R.

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

Mattis, I.

Mayo, M. N.

McIntire, G.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Metzendorf, S.

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar,” Atmos. Chem. Phys. Discuss. 14(21), 29057–29099 (2014).
[Crossref]

Mitev, V. M.

Moen, D.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

K. S. Repasky, D. Moen, S. Spuler, A. R. Nehrir, and J. L. Carlsten, “Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere,” Remote Sens. 5(12), 6241–6259 (2013).
[Crossref]

Moore, A. S.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Morley, B.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Muppa, S. K.

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar,” Atmos. Chem. Phys. Discuss. 14(21), 29057–29099 (2014).
[Crossref]

Murphy, W. F.

Nakamura, T.

A. Behrendt, T. Nakamura, T. Tsuda, and V. Wulfmeyer, “Rotational Raman temperature lidar: New experimental results and performance expected for future ground-based and airborne systems,” 22nd Internation Laser Radar Conference (ILRC), Vol. 561, p. 33, (2004).

A. Behrendt, T. Nakamura, Y. Sawai, M. Onishi, and T. Tsuda, “Rotational vibrational-rotational Raman lidar: Design and performance of the RASC Raman lidar at Shigaraki, Japan (34.8 degrees N, 136.1 degrees E),” Lidar Remote Sensing for Industry and Environment Monitoring II (Vol. 4484, pp. 151–163). International Society for Optics and Photonics (2002).

Nehrir, A. R.

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

K. S. Repasky, D. Moen, S. Spuler, A. R. Nehrir, and J. L. Carlsten, “Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere,” Remote Sens. 5(12), 6241–6259 (2013).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Micropulse water vapor differential absorption lidar: transmitter design and performance,” Opt. Express 20(22), 25137–25151 (2012).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Oceanic Technol. 28(2), 131–147 (2011).
[Crossref]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 26(4), 733–745 (2009).
[Crossref]

Newsom, R. K.

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar,” J. Atmos. Oceanic Technol. 30(8), 1616–1634 (2013).
[Crossref]

Obland, M. D.

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 26(4), 733–745 (2009).
[Crossref]

Onishi, M.

A. Behrendt, T. Nakamura, Y. Sawai, M. Onishi, and T. Tsuda, “Rotational vibrational-rotational Raman lidar: Design and performance of the RASC Raman lidar at Shigaraki, Japan (34.8 degrees N, 136.1 degrees E),” Lidar Remote Sensing for Industry and Environment Monitoring II (Vol. 4484, pp. 151–163). International Society for Optics and Photonics (2002).

Oscar, W. M. O.

W. M. O. Oscar “OSCAR Observing Systems Capability Analysis and Review Tool,” (2019).

Pal, S.

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).

Petway, L. B.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

Qiu, Z. J.

S. Y. Chen, Z. J. Qiu, Y. C. Zhang, H. Chen, and Y. Z. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112(2), 304–309 (2011).
[Crossref]

Rabenhorst, S.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Radlach, M.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).

Reichardt, J.

Remsberg, E. E.

Repasky, K. S.

C. E. Bunn, K. S. Repasky, M. Hayman, R. A. Stillwell, and S. M. Spuler, “Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient,” Appl. Opt. 57(16), 4440–4450 (2018).
[Crossref]

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

K. S. Repasky, D. Moen, S. Spuler, A. R. Nehrir, and J. L. Carlsten, “Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere,” Remote Sens. 5(12), 6241–6259 (2013).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Micropulse water vapor differential absorption lidar: transmitter design and performance,” Opt. Express 20(22), 25137–25151 (2012).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Oceanic Technol. 28(2), 131–147 (2011).
[Crossref]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 26(4), 733–745 (2009).
[Crossref]

R. A. Stillwell, S. M. Spuler, M. Hayman, C. E. Bunn, and K. S. Repasky, “Towards developing a micropulse differential absorption lidar to measure atmospheric temperature,” 29th International Laser Radar Conference (ILRC) (2019).

