Abstract

A novel laser system for ro-vibrational spectroscopy using coherent anti-Stokes Raman Scattering in hybrid fs/ps regime is presented. A single Yb:KGW laser source is used as a master laser to generate the three CARS laser beams, namely the pump and Stokes femtosecond pulses and a 58 ps probe pulse. Master oscillator power amplifier (MOPA) architecture is implemented to increase the probe output power using a custom two stage free space linear amplifier. The probe is 0.37 cm−1 in width and 100 µJ in energy to allow resolving the Q-branch ro-vibrational lines of N2 and recording single shot CARS spectra at kHz repetition rate in flames. An original and simple technique based on the study of the influence of probe delay and polarization has been setup to optimize nonresonant background rejection, with no loss in resonant contribution. CARS performances are reported for N2 thermometry between 300 K and 3000 K, demonstrating state of the art precision.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interference-free hybrid fs/ps vibrational CARS thermometry in high-pressure flames

Hans U. Stauffer, K. Arafat Rahman, Mikhail N. Slipchenko, Sukesh Roy, James R. Gord, and Terrence R. Meyer
Opt. Lett. 43(20) 4911-4914 (2018)

Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry

Daniel R. Richardson, Hans U. Stauffer, Sukesh Roy, and James R. Gord
Appl. Opt. 56(11) E37-E49 (2017)

Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N2 thermometry

M. Scherman, M. Nafa, T. Schmid, A. Godard, A. Bresson, B. Attal-Tretout, and P. Joubert
Opt. Lett. 41(3) 488-491 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach Publishers, 1996).
  2. D. A. Long, Raman spectroscopy (McGraw-Hill International Book Company, 1977).
  3. S. A. J. Druet and J.-P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7(1), 1–72 (1981).
    [Crossref]
  4. F. El-Diasty, “Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy,” Vib. Spectrosc. 55(1), 1–37 (2011).
    [Crossref]
  5. J.-X. Cheng and X. S. Xie, Coherent Raman Scattering microscopy (CRC, Boca Raton, FL, 2013).
  6. M. Hofer, N. K. Balla, and S. Brasselet, “High-speed polarization-resolved coherent Raman scattering imaging,” Optica 4(7), 795–801 (2017).
    [Crossref]
  7. A. Lukic, S. Dochow, H. Bae, G. Matz, I. Latka, B. Messerschmidt, M. Schmitt, and J. Popp, “Endoscopic fiber probe for nonlinear spectroscopic imaging,” Optica 4(5), 496–501 (2017).
    [Crossref]
  8. A. D. Savvin, A. A. Lanin, A. A. Voronin, A. B. Fedotov, and A. M. Zheltikov, “Coherent anti-Stokes Raman metrology of phonons powered by photonic-crystal fibers,” Opt. Lett. 35(7), 919–921 (2010).
    [Crossref]
  9. S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
    [Crossref]
  10. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developpements and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
    [Crossref]
  11. F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent anti-stokes raman scattering,” Opt. Commun. 13(2), 169–174 (1975).
    [Crossref]
  12. D. Messina, B. Attal-Tretout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31(1), 825–832 (2007).
    [Crossref]
  13. W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D: Appl. Phys. 47(43), 433001 (2014).
    [Crossref]
  14. C. E. Dedic, T. R. Meyer, and J. B. Michael, “Single-shot ultrafast coherent anti-Stokes Raman scattering of vibrational/rotational nonequilibrium,” Optica 4(5), 563–570 (2017).
    [Crossref]
  15. A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26(10), 103001 (2017).
    [Crossref]
  16. A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50(6), 1367–1376 (2012).
    [Crossref]
  17. A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
    [Crossref]
  18. S. Roy, W. Kulatilaka, D. Richardson, R. Lucht, and J. R. Gord, “Gas phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
    [Crossref]
  19. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-stokes raman scattering for high speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
    [Crossref]
  20. W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One dimensional single shot thermometry in flames unsing femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
    [Crossref]
  21. J. D. Miller, M. N. Slipchenko, J. G. Mance, S. Roy, and J. R. Gord, “1-kHz two-dimensional coherent anti-Stokes Raman scattering (2D-CARS) for gas-phase thermometry,” Opt. Express 24(22), 24971–24979 (2016).
    [Crossref]
  22. S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
    [Crossref]
  23. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent antistokes raman scattering for ultrafast detection of molecular raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
    [Crossref]
  24. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
    [Crossref]
  25. A. Bohlin and C. Kliewer, “Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
    [Crossref]
  26. A. Bohlin and C. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
    [Crossref]
  27. H. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-stokes raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140(2), 024316 (2014).
    [Crossref]
  28. M. Nafa, M. Scherman, A. Bresson, A. Aubin, A. Godard, B. Attal-Tretout, and P. Joubert, “Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N2 thermometry,” Aerospace Lab12, (2016).
    [Crossref]
  29. W. Zinth, A. Laubereau, and W. Kaiser, “Time Resolved Observation of Resonant and Non-Resonant Contributions to the Nonlinear Susceptibility,” Opt. Commun. 26(3), 457–462 (1978).
    [Crossref]
  30. F. M. Kamga and M. G. Sceats, “Pulse-Sequenced Coherent Anti-Stokes Raman Scattering Spectroscopy: A Method for Suppression of the Nonresonant Background,” Opt. Lett. 5(3), 126–138 (1980).
    [Crossref]
  31. S. Roy, T. R. Meyer, and J. R. Gord, “Time resolved dynamics of resonant and nonresonant brodband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
    [Crossref]
  32. O. Katz, J. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express 18(22), 22693–22701 (2010).
    [Crossref]
  33. S. Konorov, M. Blades, and R. Turner, “Lorentzian amplitude and phase pulse shaping for nonresonant background suppression and enhanced spectral resolution in coherent anti-stokes raman scattering spectroscopy and microscopy,” Appl. Spectrosc. 64(7), 767–774 (2010).
    [Crossref]
  34. J. Miller, S. Roy, M. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
    [Crossref]
  35. H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
    [Crossref]
  36. S. P. Kearney, D. Scoglietti, and C. Kliewer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering temperature and concentration measurements using two different picosecond-duration probes,” Opt. Express 21(10), 12327–12339 (2013).
    [Crossref]
  37. M. Scherman, M. Nafa, T. Schmid, A. Godard, A. Bresson, B. Attal-Tretout, and P. Joubert, “Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N2 thermometry,” Opt. Lett. 41(3), 488–491 (2016).
    [Crossref]
  38. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format cars spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
    [Crossref]
  39. S. P. Kearney and D. J. Scoglietti, “Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe,” Opt. Lett. 38(6), 833–835 (2013).
    [Crossref]
  40. L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30(2), 249–252 (1979).
    [Crossref]
  41. F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40(11), 2517–2520 (2015).
    [Crossref]
  42. F. Lesaprre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, F. Druon, F. Balembois, and P. Georges, “Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique,” Opt. Lett. 41(7), 1628–1631 (2016).
    [Crossref]
  43. S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. C. Mance, T. R. Gord, and J. R. Meyer, “100-ps-pulse duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
    [Crossref]
  44. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for Combustion Diagnostics Using a Polarization Approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
    [Crossref]
  45. J. D. Miller, C. E. Dedic, and T. E. Meyer, “Vibrational Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering with Enhanced Temperature Sensitivity for Flame Thermometry from 300 to 2400 K,” J. Raman Spectrosc. 46(8), 702–707 (2015).
    [Crossref]
  46. D. Oron, N. Dudovitch, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
    [Crossref]
  47. S.-H. Lim, A. G. Caster, and S. R. Leone, “Single pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy (CARS),” Phys. Rev. A 72(4), 041803 (2005).
    [Crossref]
  48. S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
    [Crossref]
  49. R. P. Lucht, R. E. Palmer, and M. A. Maris, “Simultaneous acquisition of pure rotational and vibrational nitrogen spectra using three-laser coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 12(6), 386–388 (1987).
    [Crossref]
  50. L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30(2), 249–252 (1979).
    [Crossref]
  51. G. Hartung, J. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17(9), 2485–2493 (2006).
    [Crossref]
  52. D. R. Richardson, H. U. Stauffer, S. Roy, and J. R. Gord, “Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry,” Appl. Opt. 56(11), E37–E40 (2017).
    [Crossref]

2017 (5)

2016 (3)

2015 (4)

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40(11), 2517–2520 (2015).
[Crossref]

S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
[Crossref]

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

J. D. Miller, C. E. Dedic, and T. E. Meyer, “Vibrational Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering with Enhanced Temperature Sensitivity for Flame Thermometry from 300 to 2400 K,” J. Raman Spectrosc. 46(8), 702–707 (2015).
[Crossref]

2014 (4)

W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D: Appl. Phys. 47(43), 433001 (2014).
[Crossref]

A. Bohlin and C. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
[Crossref]

H. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-stokes raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140(2), 024316 (2014).
[Crossref]

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. C. Mance, T. R. Gord, and J. R. Meyer, “100-ps-pulse duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref]

2013 (3)

2012 (2)

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50(6), 1367–1376 (2012).
[Crossref]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[Crossref]

2011 (3)

2010 (6)

2009 (3)

2007 (3)

D. Messina, B. Attal-Tretout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31(1), 825–832 (2007).
[Crossref]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for Combustion Diagnostics Using a Polarization Approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[Crossref]

2006 (2)

G. Hartung, J. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17(9), 2485–2493 (2006).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent antistokes raman scattering for ultrafast detection of molecular raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref]

2005 (2)

