Abstract

Exceptionally strong enhancement of the Raman signal exceeding eight orders of magnitude for near-infrared (1064 nm) excitation is demonstrated for an array of dielectric submicron pillars covered by a relatively thick metal layer. The microstructure is designed to support ‘spoof’ plasmon-polariton excitations with resonant frequencies significantly below the fundamental surface plasmon resonance. Experiments reveal a relatively narrow range of spatial parameters for the optimal resonant scattering enhancement. They include a period close to the excitation wavelength, a specific ratio of the pillar planar size to the period, and optimal heights of both the pillars and the covering silver metal layer. The realized microstructures can be produced by fab-compatible photolithography techniques, and their outstanding sensing possibilities open the venue for the biomedical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Slow plasmon-polaritons in a bilayer metallic structure revealed by the lower-energy resonances of surface-enhanced Raman scattering

Yana V. Grishina, Vladimir I. Kukushkin, Victor V. Solovyev, and Igor V. Kukushkin
Opt. Express 26(17) 22519-22527 (2018)

Tunable double-resonance dimer structure for surface-enhanced Raman scattering substrate in near-infrared region

Zhengqing Qi, Jie Yao, Liangliang Zhao, Yiping Cui, and Changgui Lu
Photon. Res. 3(6) 313-316 (2015)

Limits to surface-enhanced Raman scattering near arbitrary-shape scatterers

Jérôme Michon, Mohammed Benzaouia, Wenjie Yao, Owen D. Miller, and Steven G. Johnson
Opt. Express 27(24) 35189-35202 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. R. B. M. Schasfoort and A. J. Tudos, “Handbook of Surface Plasmon Resonance”, Royal Society of Chemistry (2008).
  3. J. Homola, “Surface Plasmon Resonance Based Sensors”, Springer (2006).
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with Plasmonic Nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref]
  5. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref]
  6. K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref]
  7. K. M. Mayer, J. H. Hafner, and A. Antigen, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref]
  8. P. Larkin, “Infrared and Raman spectroscopy: Principles and Spectral Information, Second Edition,” Ch.2, Elsevier (2018).
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  10. P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  11. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref]
  12. Y. V. Grishina, V. I. Kukushkin, V. V. Solovyev, and I. V. Kukushkin, “Slow plasmon-polaritons in a bilayer metallic structure revealed by the lower-energy resonances of surface-enhanced Raman scattering,” Opt. Express 26(17), 22519–22527 (2018).
    [Crossref]
  13. M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimmers,” Chem. Commun. 47(13), 3769–3771 (2011).
    [Crossref]
  14. N. G. Greeneltch, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared Studies,” J. Phys. Chem. C 117(6), 2554–2558 (2013).
    [Crossref]
  15. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
    [Crossref]
  16. A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
    [Crossref]
  17. A. K. Sarychev, A. V. Ivanov, A. N. Lagarkov, and G. Barbillon, “Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing,” Materials 12(1), 103 (2018).
    [Crossref]
  18. C. Tian, J. Li, C. Ma, P. Wang, X. Sun, and J. Fang, “An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy,” Nanoscale 7(29), 12318–12324 (2015).
    [Crossref]
  19. C. Tian, Y. Deng, D. Zhao, and J. Fang, “Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection”,” Adv. Opt. Mater. 3(3), 404–411 (2015).
    [Crossref]
  20. C. Ma, Q. Gao, W. Hong, J. Fan, and J. Fang, “Real-Time Probing Nanopore-in-Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface-Enhanced Raman Spectroscopy”,” Adv. Funct. Mater. 27(2), 1603233 (2017).
    [Crossref]
  21. V. I. Kukushkin, Y. V. Grishina, S. V. Egorov, V. V. Solov’ev, and I. V. Kukushkin, “Combined Dielectric and Plasmon Resonance for Giant Enhancement of Raman Scattering,” JETP Lett. 103(8), 508–512 (2016).
    [Crossref]
  22. V. I. Kukushkin, Y. V. Grishina, V. V. Solov’ev, and I. V. Kukushkin, “Size Plasmon-Polariton Resonance and Its Contribution to the Giant Enhancement of the Raman Scattering,” JETP Lett. 105(10), 677–681 (2017).
    [Crossref]
  23. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  24. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]