Revercomb, H. E.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

Riede, A.

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar,” Atmos. Chem. Phys. Discuss. 14(21), 29057–29099 (2014).
[Crossref]

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).

Roesler, F. L.

Rothman, L. S.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Rush, K.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Russo, F.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Sawai, Y.

A. Behrendt, T. Nakamura, Y. Sawai, M. Onishi, and T. Tsuda, “Rotational vibrational-rotational Raman lidar: Design and performance of the RASC Raman lidar at Shigaraki, Japan (34.8 degrees N, 136.1 degrees E),” Lidar Remote Sensing for Industry and Environment Monitoring II (Vol. 4484, pp. 151–163). International Society for Optics and Photonics (2002).

Schlussel, P.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Schrandt, F.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B: Lasers Opt. 96(1), 201–213 (2009).
[Crossref]

Schwarzer, H.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B: Lasers Opt. 96(1), 201–213 (2009).
[Crossref]

Serafin, R. J.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Shaw, J. A.

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 26(4), 733–745 (2009).
[Crossref]

Shipley, S. T.

Sisterson, D.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Siviter, J. H.

Smith, W. L.

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

Späth, F.

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar,” Atmos. Chem. Phys. Discuss. 14(21), 29057–29099 (2014).
[Crossref]

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).

Spuler, S.

M. Hayman and S. Spuler, “Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols,” Opt. Express 25(24), A1096–A1110 (2017).
[Crossref]

K. S. Repasky, D. Moen, S. Spuler, A. R. Nehrir, and J. L. Carlsten, “Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere,” Remote Sens. 5(12), 6241–6259 (2013).
[Crossref]

Spuler, S. M.

C. E. Bunn, K. S. Repasky, M. Hayman, R. A. Stillwell, and S. M. Spuler, “Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient,” Appl. Opt. 57(16), 4440–4450 (2018).
[Crossref]

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 33(11), 2353–2372 (2016).
[Crossref]

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

R. A. Stillwell, S. M. Spuler, M. Hayman, C. E. Bunn, and K. S. Repasky, “Towards developing a micropulse differential absorption lidar to measure atmospheric temperature,” 29th International Laser Radar Conference (ILRC) (2019).

Sroga, J. T.

Stillwell, R. A.

C. E. Bunn, K. S. Repasky, M. Hayman, R. A. Stillwell, and S. M. Spuler, “Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient,” Appl. Opt. 57(16), 4440–4450 (2018).
[Crossref]

R. A. Stillwell, S. M. Spuler, M. Hayman, C. E. Bunn, and K. S. Repasky, “Towards developing a micropulse differential absorption lidar to measure atmospheric temperature,” 29th International Laser Radar Conference (ILRC) (2019).

Stilwell, R. A.

R. A. Stilwell, National Center for Atmospheric Research, 1850 Table Mesa Dr, Boulder, CO 80305, S. M. Spuler, M. Hayman, K. S. Repasky, and C. E. Bunn are preparing a manuscript to be called “Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature” (submitted to Optics Express, October 2019).

Tan, Y.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Theopold, F. A.

F. A. Theopold and J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: Theory and experiment,” J. Atmos. Oceanic Technol. 10(2), 165–179 (1993).
[Crossref]

Tracy, D. H.

Trauger, J. T.

Trickl, T.

Tsuda, T.

A. Behrendt, T. Nakamura, Y. Sawai, M. Onishi, and T. Tsuda, “Rotational vibrational-rotational Raman lidar: Design and performance of the RASC Raman lidar at Shigaraki, Japan (34.8 degrees N, 136.1 degrees E),” Lidar Remote Sensing for Industry and Environment Monitoring II (Vol. 4484, pp. 151–163). International Society for Optics and Photonics (2002).