S. Roy, T. R. Meyer, and J. R. Gord, “Time resolved dynamics of resonant and nonresonant brodband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[Crossref]

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy (CARS),” Phys. Rev. A 72(4), 041803 (2005).
[Crossref]

2003 (1)

D. Oron, N. Dudovitch, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref]

1987 (1)

1981 (1)

S. A. J. Druet and J.-P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7(1), 1–72 (1981).
[Crossref]

1980 (1)

1979 (2)

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

1978 (1)

W. Zinth, A. Laubereau, and W. Kaiser, “Time Resolved Observation of Resonant and Non-Resonant Contributions to the Nonlinear Susceptibility,” Opt. Commun. 26(3), 457–462 (1978).
[Crossref]

1975 (1)

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent anti-stokes raman scattering,” Opt. Commun. 13(2), 169–174 (1975).
[Crossref]

Abdou Ahmed, M.

Adamovich, I.

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26(10), 103001 (2017).
[Crossref]

Adamovich, I. V.

W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D: Appl. Phys. 47(43), 433001 (2014).
[Crossref]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50(6), 1367–1376 (2012).
[Crossref]

Afzelius, M.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for Combustion Diagnostics Using a Polarization Approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[Crossref]

Ariunbold, G. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Attal-Tretout, B.

M. Scherman, M. Nafa, T. Schmid, A. Godard, A. Bresson, B. Attal-Tretout, and P. Joubert, “Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N2 thermometry,” Opt. Lett. 41(3), 488–491 (2016).
[Crossref]

D. Messina, B. Attal-Tretout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31(1), 825–832 (2007).
[Crossref]

M. Nafa, M. Scherman, A. Bresson, A. Aubin, A. Godard, B. Attal-Tretout, and P. Joubert, “Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N2 thermometry,” Aerospace Lab12, (2016).
[Crossref]

Aubin, A.

M. Nafa, M. Scherman, A. Bresson, A. Aubin, A. Godard, B. Attal-Tretout, and P. Joubert, “Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N2 thermometry,” Aerospace Lab12, (2016).
[Crossref]

Bae, H.

Balembois, F.

Balla, N. K.

Baurle, R.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

Bengtsson, P.-E.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for Combustion Diagnostics Using a Polarization Approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[Crossref]

Blades, M.

Bohlin, A.

A. Bohlin and C. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
[Crossref]

A. Bohlin and C. Kliewer, “Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref]

Brasselet, S.

Bresson, A.

M. Scherman, M. Nafa, T. Schmid, A. Godard, A. Bresson, B. Attal-Tretout, and P. Joubert, “Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N2 thermometry,” Opt. Lett. 41(3), 488–491 (2016).
[Crossref]

M. Nafa, M. Scherman, A. Bresson, A. Aubin, A. Godard, B. Attal-Tretout, and P. Joubert, “Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N2 thermometry,” Aerospace Lab12, (2016).
[Crossref]

Cantu, L. M. L.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

Caster, A. G.

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy (CARS),” Phys. Rev. A 72(4), 041803 (2005).
[Crossref]

Cerullo, G.

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent antistokes raman scattering for ultrafast detection of molecular raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref]

Chen, L.-Q.

S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
[Crossref]

Chen, S.

S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
[Crossref]

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering microscopy (CRC, Boca Raton, FL, 2013).

Cutler, A. D.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

Danehy, P. M.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

Dantus, M.

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

Dedic, C. E.

C. E. Dedic, T. R. Meyer, and J. B. Michael, “Single-shot ultrafast coherent anti-Stokes Raman scattering of vibrational/rotational nonequilibrium,” Optica 4(5), 563–570 (2017).
[Crossref]

J. D. Miller, C. E. Dedic, and T. E. Meyer, “Vibrational Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering with Enhanced Temperature Sensitivity for Flame Thermometry from 300 to 2400 K,” J. Raman Spectrosc. 46(8), 702–707 (2015).
[Crossref]

Délen, X.

Didierjean, J.

Dochow, S.

Dogariu, A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Druet, S. A. J.

S. A. J. Druet and J.-P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7(1), 1–72 (1981).
[Crossref]

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent anti-stokes raman scattering,” Opt. Commun. 13(2), 169–174 (1975).
[Crossref]

Druon, F.

Dudovitch, N.

D. Oron, N. Dudovitch, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref]

Eckbreth, A. C.

A. C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach Publishers, 1996).

Eckerle, M.

El-Diasty, F.

F. El-Diasty, “Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy,” Vib. Spectrosc. 55(1), 1–37 (2011).
[Crossref]

Fedotov, A. B.

Gallo, E. C. A.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

Gambetta, A.

Georges, P.

Godard, A.