2018 (3)

Y. V. Grishina, V. I. Kukushkin, V. V. Solovyev, and I. V. Kukushkin, “Slow plasmon-polaritons in a bilayer metallic structure revealed by the lower-energy resonances of surface-enhanced Raman scattering,” Opt. Express 26(17), 22519–22527 (2018).
[Crossref]

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

A. K. Sarychev, A. V. Ivanov, A. N. Lagarkov, and G. Barbillon, “Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing,” Materials 12(1), 103 (2018).
[Crossref]

2017 (2)

C. Ma, Q. Gao, W. Hong, J. Fan, and J. Fang, “Real-Time Probing Nanopore-in-Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface-Enhanced Raman Spectroscopy”,” Adv. Funct. Mater. 27(2), 1603233 (2017).
[Crossref]

V. I. Kukushkin, Y. V. Grishina, V. V. Solov’ev, and I. V. Kukushkin, “Size Plasmon-Polariton Resonance and Its Contribution to the Giant Enhancement of the Raman Scattering,” JETP Lett. 105(10), 677–681 (2017).
[Crossref]

2016 (2)

V. I. Kukushkin, Y. V. Grishina, S. V. Egorov, V. V. Solov’ev, and I. V. Kukushkin, “Combined Dielectric and Plasmon Resonance for Giant Enhancement of Raman Scattering,” JETP Lett. 103(8), 508–512 (2016).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

2015 (2)

C. Tian, J. Li, C. Ma, P. Wang, X. Sun, and J. Fang, “An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy,” Nanoscale 7(29), 12318–12324 (2015).
[Crossref]

C. Tian, Y. Deng, D. Zhao, and J. Fang, “Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection”,” Adv. Opt. Mater. 3(3), 404–411 (2015).
[Crossref]

2013 (1)

N. G. Greeneltch, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared Studies,” J. Phys. Chem. C 117(6), 2554–2558 (2013).
[Crossref]

2011 (2)

M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimmers,” Chem. Commun. 47(13), 3769–3771 (2011).
[Crossref]

K. M. Mayer, J. H. Hafner, and A. Antigen, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

2009 (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with Plasmonic Nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

2005 (2)

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

2004 (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

1998 (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Afanasyev, K. N.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with Plasmonic Nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Antigen, A.

K. M. Mayer, J. H. Hafner, and A. Antigen, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Barbillon, G.

A. K. Sarychev, A. V. Ivanov, A. N. Lagarkov, and G. Barbillon, “Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing,” Materials 12(1), 103 (2018).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Blaber, M. G.

N. G. Greeneltch, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared Studies,” J. Phys. Chem. C 117(6), 2554–2558 (2013).
[Crossref]

M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimmers,” Chem. Commun. 47(13), 3769–3771 (2011).
[Crossref]

Boginskaya, I. A.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Bykov, I. V.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Deng, Y.

C. Tian, Y. Deng, D. Zhao, and J. Fang, “Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection”,” Adv. Opt. Mater. 3(3), 404–411 (2015).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Egorov, S. V.

V. I. Kukushkin, Y. V. Grishina, S. V. Egorov, V. V. Solov’ev, and I. V. Kukushkin, “Combined Dielectric and Plasmon Resonance for Giant Enhancement of Raman Scattering,” JETP Lett. 103(8), 508–512 (2016).
[Crossref]

El Kabbash, M.

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Fan, J.

C. Ma, Q. Gao, W. Hong, J. Fan, and J. Fang, “Real-Time Probing Nanopore-in-Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface-Enhanced Raman Spectroscopy”,” Adv. Funct. Mater. 27(2), 1603233 (2017).
[Crossref]

Fang, J.

C. Ma, Q. Gao, W. Hong, J. Fan, and J. Fang, “Real-Time Probing Nanopore-in-Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface-Enhanced Raman Spectroscopy”,” Adv. Funct. Mater. 27(2), 1603233 (2017).
[Crossref]

C. Tian, Y. Deng, D. Zhao, and J. Fang, “Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection”,” Adv. Opt. Mater. 3(3), 404–411 (2015).
[Crossref]

C. Tian, J. Li, C. Ma, P. Wang, X. Sun, and J. Fang, “An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy,” Nanoscale 7(29), 12318–12324 (2015).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Gao, Q.

