Abstract

To reduce the reconstruction error of holographic stereogram fabricated by effective perspective images’ segmentation and mosaicking method (EPISM), a multiple-reference-plane (MRP) approach is proposed and validated. The reconstruction error for traditional EPISM is analyzed, and the results indicate that the distortion as well as the blur will be involved for object points located far away from the reference plane. A new method by introducing multiple reference planes is proposed, which divides the 3D scene into several parts along its depth direction, and sets a reference plane for each of the object part. By resynthesizing all the effectively synthetic perspective images referred to their own reference planes of the object parts, the finally effectively synthetic perspective image exposed to one holographic elemental by only once exposure is generated. The optically experimental results demonstrate the validity of the proposed method, and the reconstruction error of full-parallax holographic stereogram printed by MRP based EPISM can be reduced evidently while the displayed depth range of 3D scene can be extended, compared to the traditional EPISM approach.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Centered-camera-based effective perspective images’ segmentation and mosaicking method for full-parallax holographic stereogram printing

Fan Fan, Xingpeng Yan, Xiaoyu Jiang, Teng Zhang, Jun Wen, Jian Su, Quan Yuan, Xi Wang, Chen Song, and Chao Han
Appl. Opt. 58(33) 9112-9130 (2019)

Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking

Jian Su, Quan Yuan, Yingqing Huang, Xiaoyu Jiang, and Xingpeng Yan
Opt. Express 25(19) 23523-23544 (2017)

Characteristic and improvement on the reconstructed quality of effective perspective images’ segmentation and mosaicking-based holographic stereogram