M. Scherman, M. Nafa, T. Schmid, A. Godard, A. Bresson, B. Attal-Tretout, and P. Joubert, “Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N2 thermometry,” Opt. Lett. 41(3), 488–491 (2016).
[Crossref]

M. Nafa, M. Scherman, A. Bresson, A. Aubin, A. Godard, B. Attal-Tretout, and P. Joubert, “Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N2 thermometry,” Aerospace Lab12, (2016).
[Crossref]

Gomes, J. T.

Gord, J. R.

D. R. Richardson, H. U. Stauffer, S. Roy, and J. R. Gord, “Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry,” Appl. Opt. 56(11), E37–E40 (2017).
[Crossref]

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26(10), 103001 (2017).
[Crossref]

J. D. Miller, M. N. Slipchenko, J. G. Mance, S. Roy, and J. R. Gord, “1-kHz two-dimensional coherent anti-Stokes Raman scattering (2D-CARS) for gas-phase thermometry,” Opt. Express 24(22), 24971–24979 (2016).
[Crossref]

S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
[Crossref]

H. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-stokes raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140(2), 024316 (2014).
[Crossref]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[Crossref]

J. Miller, S. Roy, M. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[Crossref]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One dimensional single shot thermometry in flames unsing femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[Crossref]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-stokes raman scattering for high speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developpements and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

S. Roy, W. Kulatilaka, D. Richardson, R. Lucht, and J. R. Gord, “Gas phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[Crossref]

S. Roy, T. R. Meyer, and J. R. Gord, “Time resolved dynamics of resonant and nonresonant brodband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[Crossref]

Gord, T. R.

Goyne, C.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

Graf, T.

Grinvald, E.

Grisch, F.

D. Messina, B. Attal-Tretout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31(1), 825–832 (2007).
[Crossref]

Hartung, G.

G. Hartung, J. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17(9), 2485–2493 (2006).
[Crossref]

Hofer, M.

Hsu, P. S.

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Hult, J.

G. Hartung, J. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17(9), 2485–2493 (2006).
[Crossref]

Jiang, N.

Jiang, S.

S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
[Crossref]

Joubert, P.

M. Scherman, M. Nafa, T. Schmid, A. Godard, A. Bresson, B. Attal-Tretout, and P. Joubert, “Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N2 thermometry,” Opt. Lett. 41(3), 488–491 (2016).
[Crossref]

M. Nafa, M. Scherman, A. Bresson, A. Aubin, A. Godard, B. Attal-Tretout, and P. Joubert, “Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N2 thermometry,” Aerospace Lab12, (2016).
[Crossref]

Kaiser, W.

W. Zinth, A. Laubereau, and W. Kaiser, “Time Resolved Observation of Resonant and Non-Resonant Contributions to the Nonlinear Susceptibility,” Opt. Commun. 26(3), 457–462 (1978).
[Crossref]

Kamga, F. M.

Kaminski, C. F.

G. Hartung, J. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17(9), 2485–2493 (2006).
[Crossref]

Katz, O.

Kearney, S. P.

Kliewer, C.

A. Bohlin and C. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
[Crossref]

A. Bohlin and C. Kliewer, “Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref]

S. P. Kearney, D. Scoglietti, and C. Kliewer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering temperature and concentration measurements using two different picosecond-duration probes,” Opt. Express 21(10), 12327–12339 (2013).
[Crossref]

Konorov, S.

Kulatilaka, W.

Kulatilaka, W. D.

Kumar, V.

Lanin, A. A.

Latka, I.

Laubereau, A.

W. Zinth, A. Laubereau, and W. Kaiser, “Time Resolved Observation of Resonant and Non-Resonant Contributions to the Nonlinear Susceptibility,” Opt. Commun. 26(3), 457–462 (1978).
[Crossref]

Lempert, W. R.

W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D: Appl. Phys. 47(43), 433001 (2014).
[Crossref]

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50(6), 1367–1376 (2012).
[Crossref]

Leone, S. R.

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy (CARS),” Phys. Rev. A 72(4), 041803 (2005).
[Crossref]

Lesaprre, F.

Lesparre, F.

Levitt, J.

Lim, S.-H.

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy (CARS),” Phys. Rev. A 72(4), 041803 (2005).
[Crossref]

Long, D. A.

D. A. Long, Raman spectroscopy (McGraw-Hill International Book Company, 1977).

Lucht, R.

Lucht, R. P.

Lukic, A.

Luo, X.-M.

S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
[Crossref]

Mance, J. C.

Mance, J. G.

Manzoni, C.

Marangoni, M.

Maris, M. A.

Martial, I.

Mattern, P. L.

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

Matz, G.

McDaniel, J.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

Messerschmidt, B.

Messina, D.

D. Messina, B. Attal-Tretout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31(1), 825–832 (2007).
[Crossref]

Meyer, J. R.

Meyer, T. E.