C. Ma, Q. Gao, W. Hong, J. Fan, and J. Fang, “Real-Time Probing Nanopore-in-Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface-Enhanced Raman Spectroscopy”,” Adv. Funct. Mater. 27(2), 1603233 (2017).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Greeneltch, N. G.

N. G. Greeneltch, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared Studies,” J. Phys. Chem. C 117(6), 2554–2558 (2013).
[Crossref]

Grishina, Y. V.

Y. V. Grishina, V. I. Kukushkin, V. V. Solovyev, and I. V. Kukushkin, “Slow plasmon-polaritons in a bilayer metallic structure revealed by the lower-energy resonances of surface-enhanced Raman scattering,” Opt. Express 26(17), 22519–22527 (2018).
[Crossref]

V. I. Kukushkin, Y. V. Grishina, V. V. Solov’ev, and I. V. Kukushkin, “Size Plasmon-Polariton Resonance and Its Contribution to the Giant Enhancement of the Raman Scattering,” JETP Lett. 105(10), 677–681 (2017).
[Crossref]

V. I. Kukushkin, Y. V. Grishina, S. V. Egorov, V. V. Solov’ev, and I. V. Kukushkin, “Combined Dielectric and Plasmon Resonance for Giant Enhancement of Raman Scattering,” JETP Lett. 103(8), 508–512 (2016).
[Crossref]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Hafner, J. H.

K. M. Mayer, J. H. Hafner, and A. Antigen, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with Plasmonic Nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Homola, J.

J. Homola, “Surface Plasmon Resonance Based Sensors”, Springer (2006).

Hong, W.

C. Ma, Q. Gao, W. Hong, J. Fan, and J. Fang, “Real-Time Probing Nanopore-in-Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface-Enhanced Raman Spectroscopy”,” Adv. Funct. Mater. 27(2), 1603233 (2017).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Ivanov, A. V.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

A. K. Sarychev, A. V. Ivanov, A. N. Lagarkov, and G. Barbillon, “Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing,” Materials 12(1), 103 (2018).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Kukushkin, I. V.

Y. V. Grishina, V. I. Kukushkin, V. V. Solovyev, and I. V. Kukushkin, “Slow plasmon-polaritons in a bilayer metallic structure revealed by the lower-energy resonances of surface-enhanced Raman scattering,” Opt. Express 26(17), 22519–22527 (2018).
[Crossref]

V. I. Kukushkin, Y. V. Grishina, V. V. Solov’ev, and I. V. Kukushkin, “Size Plasmon-Polariton Resonance and Its Contribution to the Giant Enhancement of the Raman Scattering,” JETP Lett. 105(10), 677–681 (2017).
[Crossref]

V. I. Kukushkin, Y. V. Grishina, S. V. Egorov, V. V. Solov’ev, and I. V. Kukushkin, “Combined Dielectric and Plasmon Resonance for Giant Enhancement of Raman Scattering,” JETP Lett. 103(8), 508–512 (2016).
[Crossref]

Kukushkin, V. I.

Y. V. Grishina, V. I. Kukushkin, V. V. Solovyev, and I. V. Kukushkin, “Slow plasmon-polaritons in a bilayer metallic structure revealed by the lower-energy resonances of surface-enhanced Raman scattering,” Opt. Express 26(17), 22519–22527 (2018).
[Crossref]

V. I. Kukushkin, Y. V. Grishina, V. V. Solov’ev, and I. V. Kukushkin, “Size Plasmon-Polariton Resonance and Its Contribution to the Giant Enhancement of the Raman Scattering,” JETP Lett. 105(10), 677–681 (2017).
[Crossref]

V. I. Kukushkin, Y. V. Grishina, S. V. Egorov, V. V. Solov’ev, and I. V. Kukushkin, “Combined Dielectric and Plasmon Resonance for Giant Enhancement of Raman Scattering,” JETP Lett. 103(8), 508–512 (2016).
[Crossref]

Kurochkin, I. N.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Lagarkov, A. N.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

A. K. Sarychev, A. V. Ivanov, A. N. Lagarkov, and G. Barbillon, “Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing,” Materials 12(1), 103 (2018).
[Crossref]

Larkin, P.