Xingpeng Yan, Yibei Chen, Jian Su, Teng Zhang, Zhuo Chen, Song Chen, and Xiaoyu Jiang
Appl. Opt. 58(5) A128-A134 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. V. Pole, “3-D Imagery and Holograms of Objects Illuminated in White Light,” Appl. Phys. Lett. 10(1), 20–22 (1967).
    [Crossref]
  2. D. J. DeBitetto, “Holographic panoramic stereograms synthesized from white light recordings,” Appl. Opt. 8(8), 1740–1741 (1969).
    [Crossref]
  3. M. C. King, A. M. Noll, and D. Berry, “A new approach to computer-generated holography,” Appl. Opt. 9(2), 471–475 (1970).
    [Crossref]
  4. M. W. Halle, S. A. Benton, M. A. Klug, and J. S. Underkoffler, “Ultragram: a generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
    [Crossref]
  5. M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic three-dimensional printer: new method,” Appl. Opt. 31(2), 217–222 (1992).
    [Crossref]
  6. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref]
  7. Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
    [Crossref]
  8. T. Utsugi and M. Yamaguchi, “Reduction of the recorded speckle noise in holographic 3D printer,” Opt. Express 21(1), 662–674 (2013).
    [Crossref]
  9. M. Yamaguchi, “Light-field and holographic three-dimensional displays,” J. Opt. Soc. Am. A 33(12), 2348–2364 (2016).
    [Crossref]
  10. P.-A. J. Blanche, C. M. Bigler, J.-W. Ka, and N. N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 23(4), 1–18 (2017).
    [Crossref]
  11. J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8(6), 851 (2018).
    [Crossref]
  12. P. Liu, X. Sun, Y. Zhao, and Z. Li, “Ultrafast volume holographic recording with exposure reciprocity matching for TI/PMMAs application,” Opt. Express 27(14), 19583–19595 (2019).
    [Crossref]
  13. Z. Lu and Y. Sakamoto, “Holographic display method for volume data by volume rendering,” Opt. Express 27(2), 543–556 (2019).
    [Crossref]
  14. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Three-dimensional display technologies in wave and ray optics: a review,” Chin. Opt. Lett. 12(6), 060002 (2014).
    [Crossref]
  15. D. J. DeBitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12(10), 343–344 (1968).
    [Crossref]
  16. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15(11), 2722–2729 (1976).
    [Crossref]
  17. D. Brotherton-Ratcliffe and A. Rodin, “Holographic printer,” US patent 7161722 (2002).
  18. D. Brotherton-Ratcliffe, A. Rodin, and L. Hrynkiw, “Method of writing a composite 1-step hologram,” US patent 7333252 (2002).
  19. H. Bjelkhagen and D. Brotherton-Ratcliffe, “Ultra-realistic imaging: advanced techniques in analogue and digital colour holography,” (Taylor & Francis: CRC Press, 2013).
  20. H. I. Bjelkhagen and D. Brotherton-Ratcliffe, “Ultrarealistic imaging: The future of display holography,” Opt. Eng. 53(11), 112310 (2014).
    [Crossref]
  21. H. Keehoon, P. Soon-Gi, Y. Jiwoon, K. Jonghyun, C. Ni, P. Kyungsuk, C. Chilsung, K. Sunil, A. Jungkwuen, and L. Hong-Seok, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21(12), 14047–14055 (2013).
    [Crossref]
  22. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23(4), 3901–3913 (2015).
    [Crossref]
  23. Z. Wang, G. Lv, Q. Feng, A. Wang, and H. Ming, “Resolution priority holographic stereogram based on integral imaging with enhanced depth range,” Opt. Express 27(3), 2689–2702 (2019).
    [Crossref]
  24. S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [Crossref]
  25. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [Crossref]
  26. J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25(19), 23523–23544 (2017).
    [Crossref]
  27. J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8(1), 4488 (2018).
    [Crossref]
  28. X. Yan, Y. Chen, J. Su, T. Zhang, Z. Chen, S. Chen, and X. Jiang, “Characteristic and improvement on the reconstructed quality of effective perspective images’ segmentation and mosaicking-based holographic stereogram,” Appl. Opt. 58(5), A128–A134 (2019).
    [Crossref]
  29. J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-corrected light field rendering for creating a holographic stereogram,” in IEEE Computer Vision and Pattern Recognition Workshops (CVPR), pp. 9–13 (2012).
  30. M. Yamaguchi and K. Wakunami, “13.7 Scanning Vertical Camera Array for Computational Holography,” in Multi-Dimensional Imaging (eds B. Javidi, E. Tajahuerce, and P. Andrés), IEEE Press, Wiley, pp. 315–322 (2014)
  31. E. Sahin, S. Vagharshakyan, J. Makinen, R. Bregovic, and A. Gotchev, “Shearlet-domain light field reconstruction for holographic stereogram generation,” in IEEE International Conference on Image Processing (ICIP), pp. 1479–1483 (2016).
  32. Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

2019 (4)

2018 (2)

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8(1), 4488 (2018).
[Crossref]

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8(6), 851 (2018).
[Crossref]

2017 (2)

2016 (1)

2015 (1)

2014 (2)

H. I. Bjelkhagen and D. Brotherton-Ratcliffe, “Ultrarealistic imaging: The future of display holography,” Opt. Eng. 53(11), 112310 (2014).
[Crossref]

H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Three-dimensional display technologies in wave and ray optics: a review,” Chin. Opt. Lett. 12(6), 060002 (2014).
[Crossref]

2013 (2)

2010 (2)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref]

2008 (1)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

2006 (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

1992 (1)

1991 (1)

M. W. Halle, S. A. Benton, M. A. Klug, and J. S. Underkoffler, “Ultragram: a generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
[Crossref]

1976 (1)

1970 (1)

1969 (1)

1968 (1)

D. J. DeBitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12(10), 343–344 (1968).
[Crossref]

1967 (1)

R. V. Pole, “3-D Imagery and Holograms of Objects Illuminated in White Light,” Appl. Phys. Lett. 10(1), 20–22 (1967).
[Crossref]

Andrés, P.

M. Yamaguchi and K. Wakunami, “13.7 Scanning Vertical Camera Array for Computational Holography,” in Multi-Dimensional Imaging (eds B. Javidi, E. Tajahuerce, and P. Andrés), IEEE Press, Wiley, pp. 315–322 (2014)

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Benton, S. A.

