Abstract

Absorbers have potential applications in the stealth field. However, limited bandwidth and low absorption rate persist in existing methods. Moreover, absorbers working in the low frequency range (1–4 GHz) with small size are much more difficult to realize. In this paper, we propose a novel absorption structure, which combines indium tin oxide film and metal resonator. The former realizes impedance matching with free space in a broad bandwidth at moderate frequency range while the latter shows the resonant property at low frequency. Based on this absorption structure, we design the zigzag-shaped structure to realize high-efficiency and ultra-broadband absorption. To demonstrate the feasibility of our method, we fabricate a sample and perform measurements. The measurement results show that our sample can achieve ultra-broadband absorption with high-efficiency of over 90% from 1 GHz to 18 GHz, which is in good agreement with simulation results. Our findings provide a valuable technique for broadband device design, which could bring about a wide range of applications in cloaking technology.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transparent transmission-selective radar-infrared bi-stealth structure

Shuomin Zhong, Lijie Wu, Taijun Liu, Jifu Huang, Wei Jiang, and Yungui Ma
Opt. Express 26(13) 16466-16476 (2018)

Ultra-broadband and tunable saline water-based absorber in microwave regime

Han Xiong and Fan Yang
Opt. Express 28(4) 5306-5316 (2020)

High-performance and broadband chirality-dependent absorber based on planar spiral metasurface

Canyu Wang, Jiangang Liang, Yu Xiao, Tong Cai, Haisheng Hou, and Haipeng Li
Opt. Express 27(10) 14942-14950 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Johansson, C. Holloway, and E. Kuester, “Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers,” IEEE Trans. Antennas Propag. 53(2), 728–736 (2005).
    [Crossref]
  2. T. Deng, Y. Yu, Z. Shen, and Z. Chen, “Design of 3-D multilayer ferrite-loaded frequency-selective rasorbers with wide absorption bands,” IEEE Trans. Microwave Theory Tech. 67(1), 108–117 (2019).
    [Crossref]
  3. Z. Wang, Z. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
    [Crossref]
  4. M. Chen, M. Kim, A. M. Wong, and G. V Elefteriades, “Huygens’ metasurfaces from microwaves to optics,” Nanophotonics 7(6), 1207–1231 (2018).
    [Crossref]
  5. A. Epstetin and G. V Eleftheriades, “Huygens’ metasurfaces via the equivalence principle: design and applications,” J. Opt. Soc. Am. B 33(2), A31–A35 (2016).
    [Crossref]
  6. T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antennas Propag. 65(7), 3598–3606 (2017).
    [Crossref]
  7. L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
    [Crossref]
  8. T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
    [Crossref]
  9. M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
    [Crossref]
  10. T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
    [Crossref]
  11. H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase-and-amplitude-control metasurfaces for antenna main-lobe and side-lobe manipulations,” IEEE Trans. Antennas Propag. 66(10), 5121–5129 (2018).
    [Crossref]
  12. Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
    [Crossref]
  13. H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metasdevice with amplitude-and-phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
    [Crossref]
  14. F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577 (2018).
    [Crossref]
  15. J. Deng, Z. Li, G. Zheng, J. Tao, Q. Dai, L. Deng, P. He, Q. Deng, and Q. Mao, “Depth perception based 3D holograms enabled with polarization-independent metasurfaces,” Opt. Express 26(9), 11843 (2018).
    [Crossref]
  16. L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
    [Crossref]
  17. J. Schalch, G. Duan, X. Zhao, Z. Xin, and R. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
    [Crossref]
  18. J. Suen, K. Fan, and W. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7(8), 1801632 (2019).
    [Crossref]
  19. M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
    [Crossref]
  20. M. H. Luo, S. Shen, L. Zhou, S. L. Wu, Y. Zhou, and L. S. Chen, “Broadband wide-angle and polarization independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
    [Crossref]
  21. T. T. Nguyen and S. J. Lim, “Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
    [Crossref]
  22. D. J. Lee, H. J. Jeong, and S. J. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
    [Crossref]
  23. T. T. Nguyen and S. J. Lim, “Bandwidth-enhanced and wide angle-of-incidence metamaterial absorber using a hybrid unit cell,” Sci. Rep. 7(1), 14814 (2017).
    [Crossref]
  24. Y. Zhuang, G. Wang, Q. Zhang, and C. Zhou, “Low-Scattering Tri-Band Metasurface using Combination of Diffusion, Absorption and Cancellation,” IEEE Access 6, 17306–17312 (2018).
    [Crossref]
  25. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref]
  26. F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  27. N. T. Q. Hoa, T. S. Tuan, L. T. Hieu, and B. L. Giang, “Facile design of an ultra-thin broadband metamaterial absorber for C-band applications,” Sci. Rep. 9(1), 468 (2019).
    [Crossref]
  28. Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
    [Crossref]
  29. D. Kundu, A. Mohan, and A. Chakrabarty, “Single-layer wideband microwave absorber using array of crossed dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
    [Crossref]
  30. Z. H. Zhou, K. Chen, J. M. Zhao, P. Chen, T. Jiang, B. Zhu, Y. J. Feng, and Y. Li, “Metasurface Salisbury screen: achieving ultra-wideband microwave absorption,” Opt. Express 25(24), 30241 (2017).
    [Crossref]
  31. A. D. Khan and M. Amin, “Tunable Salisbury screen absorber using square lattice of plasmonic nanodisk,” Plasmonics 12(2), 257–262 (2017).
    [Crossref]
  32. J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
    [Crossref]
  33. Z. G. Dong and M. X. Xu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
    [Crossref]
  34. C. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
    [Crossref]
  35. H. A. Wheeler, “Simple relations derived from a phased-array antenna made of an infinite current sheet,” IEEE Trans. Antennas Propag. 13(4), 506–514 (1965).
    [Crossref]
  36. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
    [Crossref]
  37. W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
    [Crossref]
  38. Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
    [Crossref]
  39. K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000).
    [Crossref]

