Abstract

We introduce and demonstrate a switchable novel linear polarization grating (LPG) consisting of a circular polarization grating (CPG) and a special cycloidal diffractive quarter waveplate (CQWP). The CQWP is developed that marvelously matches the polarization-state of beams passing through the CPG. Such an LPG is so polarization-sensitive that it can split an incident linear polarized beam into two proportionally controllable left- or right-handed circularly polarized lights. We establish rigorous simulation model based on finite element method to investigate near-field polarization-state distribution of CPGs. Furthermore, LPGs are demonstrated and the diffraction properties are obtained with simulation and Jones Matrix analysis. The combination of CPGs and CQWPs is achieved with polymerizable liquid crystal. The experimental results of deflection angle and polarization selectivity of LPGs are consistent with those of simulation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate

Haiwei Chen, Yishi Weng, Daming Xu, Nelson V. Tabiryan, and Shin-Tson Wu
Opt. Express 24(7) 7287-7298 (2016)

All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates

Svetlana V. Serak, Rafael S. Hakobyan, Sarik R. Nersisyan, Nelson V. Tabiryan, Timothy J. White, Timothy J. Bunning, Diane M. Steeves, and Brian R. Kimball
Opt. Express 20(5) 5460-5469 (2012)

Interference-free and single exposure to generate continuous cycloidal alignment for large-area liquid crystal devices

Da Chen, Huijie Zhao, Kexin Yan, Dong Xu, Qi Guo, Linghao Sun, Fan Wu, Vladimir G. Chigrinov, and Hoi-Sing Kwok
Opt. Express 27(20) 29332-29339 (2019)

References

  • View by:

  1. M. Martinelli and P. Vavassori, “A geometric (Pancharatnam) phase approach to the polarization and phase control in the coherent optics circuits,” Opt. Commun. 80(2), 166–176 (1990).
    [Crossref]
  2. H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
    [Crossref]
  3. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
    [Crossref]
  4. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  5. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence,” Appl. Opt. 23(23), 4309–4312 (1984).
    [Crossref]
  6. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23(24), 4588–4591 (1984).
    [Crossref]
  7. I. Vartiainen, J. Tervo, J. Turunen, and M. Kuittinen, “Surface-relief polarization gratings for visible light,” Opt. Express 18(22), 22850–22858 (2010).
    [Crossref]
  8. M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
    [Crossref]
  9. K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
    [Crossref]
  10. K. Hisano, M. Ota, M. Aizawa, N. Akamatsu, C. J. Barrett, and A. Shishido, “Single-step creation of polarization gratings by scanning wave photopolymerization with unpolarized light,” J. Opt. Soc. Am. B 36(5), D112–D118 (2019).
    [Crossref]
  11. W. Hao, H. Wei, H. Hu, X. Lin, Z. Ge, J. W. Choi, V. Chigrinov, and Y. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
    [Crossref]
  12. N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Y. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24(7), 7091–7102 (2016).
    [Crossref]
  13. K. J. Hornburg, X. Xiang, J. Kim, M. W. Kudenov, and M. J. Escuti, “Design and fabrication of an aspheric geometric-phase lens doublet,” Proc. SPIE 10735, 1073513 (2018).
    [Crossref]
  14. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
    [Crossref]
  15. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
    [Crossref]
  16. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
    [Crossref]
  17. Y. Weng, D. Xu, Y. Zhang, X. Li, and S. T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
    [Crossref]
  18. K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
    [Crossref]
  19. B. Y. Wei, S. Liu, P. Chen, S. X. Qi, and J. L. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
    [Crossref]
  20. M. J. Escuti and W. M. Jones, “39.4: Polarization-independent switching with high contrast from a liquid crystal polarization grating,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 37(1), 1443–1446 (2006).
    [Crossref]
  21. G. Cincotti, “Polarization gratings: design and applications,” IEEE J. Quantum Electron. 39(12), 1645–1652 (2003).
    [Crossref]
  22. J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
    [Crossref]
  23. J. Kim, R. K. Komanduri, K. F. Lawler, D. J. Kekas, and M. J. Escuti, “Efficient and monolithic polarization conversion system based on a polarization grating,” Appl. Opt. 51(20), 4852–4857 (2012).
    [Crossref]
  24. E. Nicolescu and M. J. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
    [Crossref]
  25. H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
    [Crossref]
  26. Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
    [Crossref]
  27. R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15(8), 589–594 (2007).
    [Crossref]
  28. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
    [Crossref]
  29. M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-Type Polarization Gratings Formed in Thick Polymer Films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
    [Crossref]
  30. A. Shishido, “Rewritable Holograms Based on Azobenzene-containing Liquid-crystalline Polymers,” Polym. J. 42(7), 525–533 (2010).
    [Crossref]
  31. J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25(11), 785–786 (2000).
    [Crossref]
  32. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26(9), 587–589 (2001).
    [Crossref]
  33. E. Hasman, Z. E. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
    [Crossref]
  34. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  35. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
    [Crossref]
  36. R. C. Jones, “A new calculus for the treatment of optical systems I. description and discussion of the calculus,” J. Opt. Soc. Am. 31(7), 488–493 (1941).
    [Crossref]