P. Larkin, “Infrared and Raman spectroscopy: Principles and Spectral Information, Second Edition,” Ch.2, Elsevier (2018).

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Li, J.

C. Tian, J. Li, C. Ma, P. Wang, X. Sun, and J. Fang, “An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy,” Nanoscale 7(29), 12318–12324 (2015).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with Plasmonic Nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Ma, C.

C. Ma, Q. Gao, W. Hong, J. Fan, and J. Fang, “Real-Time Probing Nanopore-in-Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface-Enhanced Raman Spectroscopy”,” Adv. Funct. Mater. 27(2), 1603233 (2017).
[Crossref]

C. Tian, J. Li, C. Ma, P. Wang, X. Sun, and J. Fang, “An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy,” Nanoscale 7(29), 12318–12324 (2015).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Mayer, K. M.

K. M. Mayer, J. H. Hafner, and A. Antigen, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Merzlikin, A. M.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Mikheev, V. V.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Negrov, D. V.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Podolskiy, V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Ryzhikov, I. A.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Sarychev, A. K.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

A. K. Sarychev, A. V. Ivanov, A. N. Lagarkov, and G. Barbillon, “Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing,” Materials 12(1), 103 (2018).
[Crossref]

Schasfoort, R. B. M.

R. B. M. Schasfoort and A. J. Tudos, “Handbook of Surface Plasmon Resonance”, Royal Society of Chemistry (2008).

Schatz, G. C.

N. G. Greeneltch, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared Studies,” J. Phys. Chem. C 117(6), 2554–2558 (2013).
[Crossref]

M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimmers,” Chem. Commun. 47(13), 3769–3771 (2011).
[Crossref]

Sedova, M. V.

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with Plasmonic Nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Solov’ev, V. V.

V. I. Kukushkin, Y. V. Grishina, V. V. Solov’ev, and I. V. Kukushkin, “Size Plasmon-Polariton Resonance and Its Contribution to the Giant Enhancement of the Raman Scattering,” JETP Lett. 105(10), 677–681 (2017).
[Crossref]

V. I. Kukushkin, Y. V. Grishina, S. V. Egorov, V. V. Solov’ev, and I. V. Kukushkin, “Combined Dielectric and Plasmon Resonance for Giant Enhancement of Raman Scattering,” JETP Lett. 103(8), 508–512 (2016).
[Crossref]

Solovyev, V. V.

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Sun, X.

C. Tian, J. Li, C. Ma, P. Wang, X. Sun, and J. Fang, “An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy,” Nanoscale 7(29), 12318–12324 (2015).
[Crossref]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Tian, C.

C. Tian, J. Li, C. Ma, P. Wang, X. Sun, and J. Fang, “An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy,” Nanoscale 7(29), 12318–12324 (2015).
[Crossref]

C. Tian, Y. Deng, D. Zhao, and J. Fang, “Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection”,” Adv. Opt. Mater. 3(3), 404–411 (2015).
[Crossref]

Tudos, A. J.

R. B. M. Schasfoort and A. J. Tudos, “Handbook of Surface Plasmon Resonance”, Royal Society of Chemistry (2008).

Van Duyne, R. P.

N. G. Greeneltch, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared Studies,” J. Phys. Chem. C 117(6), 2554–2558 (2013).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with Plasmonic Nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref]

Wang, P.

C. Tian, J. Li, C. Ma, P. Wang, X. Sun, and J. Fang, “An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy,” Nanoscale 7(29), 12318–12324 (2015).
[Crossref]

Wurtz, G.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref]

Zayats, A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

Zhao, D.

C. Tian, Y. Deng, D. Zhao, and J. Fang, “Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection”,” Adv. Opt. Mater. 3(3), 404–411 (2015).
[Crossref]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with Plasmonic Nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

Adv. Funct. Mater. (1)

C. Ma, Q. Gao, W. Hong, J. Fan, and J. Fang, “Real-Time Probing Nanopore-in-Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surface-Enhanced Raman Spectroscopy”,” Adv. Funct. Mater. 27(2), 1603233 (2017).
[Crossref]

Adv. Opt. Mater. (1)

C. Tian, Y. Deng, D. Zhao, and J. Fang, “Plasmonic Silver Supercrystals with Ultrasmall Nanogaps for Ultrasensitive SERS-Based Molecule Detection”,” Adv. Opt. Mater. 3(3), 404–411 (2015).
[Crossref]