2019 (6)

T. Deng, Y. Yu, Z. Shen, and Z. Chen, “Design of 3-D multilayer ferrite-loaded frequency-selective rasorbers with wide absorption bands,” IEEE Trans. Microwave Theory Tech. 67(1), 108–117 (2019).
[Crossref]

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metasdevice with amplitude-and-phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

J. Suen, K. Fan, and W. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7(8), 1801632 (2019).
[Crossref]

N. T. Q. Hoa, T. S. Tuan, L. T. Hieu, and B. L. Giang, “Facile design of an ultra-thin broadband metamaterial absorber for C-band applications,” Sci. Rep. 9(1), 468 (2019).
[Crossref]

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

2018 (12)

W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
[Crossref]

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref]

Y. Zhuang, G. Wang, Q. Zhang, and C. Zhou, “Low-Scattering Tri-Band Metasurface using Combination of Diffusion, Absorption and Cancellation,” IEEE Access 6, 17306–17312 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, Z. Xin, and R. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577 (2018).
[Crossref]

J. Deng, Z. Li, G. Zheng, J. Tao, Q. Dai, L. Deng, P. He, Q. Deng, and Q. Mao, “Depth perception based 3D holograms enabled with polarization-independent metasurfaces,” Opt. Express 26(9), 11843 (2018).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase-and-amplitude-control metasurfaces for antenna main-lobe and side-lobe manipulations,” IEEE Trans. Antennas Propag. 66(10), 5121–5129 (2018).
[Crossref]

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
[Crossref]

Z. Wang, Z. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

M. Chen, M. Kim, A. M. Wong, and G. V Elefteriades, “Huygens’ metasurfaces from microwaves to optics,” Nanophotonics 7(6), 1207–1231 (2018).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

2017 (11)

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antennas Propag. 65(7), 3598–3606 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

M. H. Luo, S. Shen, L. Zhou, S. L. Wu, Y. Zhou, and L. S. Chen, “Broadband wide-angle and polarization independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref]

T. T. Nguyen and S. J. Lim, “Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
[Crossref]

D. J. Lee, H. J. Jeong, and S. J. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref]

T. T. Nguyen and S. J. Lim, “Bandwidth-enhanced and wide angle-of-incidence metamaterial absorber using a hybrid unit cell,” Sci. Rep. 7(1), 14814 (2017).
[Crossref]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Z. H. Zhou, K. Chen, J. M. Zhao, P. Chen, T. Jiang, B. Zhu, Y. J. Feng, and Y. Li, “Metasurface Salisbury screen: achieving ultra-wideband microwave absorption,” Opt. Express 25(24), 30241 (2017).
[Crossref]