J. D. Miller, C. E. Dedic, and T. E. Meyer, “Vibrational Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering with Enhanced Temperature Sensitivity for Flame Thermometry from 300 to 2400 K,” J. Raman Spectrosc. 46(8), 702–707 (2015).
[Crossref]

Meyer, T. R.

C. E. Dedic, T. R. Meyer, and J. B. Michael, “Single-shot ultrafast coherent anti-Stokes Raman scattering of vibrational/rotational nonequilibrium,” Optica 4(5), 563–570 (2017).
[Crossref]

H. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-stokes raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140(2), 024316 (2014).
[Crossref]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[Crossref]

J. Miller, S. Roy, M. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-stokes raman scattering for high speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[Crossref]

S. Roy, T. R. Meyer, and J. R. Gord, “Time resolved dynamics of resonant and nonresonant brodband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[Crossref]

Michael, J. B.

Miller, J.

Miller, J. D.

J. D. Miller, M. N. Slipchenko, J. G. Mance, S. Roy, and J. R. Gord, “1-kHz two-dimensional coherent anti-Stokes Raman scattering (2D-CARS) for gas-phase thermometry,” Opt. Express 24(22), 24971–24979 (2016).
[Crossref]

J. D. Miller, C. E. Dedic, and T. E. Meyer, “Vibrational Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering with Enhanced Temperature Sensitivity for Flame Thermometry from 300 to 2400 K,” J. Raman Spectrosc. 46(8), 702–707 (2015).
[Crossref]

H. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-stokes raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140(2), 024316 (2014).
[Crossref]

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. C. Mance, T. R. Gord, and J. R. Meyer, “100-ps-pulse duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-stokes raman scattering for high speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[Crossref]

Montello, A.

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50(6), 1367–1376 (2012).
[Crossref]

Moya, F.

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent anti-stokes raman scattering,” Opt. Commun. 13(2), 169–174 (1975).
[Crossref]

Murawski, R. K.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Nafa, M.

M. Scherman, M. Nafa, T. Schmid, A. Godard, A. Bresson, B. Attal-Tretout, and P. Joubert, “Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N2 thermometry,” Opt. Lett. 41(3), 488–491 (2016).
[Crossref]

M. Nafa, M. Scherman, A. Bresson, A. Aubin, A. Godard, B. Attal-Tretout, and P. Joubert, “Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N2 thermometry,” Aerospace Lab12, (2016).
[Crossref]

Ning, B.

S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
[Crossref]

Nishihara, M.

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50(6), 1367–1376 (2012).
[Crossref]

Oron, D.

D. Oron, N. Dudovitch, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref]

Pallmann, W.

Palmer, R. E.

Pan, J.-W.

S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
[Crossref]

Patnaik, A. K.

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26(10), 103001 (2017).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developpements and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Pestov, D.

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Popp, J.

Prince, B. D.

H. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-stokes raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140(2), 024316 (2014).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent antistokes raman scattering for ultrafast detection of molecular raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent antistokes raman scattering for ultrafast detection of molecular raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref]

Rahn, L. A.

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

Ramponi, R.

Resan, B.

Rich, J. W.

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50(6), 1367–1376 (2012).
[Crossref]

Richardson, D.

Richardson, D. R.

Rockwell, R.

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Roy, S.

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26(10), 103001 (2017).
[Crossref]

D. R. Richardson, H. U. Stauffer, S. Roy, and J. R. Gord, “Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry,” Appl. Opt. 56(11), E37–E40 (2017).
[Crossref]

J. D. Miller, M. N. Slipchenko, J. G. Mance, S. Roy, and J. R. Gord, “1-kHz two-dimensional coherent anti-Stokes Raman scattering (2D-CARS) for gas-phase thermometry,” Opt. Express 24(22), 24971–24979 (2016).
[Crossref]

S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
[Crossref]

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. C. Mance, T. R. Gord, and J. R. Meyer, “100-ps-pulse duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref]

H. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-stokes raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140(2), 024316 (2014).
[Crossref]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[Crossref]

J. Miller, S. Roy, M. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express 19(16), 15627–15640 (2011).
[Crossref]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One dimensional single shot thermometry in flames unsing femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[Crossref]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developpements and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

S. Roy, W. Kulatilaka, D. Richardson, R. Lucht, and J. R. Gord, “Gas phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[Crossref]

S. Roy, T. R. Meyer, and J. R. Gord, “Time resolved dynamics of resonant and nonresonant brodband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[Crossref]

Sautenkov, V. A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Savvin, A. D.

Sceats, M. G.

Scherman, M.

M. Scherman, M. Nafa, T. Schmid, A. Godard, A. Bresson, B. Attal-Tretout, and P. Joubert, “Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N2 thermometry,” Opt. Lett. 41(3), 488–491 (2016).
[Crossref]

M. Nafa, M. Scherman, A. Bresson, A. Aubin, A. Godard, B. Attal-Tretout, and P. Joubert, “Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N2 thermometry,” Aerospace Lab12, (2016).
[Crossref]

Schmid, T.