2019 (1)

2018 (3)

K. J. Hornburg, X. Xiang, J. Kim, M. W. Kudenov, and M. J. Escuti, “Design and fabrication of an aspheric geometric-phase lens doublet,” Proc. SPIE 10735, 1073513 (2018).
[Crossref]

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

B. Y. Wei, S. Liu, P. Chen, S. X. Qi, and J. L. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

2017 (3)

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (1)

2012 (2)

2010 (2)

A. Shishido, “Rewritable Holograms Based on Azobenzene-containing Liquid-crystalline Polymers,” Polym. J. 42(7), 525–533 (2010).
[Crossref]

I. Vartiainen, J. Tervo, J. Turunen, and M. Kuittinen, “Surface-relief polarization gratings for visible light,” Opt. Express 18(22), 22850–22858 (2010).
[Crossref]

2008 (2)

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

2007 (4)

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15(8), 589–594 (2007).
[Crossref]

E. Nicolescu and M. J. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
[Crossref]

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-Type Polarization Gratings Formed in Thick Polymer Films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[Crossref]

2006 (4)

M. J. Escuti and W. M. Jones, “39.4: Polarization-independent switching with high contrast from a liquid crystal polarization grating,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 37(1), 1443–1446 (2006).
[Crossref]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31(15), 2248–2250 (2006).
[Crossref]

2005 (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

2003 (1)

G. Cincotti, “Polarization gratings: design and applications,” IEEE J. Quantum Electron. 39(12), 1645–1652 (2003).
[Crossref]

2002 (1)

E. Hasman, Z. E. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

2001 (1)

2000 (1)

1990 (1)

M. Martinelli and P. Vavassori, “A geometric (Pancharatnam) phase approach to the polarization and phase control in the coherent optics circuits,” Opt. Commun. 80(2), 166–176 (1990).
[Crossref]

1987 (1)

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[Crossref]

1984 (2)

1941 (1)

Adachi, J.

Aizawa, M.

K. Hisano, M. Ota, M. Aizawa, N. Akamatsu, C. J. Barrett, and A. Shishido, “Single-step creation of polarization gratings by scanning wave photopolymerization with unpolarized light,” J. Opt. Soc. Am. B 36(5), D112–D118 (2019).
[Crossref]

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

Akamatsu, N.

K. Hisano, M. Ota, M. Aizawa, N. Akamatsu, C. J. Barrett, and A. Shishido, “Single-step creation of polarization gratings by scanning wave photopolymerization with unpolarized light,” J. Opt. Soc. Am. B 36(5), D112–D118 (2019).
[Crossref]

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

Asatryan, K.