A. Behrendt, T. Nakamura, T. Tsuda, and V. Wulfmeyer, “Rotational Raman temperature lidar: New experimental results and performance expected for future ground-based and airborne systems,” 22nd Internation Laser Radar Conference (ILRC), Vol. 561, p. 33, (2004).

Turner, D.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Turner, D. D.

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 33(11), 2353–2372 (2016).
[Crossref]

W. G. Blumberg, D. D. Turner, U. Löhnert, and S. Castleberry, “Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions,” J. Appl. Meteor. Climatol. 54(11), 2305–2319 (2015).
[Crossref]

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

D. D. Turner and U. Löhnert, “Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI),” J. Appl. Meteor. Climatol. 53(3), 752–771 (2014).
[Crossref]

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar,” J. Atmos. Oceanic Technol. 30(8), 1616–1634 (2013).
[Crossref]

D. D. Turner and J. E. M. Goldsmith, “Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. 16(8), 1062–1076 (1999).
[Crossref]

Van Baelen, J.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Venable, D.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Veselovskii, I.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Vogelmann, H.

Wagner, G.

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).

Walsh, N. W.

Wandinger, U.

J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).
[Crossref]

U. Wandinger, “Chapter 9: Raman Lidar,” Lidar: range-resolved optical remote sensing of the atmosphere. C. Weitkamp (Ed.) Springer series in optical sciences, (Springer, New York, 2005). 241–271.

Wang, Y. Z.

S. Y. Chen, Z. J. Qiu, Y. C. Zhang, H. Chen, and Y. Z. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112(2), 304–309 (2011).
[Crossref]

Weber, K. J.

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 33(11), 2353–2372 (2016).
[Crossref]

Weckwerth, T.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

Weckwerth, T. M.

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 33(11), 2353–2372 (2016).
[Crossref]

Weinman, J. A.

Welch, W.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

Weng, C. Y.

C. L. Korb and C. Y. Weng, “A Theoretical-Study of a 2-Wavelength Lidar Technique for the Measurement of Atmospheric-Temperature Profiles,” J. Appl. Meteorol. 21(9), 1346–1355 (1982).
[Crossref]

Whiteman, D. N.

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42(15), 2593–2608 (2003).
[Crossref]

D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
[Crossref]

D. N. Whiteman, W. F. Murphy, N. W. Walsh, and K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18(3), 247–249 (1993).
[Crossref]

Wirth, M.

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B: Lasers Opt. 96(1), 201–213 (2009).
[Crossref]

Wulfmeyer, V.

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar,” Atmos. Chem. Phys. Discuss. 14(21), 29057–29099 (2014).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

A. Behrendt, T. Nakamura, T. Tsuda, and V. Wulfmeyer, “Rotational Raman temperature lidar: New experimental results and performance expected for future ground-based and airborne systems,” 22nd Internation Laser Radar Conference (ILRC), Vol. 561, p. 33, (2004).

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).

Zhang, Y. C.

S. Y. Chen, Z. J. Qiu, Y. C. Zhang, H. Chen, and Y. Z. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112(2), 304–309 (2011).
[Crossref]

Zuev, V. E.

Zus, F.

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Appl. Opt. (13)

A. Cohen, J. A. Cooney, and K. N. Geller, “Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering,” Appl. Opt. 15(11), 2896–2901 (1976).
[Crossref]

E. E. Remsberg and L. L. Gordley, “Analysis of differential absorption lidar from the Space Shuttle,” Appl. Opt. 17(4), 624–630 (1978).
[Crossref]

E. V. Browell, A. F. Carter, S. T. Shipley, R. J. Allen, C. F. Butler, M. N. Mayo, J. H. Siviter, and W. M. Hall, “NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles,” Appl. Opt. 22(4), 522–534 (1983).
[Crossref]

Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22(19), 2984–2990 (1983).
[Crossref]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22(23), 3716–3724 (1983).
[Crossref]