Schmitt, M.

Scoglietti, D.

Scoglietti, D. J.

Scully, M. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Silberberg, Y.

O. Katz, J. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express 18(22), 22693–22701 (2010).
[Crossref]

D. Oron, N. Dudovitch, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref]

Slipchenko, M.

Slipchenko, M. N.

Sokolov, A. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Stauffer, H.

H. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-stokes raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140(2), 024316 (2014).
[Crossref]

Stauffer, H. U.

D. R. Richardson, H. U. Stauffer, S. Roy, and J. R. Gord, “Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry,” Appl. Opt. 56(11), E37–E40 (2017).
[Crossref]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[Crossref]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One dimensional single shot thermometry in flames unsing femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-stokes raman scattering for high speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent antistokes raman scattering for ultrafast detection of molecular raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref]

Taran, J. P. E.

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent anti-stokes raman scattering,” Opt. Commun. 13(2), 169–174 (1975).
[Crossref]

Taran, J.-P. E.

S. A. J. Druet and J.-P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7(1), 1–72 (1981).
[Crossref]

Turner, R.

Vestin, F.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for Combustion Diagnostics Using a Polarization Approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[Crossref]

Voronin, A. A.

Wang, J.-Y.

S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
[Crossref]

Wang, X.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Wrzesinski, P. J.

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

Xie, X. S.

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering microscopy (CRC, Boca Raton, FL, 2013).

Zheltikov, A. M.

Zhi, M. C.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Zhong, Z.-P.

S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
[Crossref]

Zinth, W.

W. Zinth, A. Laubereau, and W. Kaiser, “Time Resolved Observation of Resonant and Non-Resonant Contributions to the Nonlinear Susceptibility,” Opt. Commun. 26(3), 457–462 (1978).
[Crossref]

Zych, L. J.

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

AIAA J. (2)

A. Montello, M. Nishihara, J. W. Rich, I. V. Adamovich, and W. R. Lempert, “Nitrogen vibrational population measurements in the plenum of a hypersonic wind tunnel,” AIAA J. 50(6), 1367–1376 (2012).
[Crossref]

A. D. Cutler, L. M. L. Cantu, E. C. A. Gallo, R. Baurle, P. M. Danehy, R. Rockwell, C. Goyne, and J. McDaniel, “Nonequilibrium supersonic freestream studied using coherent anti-Stokes Raman spectroscopy,” AIAA J. 53(9), 2762–2770 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Roy, T. R. Meyer, and J. R. Gord, “Time resolved dynamics of resonant and nonresonant brodband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87(26), 264103 (2005).
[Crossref]

A. Bohlin and C. Kliewer, “Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging,” Appl. Phys. Lett. 104(3), 031107 (2014).
[Crossref]

Appl. Spectrosc. (1)

J. Chem. Phys. (4)

H. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, “Time- and frequency-dependent model of time-resolved coherent anti-stokes raman scattering (CARS) with a picosecond-duration probe pulse,” J. Chem. Phys. 140(2), 024316 (2014).
[Crossref]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent antistokes raman scattering for ultrafast detection of molecular raman spectra,” J. Chem. Phys. 125(4), 044502 (2006).
[Crossref]

A. Bohlin and C. Kliewer, “Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot,” J. Chem. Phys. 138(22), 221101 (2013).
[Crossref]

H. U. Stauffer, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Hybrid femtosecond/picosecond rotational coherent anti-stokes raman scattering thermometry using a narrowband time-asymmetric probe pulse,” J. Chem. Phys. 136(11), 111101 (2012).
[Crossref]

J. Phys. D: Appl. Phys. (1)

W. R. Lempert and I. V. Adamovich, “Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows,” J. Phys. D: Appl. Phys. 47(43), 433001 (2014).
[Crossref]

J. Raman Spectrosc. (2)

J. D. Miller, C. E. Dedic, and T. E. Meyer, “Vibrational Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering with Enhanced Temperature Sensitivity for Flame Thermometry from 300 to 2400 K,” J. Raman Spectrosc. 46(8), 702–707 (2015).
[Crossref]

S. Roy, P. J. Wrzesinski, D. Pestov, M. Dantus, and J. R. Gord, “Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum,” J. Raman Spectrosc. 41(10), 1194–1199 (2010).
[Crossref]

Meas. Sci. Technol. (1)

G. Hartung, J. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17(9), 2485–2493 (2006).
[Crossref]

Opt. Commun. (4)

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background-free CARS studies of carbon monoxide in a flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

L. A. Rahn, L. J. Zych, and P. L. Mattern, “Background Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30(2), 249–252 (1979).
[Crossref]