A. D. Khan and M. Amin, “Tunable Salisbury screen absorber using square lattice of plasmonic nanodisk,” Plasmonics 12(2), 257–262 (2017).
[Crossref]

2016 (2)

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-layer wideband microwave absorber using array of crossed dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

A. Epstetin and G. V Eleftheriades, “Huygens’ metasurfaces via the equivalence principle: design and applications,” J. Opt. Soc. Am. B 33(2), A31–A35 (2016).
[Crossref]

2012 (1)

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Z. G. Dong and M. X. Xu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[Crossref]

2005 (2)

M. Johansson, C. Holloway, and E. Kuester, “Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers,” IEEE Trans. Antennas Propag. 53(2), 728–736 (2005).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

2002 (1)

C. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

2000 (1)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000).
[Crossref]

1965 (1)

H. A. Wheeler, “Simple relations derived from a phased-array antenna made of an infinite current sheet,” IEEE Trans. Antennas Propag. 13(4), 506–514 (1965).
[Crossref]

Amin, M.

A. D. Khan and M. Amin, “Tunable Salisbury screen absorber using square lattice of plasmonic nanodisk,” Plasmonics 12(2), 257–262 (2017).
[Crossref]

An, S.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Averitt, R.

J. Schalch, G. Duan, X. Zhao, Z. Xin, and R. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Cai, T.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metasdevice with amplitude-and-phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase-and-amplitude-control metasurfaces for antenna main-lobe and side-lobe manipulations,” IEEE Trans. Antennas Propag. 66(10), 5121–5129 (2018).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antennas Propag. 65(7), 3598–3606 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Chakrabarty, A.

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-layer wideband microwave absorber using array of crossed dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

Chen, K.

Chen, L. S.

Chen, M.

M. Chen, M. Kim, A. M. Wong, and G. V Elefteriades, “Huygens’ metasurfaces from microwaves to optics,” Nanophotonics 7(6), 1207–1231 (2018).
[Crossref]

Chen, P.

Chen, X. F.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Chen, Z.

T. Deng, Y. Yu, Z. Shen, and Z. Chen, “Design of 3-D multilayer ferrite-loaded frequency-selective rasorbers with wide absorption bands,” IEEE Trans. Microwave Theory Tech. 67(1), 108–117 (2019).
[Crossref]

Cheng, P.

Z. Wang, Z. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Cheng, Q.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

Cui, T. J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Cui, Y. X.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Dai, Q.

Deng, J.

Deng, L.

J. Deng, Z. Li, G. Zheng, J. Tao, Q. Dai, L. Deng, P. He, Q. Deng, and Q. Mao, “Depth perception based 3D holograms enabled with polarization-independent metasurfaces,” Opt. Express 26(9), 11843 (2018).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Deng, Q.

Deng, T.

T. Deng, Y. Yu, Z. Shen, and Z. Chen, “Design of 3-D multilayer ferrite-loaded frequency-selective rasorbers with wide absorption bands,” IEEE Trans. Microwave Theory Tech. 67(1), 108–117 (2019).
[Crossref]

Ding, F.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ding, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Dong, Z. G.

Z. G. Dong and M. X. Xu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[Crossref]

Du, Q.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Duan, G.

J. Schalch, G. Duan, X. Zhao, Z. Xin, and R. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Duan, J. W.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Elefteriades, G. V

M. Chen, M. Kim, A. M. Wong, and G. V Elefteriades, “Huygens’ metasurfaces from microwaves to optics,” Nanophotonics 7(6), 1207–1231 (2018).
[Crossref]

Eleftheriades, G. V

Epstetin, A.

Fan, K.

J. Suen, K. Fan, and W. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7(8), 1801632 (2019).
[Crossref]

Fan, Y.

W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
[Crossref]

Fang, Z.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Feng, M. D.

W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
[Crossref]

Feng, Y. J.

Gao, X. J.

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase-and-amplitude-control metasurfaces for antenna main-lobe and side-lobe manipulations,” IEEE Trans. Antennas Propag. 66(10), 5121–5129 (2018).
[Crossref]

Ge, X. C.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Giang, B. L.

N. T. Q. Hoa, T. S. Tuan, L. T. Hieu, and B. L. Giang, “Facile design of an ultra-thin broadband metamaterial absorber for C-band applications,” Sci. Rep. 9(1), 468 (2019).
[Crossref]

Granqvist, C.

C. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Gu, T.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Guan, F. X.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Guo, H. J.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Guo, J. P.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
[Crossref]

Guo, W. L.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metasdevice with amplitude-and-phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

Guo, Y. H.

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

He, P.

He, Q.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

He, S.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Hieu, L. T.

N. T. Q. Hoa, T. S. Tuan, L. T. Hieu, and B. L. Giang, “Facile design of an ultra-thin broadband metamaterial absorber for C-band applications,” Sci. Rep. 9(1), 468 (2019).
[Crossref]

Hoa, N. T. Q.

N. T. Q. Hoa, T. S. Tuan, L. T. Hieu, and B. L. Giang, “Facile design of an ultra-thin broadband metamaterial absorber for C-band applications,” Sci. Rep. 9(1), 468 (2019).
[Crossref]

Holloway, C.

M. Johansson, C. Holloway, and E. Kuester, “Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers,” IEEE Trans. Antennas Propag. 53(2), 728–736 (2005).
[Crossref]

Hou, H. S.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metasdevice with amplitude-and-phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

Hu, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Huang, Y. J.

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Hultaker, A.

C. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Hwang, J. S.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Jeong, H. J.

D. J. Lee, H. J. Jeong, and S. J. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref]

Ji, W.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Jia, M.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

Jiang, M. H.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Jiang, T.

Jiang, W.

W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
[Crossref]

Jiang, Y. N.

Jin, Y.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Johansson, M.

M. Johansson, C. Holloway, and E. Kuester, “Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers,” IEEE Trans. Antennas Propag. 53(2), 728–736 (2005).
[Crossref]

Khan, A. D.

A. D. Khan and M. Amin, “Tunable Salisbury screen absorber using square lattice of plasmonic nanodisk,” Plasmonics 12(2), 257–262 (2017).
[Crossref]

Khuyen, B. X.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Kim, M.

M. Chen, M. Kim, A. M. Wong, and G. V Elefteriades, “Huygens’ metasurfaces from microwaves to optics,” Nanophotonics 7(6), 1207–1231 (2018).
[Crossref]

Kim, Y. J.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Kuester, E.

M. Johansson, C. Holloway, and E. Kuester, “Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers,” IEEE Trans. Antennas Propag. 53(2), 728–736 (2005).
[Crossref]

Kundu, D.

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-layer wideband microwave absorber using array of crossed dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Lee, D. J.

D. J. Lee, H. J. Jeong, and S. J. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref]

Lee, Y. P.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Li, H.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

Li, H. P.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metasdevice with amplitude-and-phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase-and-amplitude-control metasurfaces for antenna main-lobe and side-lobe manipulations,” IEEE Trans. Antennas Propag. 66(10), 5121–5129 (2018).
[Crossref]

Li, J. F.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
[Crossref]

Li, L. L.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Li, T. J.

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antennas Propag. 65(7), 3598–3606 (2017).
[Crossref]

Li, X.

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Li, Y.

Li, Y. B.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Li, Z.

Liang, J. G.

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase-and-amplitude-control metasurfaces for antenna main-lobe and side-lobe manipulations,” IEEE Trans. Antennas Propag. 66(10), 5121–5129 (2018).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antennas Propag. 65(7), 3598–3606 (2017).
[Crossref]

Liang, Y. Y.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
[Crossref]

Lim, S. J.

D. J. Lee, H. J. Jeong, and S. J. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref]

T. T. Nguyen and S. J. Lim, “Bandwidth-enhanced and wide angle-of-incidence metamaterial absorber using a hybrid unit cell,” Sci. Rep. 7(1), 14814 (2017).
[Crossref]

T. T. Nguyen and S. J. Lim, “Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
[Crossref]

Lin, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Liu, H. Z.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
[Crossref]

Liu, S.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Liu, Z. Z.

Luo, J.

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Luo, M. H.

Luo, W.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

Luo, X. G.

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Ma, H.

W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
[Crossref]

Ma, X. L.

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Mao, Q.

Meng, H. Y.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
[Crossref]

Michon, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Mohan, A.

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-layer wideband microwave absorber using array of crossed dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

Nguyen, T. T.

T. T. Nguyen and S. J. Lim, “Bandwidth-enhanced and wide angle-of-incidence metamaterial absorber using a hybrid unit cell,” Sci. Rep. 7(1), 14814 (2017).
[Crossref]

T. T. Nguyen and S. J. Lim, “Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
[Crossref]

Padilla, W.