R. M. Hardesty, “Coherent DIAL measurement of range-resolved water vapor concentration,” Appl. Opt. 23(15), 2545–2553 (1984).
[Crossref]

J. Bösenberg, “Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology,” Appl. Opt. 37(18), 3845–3860 (1998).
[Crossref]

D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
[Crossref]

D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42(15), 2593–2608 (2003).
[Crossref]

K. Ertel, H. Linné, and J. Bösenberg, “Injection-seeded pulsed Ti: sapphire laser with novel stabilization scheme and capability of dual-wavelength operation,” Appl. Opt. 44(24), 5120–5126 (2005).
[Crossref]

H. Vogelmann and T. Trickl, “Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station,” Appl. Opt. 47(12), 2116–2132 (2008).
[Crossref]

J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).
[Crossref]

C. E. Bunn, K. S. Repasky, M. Hayman, R. A. Stillwell, and S. M. Spuler, “Perturbative solution to the two-component atmosphere DIAL equation for improving the accuracy of the retrieved absorption coefficient,” Appl. Opt. 57(16), 4440–4450 (2018).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance,” Appl. Phys. B: Lasers Opt. 96(1), 201–213 (2009).
[Crossref]

Atmos. Chem. Phys. (2)

E. Hammann, A. Behrendt, F. Le Mounier, and V. Wulfmeyer, “Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment,” Atmos. Chem. Phys. 15(5), 2867–2881 (2015).
[Crossref]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8(2), 159–169 (2008).
[Crossref]

Atmos. Chem. Phys. Discuss. (1)

F. Späth, A. Behrendt, S. K. Muppa, S. Metzendorf, A. Riede, and V. Wulfmeyer, “High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar,” Atmos. Chem. Phys. Discuss. 14(21), 29057–29099 (2014).
[Crossref]

Atmos. Meas. Tech. (1)

S. M. Spuler, K. S. Repasky, B. Morley, D. Moen, M. Hayman, and A. R. Nehrir, “Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor,” Atmos. Meas. Tech. 8(3), 1073–1087 (2015).
[Crossref]

Geophys. Res. Lett. (1)

P. Di Girolamo, R. Marchese, D. N. Whiteman, and B. B. Demoz, “Rotational Raman Lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31(1), L01106 (2004).
[Crossref]

J. Appl. Meteor. Climatol. (2)

D. D. Turner and U. Löhnert, “Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI),” J. Appl. Meteor. Climatol. 53(3), 752–771 (2014).
[Crossref]

W. G. Blumberg, D. D. Turner, U. Löhnert, and S. Castleberry, “Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part II: Actual retrieval performance in clear-sky and cloudy conditions,” J. Appl. Meteor. Climatol. 54(11), 2305–2319 (2015).
[Crossref]

J. Appl. Meteorol. (1)

C. L. Korb and C. Y. Weng, “A Theoretical-Study of a 2-Wavelength Lidar Technique for the Measurement of Atmospheric-Temperature Profiles,” J. Appl. Meteorol. 21(9), 1346–1355 (1982).
[Crossref]

J. Atmos. Oceanic Technol. (9)

F. A. Theopold and J. Bösenberg, “Differential absorption lidar measurements of atmospheric temperature profiles: Theory and experiment,” J. Atmos. Oceanic Technol. 10(2), 165–179 (1993).
[Crossref]

D. D. Turner and J. E. M. Goldsmith, “Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods,” J. Atmos. Oceanic Technol. 16(8), 1062–1076 (1999).
[Crossref]

T. M. Weckwerth, K. J. Weber, D. D. Turner, and S. M. Spuler, “Validation of a Water Vapor Micropulse Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 33(11), 2353–2372 (2016).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part I: Instrument design,” J. Atmos. Oceanic Technol. 21(12), 1763–1776 (2004).
[Crossref]