M. W. Halle, S. A. Benton, M. A. Klug, and J. S. Underkoffler, “Ultragram: a generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
[Crossref]

Berry, D.

Bigler, C. M.

P.-A. J. Blanche, C. M. Bigler, J.-W. Ka, and N. N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 23(4), 1–18 (2017).
[Crossref]

Bjelkhagen, H.

H. Bjelkhagen and D. Brotherton-Ratcliffe, “Ultra-realistic imaging: advanced techniques in analogue and digital colour holography,” (Taylor & Francis: CRC Press, 2013).

Bjelkhagen, H. I.

H. I. Bjelkhagen and D. Brotherton-Ratcliffe, “Ultrarealistic imaging: The future of display holography,” Opt. Eng. 53(11), 112310 (2014).
[Crossref]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Blanche, P.-A. J.

P.-A. J. Blanche, C. M. Bigler, J.-W. Ka, and N. N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 23(4), 1–18 (2017).
[Crossref]

Bregovic, R.

E. Sahin, S. Vagharshakyan, J. Makinen, R. Bregovic, and A. Gotchev, “Shearlet-domain light field reconstruction for holographic stereogram generation,” in IEEE International Conference on Image Processing (ICIP), pp. 1479–1483 (2016).

Brotherton-Ratcliffe, D.

H. I. Bjelkhagen and D. Brotherton-Ratcliffe, “Ultrarealistic imaging: The future of display holography,” Opt. Eng. 53(11), 112310 (2014).
[Crossref]

H. Bjelkhagen and D. Brotherton-Ratcliffe, “Ultra-realistic imaging: advanced techniques in analogue and digital colour holography,” (Taylor & Francis: CRC Press, 2013).

D. Brotherton-Ratcliffe and A. Rodin, “Holographic printer,” US patent 7161722 (2002).

D. Brotherton-Ratcliffe, A. Rodin, and L. Hrynkiw, “Method of writing a composite 1-step hologram,” US patent 7333252 (2002).

Burnett, T.

J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-corrected light field rendering for creating a holographic stereogram,” in IEEE Computer Vision and Pattern Recognition Workshops (CVPR), pp. 9–13 (2012).

Cao, L.

Chen, D.

Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

Chen, S.

Chen, Y.

X. Yan, Y. Chen, J. Su, T. Zhang, Z. Chen, S. Chen, and X. Jiang, “Characteristic and improvement on the reconstructed quality of effective perspective images’ segmentation and mosaicking-based holographic stereogram,” Appl. Opt. 58(5), A128–A134 (2019).
[Crossref]

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8(1), 4488 (2018).
[Crossref]

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8(6), 851 (2018).
[Crossref]

Chen, Z.

Chilsung, C.

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Debevec, P.

J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-corrected light field rendering for creating a holographic stereogram,” in IEEE Computer Vision and Pattern Recognition Workshops (CVPR), pp. 9–13 (2012).

DeBitetto, D. J.

D. J. DeBitetto, “Holographic panoramic stereograms synthesized from white light recordings,” Appl. Opt. 8(8), 1740–1741 (1969).
[Crossref]

D. J. DeBitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12(10), 343–344 (1968).
[Crossref]

Feng, Q.

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Gotchev, A.

E. Sahin, S. Vagharshakyan, J. Makinen, R. Bregovic, and A. Gotchev, “Shearlet-domain light field reconstruction for holographic stereogram generation,” in IEEE International Conference on Image Processing (ICIP), pp. 1479–1483 (2016).

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Halle, M. W.

M. W. Halle, S. A. Benton, M. A. Klug, and J. S. Underkoffler, “Ultragram: a generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
[Crossref]

Honda, T.

Hong-Seok, L.

Hrynkiw, L.

D. Brotherton-Ratcliffe, A. Rodin, and L. Hrynkiw, “Method of writing a composite 1-step hologram,” US patent 7333252 (2002).

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Huang, Y.

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8(1), 4488 (2018).
[Crossref]

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8(6), 851 (2018).
[Crossref]

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25(19), 23523–23544 (2017).
[Crossref]

Javidi, B.