W. Zinth, A. Laubereau, and W. Kaiser, “Time Resolved Observation of Resonant and Non-Resonant Contributions to the Nonlinear Susceptibility,” Opt. Commun. 26(3), 457–462 (1978).
[Crossref]

F. Moya, S. A. J. Druet, and J. P. E. Taran, “Gas spectroscopy and temperature measurement by coherent anti-stokes raman scattering,” Opt. Commun. 13(2), 169–174 (1975).
[Crossref]

Opt. Express (4)

Opt. Lett. (13)

S. Roy, J. D. Miller, M. N. Slipchenko, P. S. Hsu, J. C. Mance, T. R. Gord, and J. R. Meyer, “100-ps-pulse duration, 100-J burst-mode laser for kHz-MHz flow diagnostics,” Opt. Lett. 39(22), 6462–6465 (2014).
[Crossref]

F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, M. Eckerle, T. Graf, M. Abdou Ahmed, F. Druon, F. Balembois, and P. Georges, “High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization,” Opt. Lett. 40(11), 2517–2520 (2015).
[Crossref]

S. Roy, P. S. Hsu, N. Jiang, M. N. Slipchenko, and J. R. Gord, “100-kHz-rate gas-phase thermometry using 100-ps pulses from a burst-mode laser,” Opt. Lett. 40(21), 5125–5128 (2015).
[Crossref]

M. Scherman, M. Nafa, T. Schmid, A. Godard, A. Bresson, B. Attal-Tretout, and P. Joubert, “Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N2 thermometry,” Opt. Lett. 41(3), 488–491 (2016).
[Crossref]

F. Lesaprre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, W. Pallmann, B. Resan, F. Druon, F. Balembois, and P. Georges, “Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique,” Opt. Lett. 41(7), 1628–1631 (2016).
[Crossref]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-stokes raman scattering for high speed gas-phase thermometry,” Opt. Lett. 35(14), 2430–2432 (2010).
[Crossref]

W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One dimensional single shot thermometry in flames unsing femtosecond-CARS line imaging,” Opt. Lett. 36(21), 4182–4184 (2011).
[Crossref]

S. P. Kearney and D. J. Scoglietti, “Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering at flame temperatures using a second-harmonic bandwidth-compressed probe,” Opt. Lett. 38(6), 833–835 (2013).
[Crossref]

F. M. Kamga and M. G. Sceats, “Pulse-Sequenced Coherent Anti-Stokes Raman Scattering Spectroscopy: A Method for Suppression of the Nonresonant Background,” Opt. Lett. 5(3), 126–138 (1980).
[Crossref]

R. P. Lucht, R. E. Palmer, and M. A. Maris, “Simultaneous acquisition of pure rotational and vibrational nitrogen spectra using three-laser coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 12(6), 386–388 (1987).
[Crossref]

M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format cars spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
[Crossref]

S. Roy, W. Kulatilaka, D. Richardson, R. Lucht, and J. R. Gord, “Gas phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett. 34(24), 3857–3859 (2009).
[Crossref]

A. D. Savvin, A. A. Lanin, A. A. Voronin, A. B. Fedotov, and A. M. Zheltikov, “Coherent anti-Stokes Raman metrology of phonons powered by photonic-crystal fibers,” Opt. Lett. 35(7), 919–921 (2010).
[Crossref]

Optica (3)

Phys. Rev. A (2)

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy (CARS),” Phys. Rev. A 72(4), 041803 (2005).
[Crossref]

S. Jiang, X.-M. Luo, L.-Q. Chen, B. Ning, S. Chen, J.-Y. Wang, Z.-P. Zhong, and J.-W. Pan, “Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated 87Rb vapor cell,” Phys. Rev. A 80(6), 062303 (2009).
[Crossref]

Phys. Rev. Lett. (1)

D. Oron, N. Dudovitch, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[Crossref]

Plasma Sources Sci. Technol. (1)

A. K. Patnaik, I. Adamovich, J. R. Gord, and S. Roy, “Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames,” Plasma Sources Sci. Technol. 26(10), 103001 (2017).
[Crossref]

Proc. Combust. Inst. (2)

D. Messina, B. Attal-Tretout, and F. Grisch, “Study of a non-equilibrium pulsed nanosecond discharge at atmospheric pressure using coherent anti-Stokes Raman scattering,” Proc. Combust. Inst. 31(1), 825–832 (2007).
[Crossref]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for Combustion Diagnostics Using a Polarization Approach,” Proc. Combust. Inst. 31(1), 833–840 (2007).
[Crossref]

Prog. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developpements and applications in reacting flows,” Prog. Energy Combust. Sci. 36(2), 280–306 (2010).
[Crossref]

Prog. Quantum Electron. (1)

S. A. J. Druet and J.-P. E. Taran, “CARS spectroscopy,” Prog. Quantum Electron. 7(1), 1–72 (1981).
[Crossref]

Science (1)

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref]

Vib. Spectrosc. (1)

F. El-Diasty, “Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy,” Vib. Spectrosc. 55(1), 1–37 (2011).
[Crossref]

Other (4)

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering microscopy (CRC, Boca Raton, FL, 2013).