Barrett, C. J.

K. Hisano, M. Ota, M. Aizawa, N. Akamatsu, C. J. Barrett, and A. Shishido, “Single-step creation of polarization gratings by scanning wave photopolymerization with unpolarized light,” J. Opt. Soc. Am. B 36(5), D112–D118 (2019).
[Crossref]

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

Barrett, D.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[Crossref]

Berry, M. V.

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[Crossref]

Berry, S.

Biener, G.

E. Hasman, Z. E. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Bomzon, Z. E.

E. Hasman, Z. E. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Bos, P.

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Chen, H.

Chen, H. W.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Chen, P.

B. Y. Wei, S. Liu, P. Chen, S. X. Qi, and J. L. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Chen, S.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Chigrinov, V.

Choi, J. W.

Cincotti, G.

G. Cincotti, “Polarization gratings: design and applications,” IEEE J. Quantum Electron. 39(12), 1645–1652 (2003).
[Crossref]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Collett, E.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[Crossref]

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Davis, J. A.

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Escuti, M. J.

K. J. Hornburg, X. Xiang, J. Kim, M. W. Kudenov, and M. J. Escuti, “Design and fabrication of an aspheric geometric-phase lens doublet,” Proc. SPIE 10735, 1073513 (2018).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
[Crossref]

J. Kim, R. K. Komanduri, K. F. Lawler, D. J. Kekas, and M. J. Escuti, “Efficient and monolithic polarization conversion system based on a polarization grating,” Appl. Opt. 51(20), 4852–4857 (2012).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref]

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15(8), 589–594 (2007).
[Crossref]

E. Nicolescu and M. J. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
[Crossref]

M. J. Escuti and W. M. Jones, “39.4: Polarization-independent switching with high contrast from a liquid crystal polarization grating,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 37(1), 1443–1446 (2006).
[Crossref]

Fernández-Pousa, C. R.

Finnemeyer, V.

Fraher, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[Crossref]

Galstian, T.

Gao, K.

Gauza, S.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Ge, Z.

Glebov, L. B.

Gou, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Hao, W.

Hasman, E.

E. Hasman, Z. E. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Hisano, K.

K. Hisano, M. Ota, M. Aizawa, N. Akamatsu, C. J. Barrett, and A. Shishido, “Single-step creation of polarization gratings by scanning wave photopolymerization with unpolarized light,” J. Opt. Soc. Am. B 36(5), D112–D118 (2019).
[Crossref]

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

Hornburg, K. J.

K. J. Hornburg, X. Xiang, J. Kim, M. W. Kudenov, and M. J. Escuti, “Design and fabrication of an aspheric geometric-phase lens doublet,” Proc. SPIE 10735, 1073513 (2018).
[Crossref]

Hosting, L.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Hu, H.

Ikeda, T.

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-Type Polarization Gratings Formed in Thick Polymer Films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Ishiguro, M.

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-Type Polarization Gratings Formed in Thick Polymer Films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Ishizu, M.

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

Jones, R. C.

Jones, W. M.

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15(8), 589–594 (2007).
[Crossref]

M. J. Escuti and W. M. Jones, “39.4: Polarization-independent switching with high contrast from a liquid crystal polarization grating,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 37(1), 1443–1446 (2006).
[Crossref]

Kekas, D. J.

Kim, J.

K. J. Hornburg, X. Xiang, J. Kim, M. W. Kudenov, and M. J. Escuti, “Design and fabrication of an aspheric geometric-phase lens doublet,” Proc. SPIE 10735, 1073513 (2018).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

J. Kim, R. K. Komanduri, K. F. Lawler, D. J. Kekas, and M. J. Escuti, “Efficient and monolithic polarization conversion system based on a polarization grating,” Appl. Opt. 51(20), 4852–4857 (2012).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Kimball, B. R.

Kleiner, V.