M. Yamaguchi and K. Wakunami, “13.7 Scanning Vertical Camera Array for Computational Holography,” in Multi-Dimensional Imaging (eds B. Javidi, E. Tajahuerce, and P. Andrés), IEEE Press, Wiley, pp. 315–322 (2014)

Jiang, X.

X. Yan, Y. Chen, J. Su, T. Zhang, Z. Chen, S. Chen, and X. Jiang, “Characteristic and improvement on the reconstructed quality of effective perspective images’ segmentation and mosaicking-based holographic stereogram,” Appl. Opt. 58(5), A128–A134 (2019).
[Crossref]

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8(1), 4488 (2018).
[Crossref]

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8(6), 851 (2018).
[Crossref]

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25(19), 23523–23544 (2017).
[Crossref]

Jin, G.

Jiwoon, Y.

Jonghyun, K.

Jungkwuen, A.

Jurik, J.

J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-corrected light field rendering for creating a holographic stereogram,” in IEEE Computer Vision and Pattern Recognition Workshops (CVPR), pp. 9–13 (2012).

Ka, J.-W.

P.-A. J. Blanche, C. M. Bigler, J.-W. Ka, and N. N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 23(4), 1–18 (2017).
[Crossref]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Keehoon, H.

King, M. C.

Klug, M.

J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-corrected light field rendering for creating a holographic stereogram,” in IEEE Computer Vision and Pattern Recognition Workshops (CVPR), pp. 9–13 (2012).

Klug, M. A.

M. W. Halle, S. A. Benton, M. A. Klug, and J. S. Underkoffler, “Ultragram: a generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
[Crossref]

Kyungsuk, P.

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Li, Y.

Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

Li, Z.

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Liu, P.

Lu, Z.

Lv, G.

Makinen, J.

E. Sahin, S. Vagharshakyan, J. Makinen, R. Bregovic, and A. Gotchev, “Shearlet-domain light field reconstruction for holographic stereogram generation,” in IEEE International Conference on Image Processing (ICIP), pp. 1479–1483 (2016).

Ming, H.

Nago, N.

Ni, C.

Noll, A. M.

Ohyama, N.

Peyghambarian, N. N.

P.-A. J. Blanche, C. M. Bigler, J.-W. Ka, and N. N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 23(4), 1–18 (2017).
[Crossref]

Pole, R. V.

R. V. Pole, “3-D Imagery and Holograms of Objects Illuminated in White Light,” Appl. Phys. Lett. 10(1), 20–22 (1967).
[Crossref]

Rodin, A.

D. Brotherton-Ratcliffe, A. Rodin, and L. Hrynkiw, “Method of writing a composite 1-step hologram,” US patent 7333252 (2002).

D. Brotherton-Ratcliffe and A. Rodin, “Holographic printer,” US patent 7161722 (2002).

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Sahin, E.

E. Sahin, S. Vagharshakyan, J. Makinen, R. Bregovic, and A. Gotchev, “Shearlet-domain light field reconstruction for holographic stereogram generation,” in IEEE International Conference on Image Processing (ICIP), pp. 1479–1483 (2016).

Sakamoto, Y.

Sang, X.

Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

Soon-Gi, P.

Su, J.

X. Yan, Y. Chen, J. Su, T. Zhang, Z. Chen, S. Chen, and X. Jiang, “Characteristic and improvement on the reconstructed quality of effective perspective images’ segmentation and mosaicking-based holographic stereogram,” Appl. Opt. 58(5), A128–A134 (2019).
[Crossref]

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8(1), 4488 (2018).
[Crossref]

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8(6), 851 (2018).
[Crossref]

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25(19), 23523–23544 (2017).
[Crossref]

Sun, X.

Sunil, K.

Tajahuerce, E.

M. Yamaguchi and K. Wakunami, “13.7 Scanning Vertical Camera Array for Computational Holography,” in Multi-Dimensional Imaging (eds B. Javidi, E. Tajahuerce, and P. Andrés), IEEE Press, Wiley, pp. 315–322 (2014)

Takaki, Y.