R. O. Knuteson, H. E. Revercomb, F. A. Best, N. C. Ciganovich, R. G. Dedecker, T. P. Dirkx, S. C. Ellington, W. F. Feltz, R. K. Garcia, H. B. Howell, and W. L. Smith, “Atmospheric emitted radiance interferometer. Part II: Instrument performance,” J. Atmos. Oceanic Technol. 21(12), 1777–1789 (2004).
[Crossref]

R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-Term Evaluation of Temperature Profiles Measured by an Operational Raman Lidar,” J. Atmos. Oceanic Technol. 30(8), 1616–1634 (2013).
[Crossref]

D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, and I. Veselovskii, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Oceanic Technol. 27(11), 1781–1801 (2010).
[Crossref]

A. R. Nehrir, K. S. Repasky, J. L. Carlsten, M. D. Obland, and J. A. Shaw, “Water Vapor Profiling Using a Widely Tunable, Amplified Diode-Laser-Based Differential Absorption Lidar (DIAL),” J. Atmos. Oceanic Technol. 26(4), 733–745 (2009).
[Crossref]

A. R. Nehrir, K. S. Repasky, and J. L. Carlsten, “Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere,” J. Atmos. Oceanic Technol. 28(2), 131–147 (2011).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

S. Y. Chen, Z. J. Qiu, Y. C. Zhang, H. Chen, and Y. Z. Wang, “A pure rotational Raman lidar using double-grating monochromator for temperature profile detection,” J. Quant. Spectrosc. Radiat. Transfer 112(2), 304–309 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Remote Sens. (1)

K. S. Repasky, D. Moen, S. Spuler, A. R. Nehrir, and J. L. Carlsten, “Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere,” Remote Sens. 5(12), 6241–6259 (2013).
[Crossref]

Rev. Geophys. (1)

V. Wulfmeyer, R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schlussel, J. Van Baelen, and F. Zus, “A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles,” Rev. Geophys. 53(3), 819–895 (2015).
[Crossref]

Other (13)

National Research Council (U.S.), “Committee on Developing Mesoscale Meteorological Observational Capabilities to Meet Multiple National Needs,” Observing weather and climate from the ground up: a nationwide network of networks (National Academies Press, Washington, D.C., 2009), pp. xvi, 234 p.

National Research Council (U.S.), “Committee on Progress and Priorities of U.S. Weather Research and Research-to-Operations Activities,” When weather matters: science and services to meet critical societal needs (National Academies Press, Washington, D.C., 2010), pp. xvi, 181 p.

R. E. Carbone, R. J. Serafin, R. M. Hoff, R. M. Hardesty, F. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D. Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, and K. Knupp, “Thermodynamic profiling technologies workshop report to the National Science Foundation and the National Weather Service,” NCAR Technical Note NCAR/TN-488 + STR (2012).

U. Wandinger, “Chapter 9: Raman Lidar,” Lidar: range-resolved optical remote sensing of the atmosphere. C. Weitkamp (Ed.) Springer series in optical sciences, (Springer, New York, 2005). 241–271.

A. Behrendt, “Chapter 10: Temperature Measurements with Lidar,” Lidar: range-resolved optical remote sensing of the atmosphere. C. Weitkamp (Ed.) Springer series in optical sciences, (Springer, New York, 2005). 273–305.

A. Behrendt, T. Nakamura, Y. Sawai, M. Onishi, and T. Tsuda, “Rotational vibrational-rotational Raman lidar: Design and performance of the RASC Raman lidar at Shigaraki, Japan (34.8 degrees N, 136.1 degrees E),” Lidar Remote Sensing for Industry and Environment Monitoring II (Vol. 4484, pp. 151–163). International Society for Optics and Photonics (2002).

A. Behrendt, T. Nakamura, T. Tsuda, and V. Wulfmeyer, “Rotational Raman temperature lidar: New experimental results and performance expected for future ground-based and airborne systems,” 22nd Internation Laser Radar Conference (ILRC), Vol. 561, p. 33, (2004).