Chem. Commun. (1)

M. G. Blaber and G. C. Schatz, “Extending SERS into the infrared with gold nanosphere dimmers,” Chem. Commun. 47(13), 3769–3771 (2011).
[Crossref]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Chem. Rev. (1)

K. M. Mayer, J. H. Hafner, and A. Antigen, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A: Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Phys. Chem. B (1)

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[Crossref]

J. Phys. Chem. C (1)

N. G. Greeneltch, M. G. Blaber, G. C. Schatz, and R. P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared Studies,” J. Phys. Chem. C 117(6), 2554–2558 (2013).
[Crossref]

JETP Lett. (2)

V. I. Kukushkin, Y. V. Grishina, S. V. Egorov, V. V. Solov’ev, and I. V. Kukushkin, “Combined Dielectric and Plasmon Resonance for Giant Enhancement of Raman Scattering,” JETP Lett. 103(8), 508–512 (2016).
[Crossref]

V. I. Kukushkin, Y. V. Grishina, V. V. Solov’ev, and I. V. Kukushkin, “Size Plasmon-Polariton Resonance and Its Contribution to the Giant Enhancement of the Raman Scattering,” JETP Lett. 105(10), 677–681 (2017).
[Crossref]

Materials (1)

A. K. Sarychev, A. V. Ivanov, A. N. Lagarkov, and G. Barbillon, “Light Concentration by Metal-Dielectric Micro-Resonators for SERS Sensing,” Materials 12(1), 103 (2018).
[Crossref]

Nanoscale (1)

C. Tian, J. Li, C. Ma, P. Wang, X. Sun, and J. Fang, “An ordered mesoporous Ag superstructure synthesized via a template strategy for surface-enhanced Raman spectroscopy,” Nanoscale 7(29), 12318–12324 (2015).
[Crossref]

Nat. Mater. (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with Plasmonic Nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic Nanorod Metamaterials for Biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. El Kabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Quantum Electron. (1)

A. K. Sarychev, A. V. Ivanov, K. N. Afanasyev, I. V. Bykov, I. A. Boginskaya, I. N. Kurochkin, A. N. Lagarkov, A. M. Merzlikin, V. V. Mikheev, D. V. Negrov, I. A. Ryzhikov, and M. V. Sedova, “Enhancement of local electromagnetic fields by periodic optical resonators,” Quantum Electron. 48(12), 1147–1152 (2018).
[Crossref]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Other (3)

P. Larkin, “Infrared and Raman spectroscopy: Principles and Spectral Information, Second Edition,” Ch.2, Elsevier (2018).

R. B. M. Schasfoort and A. J. Tudos, “Handbook of Surface Plasmon Resonance”, Royal Society of Chemistry (2008).

J. Homola, “Surface Plasmon Resonance Based Sensors”, Springer (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. SEM pictures of a typical SERS structure active fields under various magnifications. In the lower part a = 760 nm, d = 510 nm, h = 250 nm, t = 40 nm.
Fig. 2.
Fig. 2. Raman spectra of thiophenol (C6H6S), measured for a 1064 nm laser excitation for the case of (a) bulk liquid thiophenol (100% concentration), and (b) when a drop of a thiophenol solution with a concentration of 10−7 has dried on a designed SERS substrate. The low energy tail in SERS-spectrum originates from the silicon substrate supporting the active layers.
Fig. 3.
Fig. 3. The color-plot dependence of the Raman signal intensity measured for different active fields and averaged inside a selected field, on parameters a and γ. Brighter color corresponds to the increased intensity.
Fig. 4.
Fig. 4. The dependence of the SERS signal intensity on the period (a + d) for various parameter γ values.
Fig. 5.
Fig. 5. The dependence of the SERS signal intensity on the parameter γ for both modes 1 and 2.
Fig. 6.
Fig. 6. The SERS signal intensity dependence on thiophenol concentration measured on large size substrates (5 × 5 mm) for optimized (yellow circles) and non-optimized (squares) designs. Black circles show a measured linear dependence of the Raman signal on the bulk thiophenol concentration. The upper axis demonstrates the calculated number of the optically probed thiophenol molecules.

Metrics