J. Suen, K. Fan, and W. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7(8), 1801632 (2019).
[Crossref]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Pu, M. B.

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Qin, F. F.

Qiu, C. W.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Qu, S. B.

W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
[Crossref]

Quan, X.

Z. Wang, Z. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Rhee, J. Y.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Rozanov, K. N.

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Schalch, J.

J. Schalch, G. Duan, X. Zhao, Z. Xin, and R. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Shalaginov, M.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Shen, S.

Shen, Z.

T. Deng, Y. Yu, Z. Shen, and Z. Chen, “Design of 3-D multilayer ferrite-loaded frequency-selective rasorbers with wide absorption bands,” IEEE Trans. Microwave Theory Tech. 67(1), 108–117 (2019).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Suen, J.

J. Suen, K. Fan, and W. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7(8), 1801632 (2019).
[Crossref]

Sun, S.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

Sun, S. L.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Tang, M. C.

Tang, S. W.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Tao, J.

Tuan, T. S.

N. T. Q. Hoa, T. S. Tuan, L. T. Hieu, and B. L. Giang, “Facile design of an ultra-thin broadband metamaterial absorber for C-band applications,” Sci. Rep. 9(1), 468 (2019).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Wan, X.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Wang, F. Q.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
[Crossref]

Wang, G.

Y. Zhuang, G. Wang, Q. Zhang, and C. Zhou, “Low-Scattering Tri-Band Metasurface using Combination of Diffusion, Absorption and Cancellation,” IEEE Access 6, 17306–17312 (2018).
[Crossref]

Wang, G. M.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metasdevice with amplitude-and-phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase-and-amplitude-control metasurfaces for antenna main-lobe and side-lobe manipulations,” IEEE Trans. Antennas Propag. 66(10), 5121–5129 (2018).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antennas Propag. 65(7), 3598–3606 (2017).
[Crossref]

Wang, J. F.

W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
[Crossref]

Wang, X.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

Wang, Z.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

Z. Wang, Z. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Wei, Z. C.

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
[Crossref]

Wheeler, H. A.

H. A. Wheeler, “Simple relations derived from a phased-array antenna made of an infinite current sheet,” IEEE Trans. Antennas Propag. 13(4), 506–514 (1965).
[Crossref]

Wong, A. M.

M. Chen, M. Kim, A. M. Wong, and G. V Elefteriades, “Huygens’ metasurfaces from microwaves to optics,” Nanophotonics 7(6), 1207–1231 (2018).
[Crossref]

Wu, S. L.

Xiao, J. J.

Xin, Z.

J. Schalch, G. Duan, X. Zhao, Z. Xin, and R. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Xu, H. X.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Xu, M. X.

Z. G. Dong and M. X. Xu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[Crossref]

Yan, L. L.

W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
[Crossref]

Yang, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

Yin, G.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Yoo, Y. J.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Yu, Y.

T. Deng, Y. Yu, Z. Shen, and Z. Chen, “Design of 3-D multilayer ferrite-loaded frequency-selective rasorbers with wide absorption bands,” IEEE Trans. Microwave Theory Tech. 67(1), 108–117 (2019).
[Crossref]

Zeng, X. P.

Zhang, C.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

Zhang, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zhang, L.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zhang, Q.

Y. Zhuang, G. Wang, Q. Zhang, and C. Zhou, “Low-Scattering Tri-Band Metasurface using Combination of Diffusion, Absorption and Cancellation,” IEEE Access 6, 17306–17312 (2018).
[Crossref]

F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577 (2018).
[Crossref]

Zhang, S.

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Zhang, Y.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zhang, Z.

Z. Wang, Z. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

F. F. Qin, Z. Z. Liu, Z. Zhang, Q. Zhang, and J. J. Xiao, “Broadband full-color multichannel hologram with geometric metasurface,” Opt. Express 26(9), 11577 (2018).
[Crossref]

Zhao, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

Zhao, J. M.

Zhao, X.

J. Schalch, G. Duan, X. Zhao, Z. Xin, and R. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

Zhao, Z. Y.

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Zheng, B.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zheng, G.

Zheng, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zhou, C.