J. Bösenberg, “Chapter 8: Differential-Absorption Lidar for Water Vapor and Temperature Profiling,” Lidar: range-resolved optical remote sensing of the atmosphere, C. Weitkamp (Ed.) Springer series in optical sciences, (Springer, New York, 2005). pp. 213–239.

A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, and E. V. Browell, “Development of the Lidar Atmospheric Sensing Experiment (LASE)—an advanced airborne DIAL instrument,” Advances in Atmospheric Remote Sensing with Lidar, (pp. 281–288). Springer, Berlin, Heidelberg (1997).

A. Behrendt, V. Wulfmeyer, A. Riede, G. Wagner, S. Pal, H. Bauer, M. Radlach, and F. Späth, “Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar,” Remote sensing of clouds and the atmosphere XIV (Vol. 7475, p. 74750L). International Society for Optics and Photonics (2009).

R. A. Stillwell, S. M. Spuler, M. Hayman, C. E. Bunn, and K. S. Repasky, “Towards developing a micropulse differential absorption lidar to measure atmospheric temperature,” 29th International Laser Radar Conference (ILRC) (2019).

R. A. Stilwell, National Center for Atmospheric Research, 1850 Table Mesa Dr, Boulder, CO 80305, S. M. Spuler, M. Hayman, K. S. Repasky, and C. E. Bunn are preparing a manuscript to be called “Demonstration of a combined differential absorption and high spectral resolution lidar for profiling atmospheric temperature” (submitted to Optics Express, October 2019).

W. M. O. Oscar “OSCAR Observing Systems Capability Analysis and Review Tool,” (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. The atmospheric models used. The black, red, blue and purple lines refer to the M1, M2, M3, and M4 models respectively. In Fig. 1(a), the temperature profiles are shown while Fig. 1(b) shows the pressure profiles. The aerosol backscatter profiles are shown in Fig. 1(c) and the water vapor number density profiles are shown in Fig. 1(d).
Fig. 2.
Fig. 2. A plot of the absorption cross section as a function of wavelength. The black line represents the O2 absorption cross section while the red line indicates the water vapor absorption cross section.
Fig. 3.
Fig. 3. The molecular optical depth for the four absorption lines summarized in Table 2. The vertical line indicates an optical depth of 1.1 and provides an estimate of the maximum range the absorption coefficient can be retrieved with minimal error.
Fig. 4.
Fig. 4. The temperature sensitivity as a function of temperature. Because of the ground state thermal population, the lines with higher temperature sensitivity typically have a smaller line strength.
Fig. 5.
Fig. 5. The temperature deviation as a function of range using the atmospheric model M2. The O2 absorption feature with a center wavelength of 769.2333 nm minimizes the temperature deviation below 5 km.
Fig. 6.
Fig. 6. The retrieved O2 absorption coefficient as a function of range for the M3 model. The black solid line represents the model O2 absorption coefficient. The dot-dashed, dashed, and solid blue lines represent the zeroth, first, and second order perturbative retrieval of the O2 absorption coefficient.
Fig. 7.