A. C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach Publishers, 1996).

D. A. Long, Raman spectroscopy (McGraw-Hill International Book Company, 1977).

M. Nafa, M. Scherman, A. Bresson, A. Aubin, A. Godard, B. Attal-Tretout, and P. Joubert, “Ro-vibrational spectroscopy in hybrid fs/ps-CARS for N2 thermometry,” Aerospace Lab12, (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. CARS process in fs/ps hybrid regime. (a) Illustration of the ro-vibrational structure $({\nu ,J} )$ of a diatomic molecule and of the vibrations involved in the Q-branch, thus fulfilling the selection rules $\{{\Delta \nu = 1,\Delta J = 0} \}$. (b) Broadband excitation of the ro-vibrational coherences by the pump and Stokes femtosecond laser pulses. (c) Probing of the coherences by the probe picosecond laser pulse and generation of the anti-Stokes signal. (d) Time sequence of the pump, Stokes and probe pulses. (e) Energy level scheme of the unfolded four photon interaction that generates nonresonant background.
Fig. 2.
Fig. 2. Experimental setup: Yb:KGW Pharos Laser, regenerative amplifier (Pharos, LightConversion); OPA Orpheus: optical parametric amplifier (Orpheus, LightConversion); SHG Lyra, second-harmonic generation (Lyra, LightConversion); FPE, Fabry-Perot etalon (Melles Griot); VBG, volume Bragg grating (OptiGrate); Yb:YAG, amplifier, amplification module (Fibercryst); SHG, second-harmonic generation (LBO crystal, 40% conversion efficiency); MTS, motorized translation stage; IF, interferential filter; CCD, charge coupled device (Roper).
Fig. 3.
Fig. 3. (a) Temporal and (b) spectral (Fourier Transform) characterization of the probe pulse measured by scanning the pump-probe delay $\tau $ over 300 ps and recording nonresonant CARS signal of argon.
Fig. 4.
Fig. 4. Typical single shot N2 CARS spectra acquired for zero probe delay in ambient air (blue line, $\left\langle T \right\rangle = 295\;\textrm{K}$), CH4/air flame (green line, $\left\langle T \right\rangle = 2149\;\textrm{K}$), O2/C2H2 flame (red line, $\left\langle T \right\rangle = 2890\;\textrm{K}$). Typical NR argon spectrum is also plotted (grey dotted line) for comparison.
Fig. 5.
Fig. 5. Spectra recorded in parallel-configuration when the pump-probe delay $\tau $ is scanned over 350 ps using a motorized delay line.
Fig. 6.
Fig. 6. CARS spectra measured in CH4/air flame for parallel and crossed polarization at (a) zero and (b) 50 ps probe delay. The amplitudes are not normalized (y-scale is given in CCD counts).
Fig. 7.
Fig. 7. Influence of the probe delay on the N2 CARS spectrum measured in a CH4/air flame. Evolution of the CARS spectrum (colormap in logarithmic scale) in the 2250-2450 cm−1 range over 350 ps probe delay range in case of N2 for (a) parallel and (b) crossed polarizations and (c) Ar for parallel polarization. A multiplication factor is applied on Ar CARS spectra to make the amplitude fit with the one of N2 one. (d) Evolution of one single rotational line CARS amplitude versus the probe delay (logarithmic scale).
Fig. 8.
Fig. 8. CARS thermometry measurements in ambient air ($\left\langle T \right\rangle = 307\;\textrm{K}$), CH4/air flame $\left\langle T \right\rangle = 2044\;\textrm{K}$) and C2H2/O2 flame ($\left\langle T \right\rangle = 2857\;\textrm{K}$). (a) CH4/air flame for parallel polarization at zero probe delay. (b) CH4/air flame for parallel polarization at 50 ps probe delay. (c) CH4/air flame for crossed polarization at zero probe delay. (d) Ambient air for parallel polarization and zero probe delay. (e) C2H2/O2 torch for parallel polarization and zero probe delay. Blue line: experimental data; green line: best-fit theoretical spectra; red line: residuals. (f) Histograms of best-fit temperature from a set of 900 single laser-shot spectra. The mean values $\left\langle T \right\rangle $ are calculated over this set of measurements.

Tables (1)

Tables Icon

Table 1. Measured accuracies and precisionsa.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A(ν,J)Δρ(ν,J,T)σeff(ν,J)Qint(T),
ρ(ν,J,T)=(2J+1)g(J)ehckTE(ν,J),
ICARS(ω)|χR(3)(ω)+χNR|2.
ICARS(ω)|χ(ω)Sprobe(ω)eiωτ|2.

Metrics