Y. Zhuang, G. Wang, Q. Zhang, and C. Zhou, “Low-Scattering Tri-Band Metasurface using Combination of Diffusion, Absorption and Cancellation,” IEEE Access 6, 17306–17312 (2018).
[Crossref]

Zhou, L.

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

M. H. Luo, S. Shen, L. Zhou, S. L. Wu, Y. Zhou, and L. S. Chen, “Broadband wide-angle and polarization independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref]

Zhou, Y.

Zhou, Z. H.

Zhu, B.

Zhuang, Y.

Y. Zhuang, G. Wang, Q. Zhang, and C. Zhou, “Low-Scattering Tri-Band Metasurface using Combination of Diffusion, Absorption and Cancellation,” IEEE Access 6, 17306–17312 (2018).
[Crossref]

Zhuang, Y. Q.

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antennas Propag. 65(7), 3598–3606 (2017).
[Crossref]

Adv. Opt. Mater. (2)

J. Suen, K. Fan, and W. Padilla, “A zero-rank, maximum nullity perfect electromagnetic wave absorber,” Adv. Opt. Mater. 7(8), 1801632 (2019).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Adv. Sci. (1)

Y. J. Huang, J. Luo, M. B. Pu, Y. H. Guo, Z. Y. Zhao, X. L. Ma, X. Li, and X. G. Luo, “Catenary electromagnetic for ultra-broadband lightweight absorbers and large-scale flat antennas,” Adv. Sci. 6(7), 1801691 (2019).
[Crossref]

Appl. Phys. Lett. (4)

J. Schalch, G. Duan, X. Zhao, Z. Xin, and R. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 061113 (2018).
[Crossref]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

Z. G. Dong and M. X. Xu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008).
[Crossref]

IEEE Access (1)

Y. Zhuang, G. Wang, Q. Zhang, and C. Zhou, “Low-Scattering Tri-Band Metasurface using Combination of Diffusion, Absorption and Cancellation,” IEEE Access 6, 17306–17312 (2018).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

D. Kundu, A. Mohan, and A. Chakrabarty, “Single-layer wideband microwave absorber using array of crossed dipoles,” IEEE Antennas Wirel. Propag. Lett. 15, 1589–1592 (2016).
[Crossref]

IEEE Trans. Antennas Propag. (5)

H. A. Wheeler, “Simple relations derived from a phased-array antenna made of an infinite current sheet,” IEEE Trans. Antennas Propag. 13(4), 506–514 (1965).
[Crossref]

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antennas Propag. 48(8), 1230–1234 (2000).
[Crossref]

M. Johansson, C. Holloway, and E. Kuester, “Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers,” IEEE Trans. Antennas Propag. 53(2), 728–736 (2005).
[Crossref]

T. Cai, G. M. Wang, J. G. Liang, Y. Q. Zhuang, and T. J. Li, “High-performance transmissive meta-surface for C-/X-band lens antenna application,” IEEE Trans. Antennas Propag. 65(7), 3598–3606 (2017).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase-and-amplitude-control metasurfaces for antenna main-lobe and side-lobe manipulations,” IEEE Trans. Antennas Propag. 66(10), 5121–5129 (2018).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

T. Deng, Y. Yu, Z. Shen, and Z. Chen, “Design of 3-D multilayer ferrite-loaded frequency-selective rasorbers with wide absorption bands,” IEEE Trans. Microwave Theory Tech. 67(1), 108–117 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D: Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Light: Sci. Appl. (1)

M. Jia, Z. Wang, H. Li, X. Wang, W. Luo, S. Sun, Y. Zhang, Q. He, and L. Zhou, “Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces,” Light: Sci. Appl. 8(1), 16 (2019).
[Crossref]

Nanomaterials (1)

Y. Y. Liang, H. Z. Liu, F. Q. Wang, H. Y. Meng, J. P. Guo, J. F. Li, and Z. C. Wei, “High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths,” Nanomaterials 8(5), 288–293 (2018).
[Crossref]

Nanophotonics (1)

M. Chen, M. Kim, A. M. Wong, and G. V Elefteriades, “Huygens’ metasurfaces from microwaves to optics,” Nanophotonics 7(6), 1207–1231 (2018).
[Crossref]

Nat. Commun. (2)

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

L. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. H. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref]

Opt. Express (5)

Phys. Rev. Appl. (2)