Fig. 7. The retrieved O2 absorption coefficient as a function of range for the M1, M2, M3, and M4 atmospheric models are shown in Figs. 7(a), 7(b), 7(c), and 7(d) respectively. The solid line represents the model O2 absorption coefficient while the dashed line represents the retrieved O2 absorption with the Poisson noise turned off while the dot-dashed line represents the retrieved O2 absorption with the Poisson noise turned on.
Fig. 8.
Fig. 8. The error in the retrieved O2 absorption coefficient as a function of range. The black, red, blue and purple lines represent the M1, M2, M3, and M4 models. The vertical dashed black lines represent a ${\pm} $ 2% error.
Fig. 9.
Fig. 9. The temperature profile as a function of range for M1, M2, M3, and M4 are shown in Fig. 9(a), 9(b), 9(c), and 9(d). The solid black line represents the model temperature profile and the dashed black lines indicate a ${\pm} $ 1 K temperature deviation. The dot-dashed blue line indicates the initial temperature profile guess used to start the iterative temperature retrieval. The red line represents the final retrieved temperature profile.
Fig. 10.
Fig. 10. The temperature deviation a function of range. The dashed (dot-dashed) vertical black lines indicate ${\pm} $ 1 K (${\pm} $ 3 K) temperature deviation. The black, red, blue, and purple lines represent the M1, M2, M3, and M4 models.
Fig. 11.
Fig. 11. The retrieved temperature lapse rate as a function of the iteration number for the M1, M2, M3, and M4 models is shown as the black, red, blue, and purple lines. After approximately eight iterations, the retrieved lapse rate reaches a steady state value.
Fig. 12.
Fig. 12. The temperature deviation for 25 atmospheric models using the LAFE data set. The red dashed (dot-dashed) lines indicate a ${\pm} $ 1 K (${\pm} $ 3 K) temperature deviation. Figure 12(a) represents data using a 150 m range resolution while Fig. 12(b) represents data using a 300 m range resolution. Figure 12(c) represents data using a 150 m range resolution and an etalon bandwidth a factor of six narrower than the data represented in Figs. 12(a) and 12(b).
Fig. 13.
Fig. 13. The absorption coefficient as a function of range. The black line is the calculated absorption coefficient using data from a co-located radiosonde. The blue dot-dashed line is the retrieved absorption coefficient using just the 0th order term in the retrieval while the red dashed line represents the retrieved absorption coefficient using the 0th, 1st, and 2nd order terms in the retrieval.
Fig. 14.
Fig. 14. The left hand plot shows the temperature as a function of range. The dashed red line indicates the retrieved temperature profile using the O2-MPD data while the solid black line indicates the temperature profile measured using the co-located radiosonde. The dot-dashed blue lines indicate a ${\pm} $ 1 K temperature deviation and are shown for reference. The right hand plot shows the corresponding temperature deviation as a function of range as the solid black line. The dashed (dot-dashed) vertical lines indicate a ${\pm} $ 1 K (${\pm} $ 3 K) temperature deviation.