E. Hasman, Z. E. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Komanduri, R. K.

J. Kim, R. K. Komanduri, K. F. Lawler, D. J. Kekas, and M. J. Escuti, “Efficient and monolithic polarization conversion system based on a polarization grating,” Appl. Opt. 51(20), 4852–4857 (2012).
[Crossref]

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15(8), 589–594 (2007).
[Crossref]

Kudenov, M. W.

K. J. Hornburg, X. Xiang, J. Kim, M. W. Kudenov, and M. J. Escuti, “Design and fabrication of an aspheric geometric-phase lens doublet,” Proc. SPIE 10735, 1073513 (2018).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

Kuittinen, M.

Kurata, Y.

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

Lawler, K. F.

Lee, J. H.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Lee, Y. H.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Li, X.

Li, Y.

Lin, B. Y.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Lin, X.

Liu, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Liu, S.

B. Y. Wei, S. Liu, P. Chen, S. X. Qi, and J. L. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Lu, Y.

Martinelli, M.

M. Martinelli and P. Vavassori, “A geometric (Pancharatnam) phase approach to the polarization and phase control in the coherent optics circuits,” Opt. Commun. 80(2), 166–176 (1990).
[Crossref]

McGinty, C.

Miskiewicz, M. N.

Moreno, I.

Nakano, W.

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

Nersisyan, S. R.

Nicolescu, E.

E. Nicolescu and M. J. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
[Crossref]

Nikolova, L.

Niv, A.

E. Hasman, Z. E. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Oh, C.

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33(20), 2287–2289 (2008).
[Crossref]

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15(8), 589–594 (2007).
[Crossref]

Ota, M.

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Payson, H.

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Peng, F.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Presnyakov, V.

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Qi, S. X.

B. Y. Wei, S. Liu, P. Chen, S. X. Qi, and J. L. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Roberts, B.

Roberts, D. E.

Rotar, V.

Sarkissian, H.

Sato, D.

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-Type Polarization Gratings Formed in Thick Polymer Films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Schaefer, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[Crossref]

Serak, S. V.

Serati, S.

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

Shishido, A.

K. Hisano, M. Ota, M. Aizawa, N. Akamatsu, C. J. Barrett, and A. Shishido, “Single-step creation of polarization gratings by scanning wave photopolymerization with unpolarized light,” J. Opt. Soc. Am. B 36(5), D112–D118 (2019).
[Crossref]

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

A. Shishido, “Rewritable Holograms Based on Azobenzene-containing Liquid-crystalline Polymers,” Polym. J. 42(7), 525–533 (2010).
[Crossref]

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-Type Polarization Gratings Formed in Thick Polymer Films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Smyth, R.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[Crossref]

Steeves, D. M.

Tabiryan, N. V.

Tan, G.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Tervo, J.

Todorov, T.

Tomova, N.

Turunen, J.

Vartiainen, I.

Vavassori, P.

M. Martinelli and P. Vavassori, “A geometric (Pancharatnam) phase approach to the polarization and phase control in the coherent optics circuits,” Opt. Commun. 80(2), 166–176 (1990).
[Crossref]

Vornehm, J.

Wei, B. Y.

B. Y. Wei, S. Liu, P. Chen, S. X. Qi, and J. L. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Wei, H.

Weng, Y.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref]

Y. Weng, D. Xu, Y. Zhang, X. Li, and S. T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[Crossref]

Wu, S. T.

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref]

Y. Weng, D. Xu, Y. Zhang, X. Li, and S. T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[Crossref]

Xiang, X.

K. J. Hornburg, X. Xiang, J. Kim, M. W. Kudenov, and M. J. Escuti, “Design and fabrication of an aspheric geometric-phase lens doublet,” Proc. SPIE 10735, 1073513 (2018).
[Crossref]

Xu, D.

Zeldovich, B. Y.

Zhan, T.

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Zhang, Y.

Zhao, J. L.