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metasdevice with amplitude-and-phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71(3), 036617 (2005).
[Crossref]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “A perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref]

Plasmonics (1)

A. D. Khan and M. Amin, “Tunable Salisbury screen absorber using square lattice of plasmonic nanodisk,” Plasmonics 12(2), 257–262 (2017).
[Crossref]

Sci. Rep. (5)

N. T. Q. Hoa, T. S. Tuan, L. T. Hieu, and B. L. Giang, “Facile design of an ultra-thin broadband metamaterial absorber for C-band applications,” Sci. Rep. 9(1), 468 (2019).
[Crossref]

W. Jiang, L. L. Yan, H. Ma, Y. Fan, J. F. Wang, M. D. Feng, and S. B. Qu, “Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb,” Sci. Rep. 8(1), 4817 (2018).
[Crossref]

T. T. Nguyen and S. J. Lim, “Wide incidence angle-insensitive metamaterial absorber for both TE and TM polarization using eight-circular-sector,” Sci. Rep. 7(1), 3204 (2017).
[Crossref]

D. J. Lee, H. J. Jeong, and S. J. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref]

T. T. Nguyen and S. J. Lim, “Bandwidth-enhanced and wide angle-of-incidence metamaterial absorber using a hybrid unit cell,” Sci. Rep. 7(1), 14814 (2017).
[Crossref]

Sol. Energy (1)

Z. Wang, Z. Zhang, X. Quan, and P. Cheng, “A perfect absorber design using a natural hyperbolic material for harvesting solar energy,” Sol. Energy 159, 329–336 (2018).
[Crossref]

Thin Solid Films (1)

C. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films 411(1), 1–5 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of high-efficiency ultra-broadband zigzag-shape structure absorber. The frequencies of incident wave f1, f2 and f3 represent low frequency, moderate frequency and high frequency from 1 GHz to 18 GHz, respectively. The low, moderate, high frequency EM wave is mainly absorbed by lower-layer cutting metal wire, ITO film and upper-layer cutting metal wire, respectively.
Fig. 2.
Fig. 2. Design of the initial unit cell. The geometrical parameters are listed as: h = 21 mm, l = 1 mm, d = 1 mm, p = 18 mm, q = 14 mm, t = 1 mm, a = 13.6 mm, k = 1 mm and the sheet resistance of ITO film (yellow part) Zf = 100 $\Omega /sq$. The substrate (blue part) is made of FR-4 with relative permittivity of 4.3, a loss tangent of 0.025. The metal (gray part) is made of copper with conductivity σ = 5.8×107 S/m and the thickness 0.036 mm. (a) Schematic of the proposed unit cell free view. (b) Equivalent transmission line model. (c) Comparison of S11 of physical structure and equivalent transmission line model. (d) Reflectivity varying against parameter of cutting metal wire l. (e) Current distributions of cutting metal wire. (f) Schematic of ITO film structure. Simulation results of (g) combination structure and (h) single ITO film.
Fig. 3.
Fig. 3. (a) Simulation results of reflection coefficient of double-layer structure. Current distributions on metal surface of double-layer structure at (b) 1.5 GHz and (c) 16.6 GHz. (d) Simulation results of reflection coefficient of zigzag-shape structure. Absorption rate varying against (e) ITO film width a and (f) ITO film sheet resistance Zf.
Fig. 4.
Fig. 4. (a) The photography of fabricated sample. (b) Absorption of simulation and measurement results and (c) normalized impedance of finally optimized structure. The measurement far-field scattering patterns of our absorber and the mental sheet with the same size as our sample at (d) 1 GHz (e) 9 GHz (f) 18 GHz. The absorption rate varying against incident angle in (g) xoz plane and (h) yoz plane. (i) Average absorption among absorption band varying against incident angle. (j) The effective impedance varying against incident angle in xoz plane and yoz plane.

Tables (1)

Tables Icon

Table 1. The comparison between literatures and our work.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R = 1 σ h m . k q × 10 9
L = F ( k , l ) ω 0
C = 4 F ( k , l ) ω 0
η e f f θ E = η e f f . cos θ E
η e f f θ H = η e f f cos θ H
η e f f - θ = 1 + γ 1 γ , γ = { γ 1 , when   | γ 1 | 1   and   Z 1 > 0 γ 2 , else
|ln ρ 0 | ( λ max λ min ) < 2 π 2 μ λ max d

Metrics