Tables (2)

Tables Icon

Table 1. Instrument parameters for the WV-MPD [35], O2-MPD [47,48], and DLB-HSRL [45].

Tables Icon

Table 2. The parameters for the four O2 absorption lines considered for temperature profiling [46].

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

N λ , b s ( υ , r ) = N 0 T A ( r , υ L ) T m ( r , υ L )
T A ( r , υ ) = e 0 r ( σ A ( r , υ ) + σ m ( r , υ ) ) d r
T m ( r , υ ) = e 0 r α ( r , υ ) d r
N λ , a s ( υ , r ) = N λ , b s ( υ , r ) β ( r ) g ( r , υ )
g ( r , υ ) = β A ( r ) β ( r ) δ ( υ υ L ) + β M ( r ) β ( r ) l ( r , υ υ L )
N λ ( r ) = N 0 m c τ 2 A r 2 o ( r ) ε 0 ( υ L ) ε D ( υ L ) T A 2 ( r , υ L ) T m ( r , υ L ) β ( r ) υ T m ( r , υ ) g ( r , υ ) E ( υ ) d υ
d α α 1 d T = 1 T ( ϵ h c k B T 5 2 + Ξ ( Λ ) )
d T = T d α α 1 ( ϵ h c k B T 5 2 + Ξ ( Λ ) )
d T = T 2 α Δ r [ 1 N o n ( r ) + 1 N o n ( r + Δ r ) + 1 N o f f ( r ) + 1 N o f f ( r + Δ r ) ] 0.5 1 ( ϵ h c k B T 5 2 + Ξ ( Λ ) )
α m , 1 ( r ) = α 0 t h ( r ) + Δ α 1 s t ( r ) + Δ α 2 n d ( r )
α 0 t h ( r ) = α m , 2 ( r ) l n ( N 1 ( r + Δ r ) N 2 ( r ) N 1 ( r ) N 2 ( r + Δ r ) )
g x ( υ , r ) = β A ( r ) β A ( r ) + β M ( r ) h x ( υ ) + β M ( r ) β A ( r ) + β M ( r ) ( h x ( υ ) l ( υ , r ) )
Δ α 1 s t ( r ) = 1 2 ( α 0 t h ( r ) Δ W 1 s t ( r ) + Δ G 1 s t , 1 ( r ) Δ G 1 s t , 2 ( r ) )
Δ W 1 s t ( r ) = ζ 1 ( υ , r ) [ 1 f ( ν , r ) ] d υ ζ 1 ( υ , r ) d υ
Δ G 1 s t , x ( r ) = η x ( υ , r ) d υ ζ x ( υ , r ) d υ
ζ x ( υ , r ) = g x ( υ , r ) E ( υ ) T m 0 t h , x ( υ , r )
η x ( υ , r ) = d g x ( υ , r ) d r E ( υ ) T m 0 t h , x ( υ , r )
Δ α 2 n d ( r ) = 1 2 ( Δ α 1 s t ( r ) Δ W 1 s t ( r ) + α 0 t h ( r ) Δ W 2 n d ( r ) + Δ G 2 n d , 1 ( r ) Δ G 2 n d , 2 ( r ) )
Δ W 2 n d ( r ) = ζ 1 ( υ , r ) [ 1 f ( ν , r ) ] d υ ζ 1 ( υ , r ) d υ ζ 1 ( υ , r ) [ 1 f ( ν , r ) ] [ 1 T m 1 s t , 1 ( R ) ] d υ ζ 1 ( υ , r ) d υ ζ 1 ( υ , r ) [ 1 f ( ν , r ) ] [ 1 T m 1 s t , 1 ( R ) ] d υ ζ 1 ( υ , r ) d υ
Δ G 2 n d , x ( r ) = η x ( υ , r ) d υ ζ x ( υ , r ) d υ ζ x ( υ , r ) [ 1 T m 1 s t , x ( R ) ] d υ ζ x ( υ , r ) d υ η x ( υ , r ) [ 1 T m 1 s t , x ( R ) ] d υ ζ x ( υ , r ) d υ
α O 2 ( r ) = S ( T 0 ) T 0 T ( r ) e x p [ ϵ k T 0 ϵ k T ( r ) ] g ( υ υ 0 , r ) n O 2 ( r )
n O 2 ( r ) = q O 2 ( n L ( r ) n w v ( r ) ) = q O 2 ( 1 q w v ( r ) ) n L ( r )
α O 2 ( r ) = S ( T 0 ) T 0 P s e x p ( ϵ k T 0 ) k T s γ L g ( υ υ 0 , r ) q O 2 ( 1 q w v ( r ) ) T ( r ) γ L 2 e x p ( ϵ k T ( r ) )
T i + 1 ( r ) = T i ( r ) + Δ T ( r ) = T i ( r ) ( 1 + Δ T ( r ) T i ( r ) )
Δ T ( r ) = α O 2 ( r ) C 1 C 2 ( r ) g ( υ υ 0 , r ) q O 2 ( 1 q w v ( r ) ) C 1 C 2 ( r ) C 3 ( r ) g ( υ υ 0 , r ) q O 2 ( 1 q w v ( r ) )
C 1 = S ( T 0 ) T 0 P s e x p ( ϵ k T 0 ) k T s γ L ,
C 2 ( r ) = T i ( r ) γ L 2 e x p ( ϵ k T i ( r ) ) ,
C 3 ( r ) = γ L 2 T i ( r ) + ϵ k T i 2 ( r ) .

Metrics