B. Y. Wei, S. Liu, P. Chen, S. X. Qi, and J. L. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

Am. J. Phys. (1)

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys. 75(2), 163–168 (2007).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

B. Y. Wei, S. Liu, P. Chen, S. X. Qi, and J. L. Zhao, “Vortex Airy beams directly generated via liquid crystal q-Airy-plates,” Appl. Phys. Lett. 112(12), 121101 (2018).
[Crossref]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89(12), 121105 (2006).
[Crossref]

Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. (1)

M. J. Escuti and W. M. Jones, “39.4: Polarization-independent switching with high contrast from a liquid crystal polarization grating,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 37(1), 1443–1446 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Cincotti, “Polarization gratings: design and applications,” IEEE J. Quantum Electron. 39(12), 1645–1652 (2003).
[Crossref]

J. Appl. Phys. (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

J. Mod. Opt. (1)

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Soc. Inf. Disp. (1)

R. K. Komanduri, W. M. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization gratings,” J. Soc. Inf. Disp. 15(8), 589–594 (2007).
[Crossref]

Langmuir (1)

M. Ishiguro, D. Sato, A. Shishido, and T. Ikeda, “Bragg-Type Polarization Gratings Formed in Thick Polymer Films Containing Azobenzene and Tolane Moieties,” Langmuir 23(1), 332–338 (2007).
[Crossref]

Light: Sci. Appl. (1)

H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, “Liquid crystal display and organic light-emitting diode display: present status and future perspectives,” Light: Sci. Appl. 7(3), 17168 (2018).
[Crossref]

Opt. Commun. (2)

M. Martinelli and P. Vavassori, “A geometric (Pancharatnam) phase approach to the polarization and phase control in the coherent optics circuits,” Opt. Commun. 80(2), 166–176 (1990).
[Crossref]

E. Hasman, Z. E. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Opt. Data Process. Storage (1)

Y. H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S. T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Opt. Express (8)

H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
[Crossref]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14(22), 10558–10564 (2006).
[Crossref]

I. Vartiainen, J. Tervo, J. Turunen, and M. Kuittinen, “Surface-relief polarization gratings for visible light,” Opt. Express 18(22), 22850–22858 (2010).
[Crossref]

M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014).
[Crossref]

W. Hao, H. Wei, H. Hu, X. Lin, Z. Ge, J. W. Choi, V. Chigrinov, and Y. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
[Crossref]

N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Y. Zeldovich, D. M. Steeves, and B. R. Kimball, “Broadband waveplate lenses,” Opt. Express 24(7), 7091–7102 (2016).
[Crossref]

Y. Weng, D. Xu, Y. Zhang, X. Li, and S. T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[Crossref]

K. Gao, C. McGinty, H. Payson, S. Berry, J. Vornehm, V. Finnemeyer, B. Roberts, and P. Bos, “High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design,” Opt. Express 25(6), 6283–6293 (2017).
[Crossref]

Opt. Lett. (4)

Optica (1)

Polym. J. (1)

A. Shishido, “Rewritable Holograms Based on Azobenzene-containing Liquid-crystalline Polymers,” Polym. J. 42(7), 525–533 (2010).
[Crossref]

Proc. SPIE (3)

E. Nicolescu and M. J. Escuti, “Polarization-independent tunable optical filters based on liquid crystal polarization gratings,” Proc. SPIE 6654, 665405 (2007).
[Crossref]

J. Kim, C. Oh, M. J. Escuti, L. Hosting, and S. Serati, “Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings,” Proc. SPIE 7093, 709302 (2008).
[Crossref]

K. J. Hornburg, X. Xiang, J. Kim, M. W. Kudenov, and M. J. Escuti, “Design and fabrication of an aspheric geometric-phase lens doublet,” Proc. SPIE 10735, 1073513 (2018).
[Crossref]

Sci. Adv. (1)

K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, and A. Shishido, “Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystal,” Sci. Adv. 3(11), e1701610 (2017).
[Crossref]

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Concept and simulation of an LCPG. (a) A schematic diagram of the LCPG in side-view and top-view. (b) A layout of FEM simulation space. The simulation space includes only one period of the LCPG.
Fig. 2.
Fig. 2. Stokes parameters in near-field of LCPGs with half-wave retardation with (a) RCP input; (b) LP input. The polarization-state distribution of near-field line on Poincaré Sphere with (c) RCP input; (d) LP input.
Fig. 3.
Fig. 3. A schematic diagram of the proposed LPG. (a) Top-view. (b) Side-view. First layer represents the LCPG with a thickness of half-wave retardation, and second layer signifies the CQWP with a thickness of quarter-wave retardation and a period half of the LCPG.
Fig. 4.
Fig. 4. The y component of the instantaneous E near-field in FEM simulation for the LPG with φ0=0: (a) 135° LP input and (b) 45° LP input.
Fig. 5.
Fig. 5. Diffraction properties of the LPG with φ0=0 as a function of the azimuth angle of linearly polarization input (Unit: rad).
Fig. 6.
Fig. 6. Illustrates the optional principle of polarization-state modulation and deflection angle of LPGs with φ0=0. (a) 135° LP input; (b) RCP input.
Fig. 7.
Fig. 7. The schematic experimental setup for measuring the diffraction efficiency.
Fig. 8.
Fig. 8. The micrographs of the LCPGs (one bright-dark fringe means one period). (a) half-wave and period Λ=30 um; (b) quarter-wave and period Λ=15 um.
Fig. 9.
Fig. 9. The diffraction patterns of LCPGs with: (a) half-wave retardation and LP input; (b) quarter-wave retardation and RCP input.
Fig. 10.
Fig. 10. The schematic diagram about LPGs. (a) the LCPG and the CQWP (the red script L is used to determine the relative position and direction) and (b) correct placement between the LCPG and the CQWP.
Fig. 11.
Fig. 11. The illustrations of (a) the azimuth β between the LCPG and the CQWP (b) the initial azimuth φ0 of liquid crystal molecules caused by the lateral displacement of the two gratings.
Fig. 12.
Fig. 12. The diffraction pattern when the azimuth β between the LCPG and the CQWP is β=180°.
Fig. 13.
Fig. 13. Diffraction efficiency as a function of the initial azimuth φ0 when the 45° LP input illuminates the LPG.
Fig. 14.
Fig. 14. Interference fringes observed when the periods of the LCPG and the CQWP are unmatched.
Fig. 15.
Fig. 15. The diffraction patterns of LPGs with (a) 45° LP input and (b) 135° LP input.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n ( x ) = { sin ( π x / π x Λ Λ ) , cos ( π x / π x Λ Λ ) , 0 }
T = R ( φ ) ( exp ( i Γ / i Γ 2 2 ) 0 0 exp ( i Γ / i Γ 2 2 ) ) R ( φ ) .
T = cos ( Γ / Γ 2 2 ) [ 1 0 0 1 ] + 1 2 sin ( Γ / Γ 2 2 ) ( exp ( i 2 φ ) [ i 1 1 i ] + exp ( i 2 φ ) [ i 1 1 i ] )
sin θ m = m λ / m λ Λ Λ .
T 1 = 1 2 ( exp ( i 2 φ ) [ i 1 1 i ] + exp ( i 2 φ ) [ i 1 1 i ] )
T 2 = 2 2 [ 1 0 0 1 ] + 2 4 ( exp ( i 2 φ ) [ i 1 1 i ] + exp ( i 2 φ ) [ i 1 1 i ] )
T t o t a l = T 2 T 1 = 1 2 ( exp ( i 2 φ ) [ 1 1 i i ] + exp ( i 2 φ ) [ 1 1 i i ] )
E o u t = 1 Λ 0 Λ T t o t a l E i n e i 2 π m x / i 2 π m x Λ Λ d x .
η ± 1 = 1 2 ( 1 ± S 2 ) .

Metrics