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref]

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Tunç, A.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Underkoffler, J. S.

M. W. Halle, S. A. Benton, M. A. Klug, and J. S. Underkoffler, “Ultragram: a generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
[Crossref]

Utsugi, T.

Vagharshakyan, S.

E. Sahin, S. Vagharshakyan, J. Makinen, R. Bregovic, and A. Gotchev, “Shearlet-domain light field reconstruction for holographic stereogram generation,” in IEEE International Conference on Image Processing (ICIP), pp. 1479–1483 (2016).

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Wakunami, K.

M. Yamaguchi and K. Wakunami, “13.7 Scanning Vertical Camera Array for Computational Holography,” in Multi-Dimensional Imaging (eds B. Javidi, E. Tajahuerce, and P. Andrés), IEEE Press, Wiley, pp. 315–322 (2014)

Wang, A.

Wang, H.

Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

Wang, K.

Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

Wang, Z.

Yamaguchi, M.

Yan, B.

Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

Yan, X.

X. Yan, Y. Chen, J. Su, T. Zhang, Z. Chen, S. Chen, and X. Jiang, “Characteristic and improvement on the reconstructed quality of effective perspective images’ segmentation and mosaicking-based holographic stereogram,” Appl. Opt. 58(5), A128–A134 (2019).
[Crossref]

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8(1), 4488 (2018).
[Crossref]

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8(6), 851 (2018).
[Crossref]

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25(19), 23523–23544 (2017).
[Crossref]

Yatagai, T.

Yuan, J.

Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

Yuan, Q.

Zhang, H.

Zhang, T.

X. Yan, Y. Chen, J. Su, T. Zhang, Z. Chen, S. Chen, and X. Jiang, “Characteristic and improvement on the reconstructed quality of effective perspective images’ segmentation and mosaicking-based holographic stereogram,” Appl. Opt. 58(5), A128–A134 (2019).
[Crossref]

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8(1), 4488 (2018).
[Crossref]

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8(6), 851 (2018).
[Crossref]

Zhao, Y.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

R. V. Pole, “3-D Imagery and Holograms of Objects Illuminated in White Light,” Appl. Phys. Lett. 10(1), 20–22 (1967).
[Crossref]

D. J. DeBitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12(10), 343–344 (1968).
[Crossref]

Appl. Sci. (1)

J. Su, X. Yan, Y. Huang, X. Jiang, Y. Chen, and T. Zhang, “Progress in the synthetic holographic stereogram printing technique,” Appl. Sci. 8(6), 851 (2018).
[Crossref]

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. A (1)

Nature (2)

S. Tay, P.-A. Blanche, R. Voorakaranam, A. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, and G. Li, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[Crossref]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, and M. Kathaperumal, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref]

Opt. Eng. (2)

H. I. Bjelkhagen and D. Brotherton-Ratcliffe, “Ultrarealistic imaging: The future of display holography,” Opt. Eng. 53(11), 112310 (2014).
[Crossref]

P.-A. J. Blanche, C. M. Bigler, J.-W. Ka, and N. N. Peyghambarian, “Fast and continuous recording of refreshable holographic stereograms,” Opt. Eng. 23(4), 1–18 (2017).
[Crossref]

Opt. Express (8)

J. Su, Q. Yuan, Y. Huang, X. Jiang, and X. Yan, “Method of single-step full parallax synthetic holographic stereogram printing based on effective perspective images’ segmentation and mosaicking,” Opt. Express 25(19), 23523–23544 (2017).
[Crossref]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref]

Z. Lu and Y. Sakamoto, “Holographic display method for volume data by volume rendering,” Opt. Express 27(2), 543–556 (2019).
[Crossref]

Z. Wang, G. Lv, Q. Feng, A. Wang, and H. Ming, “Resolution priority holographic stereogram based on integral imaging with enhanced depth range,” Opt. Express 27(3), 2689–2702 (2019).
[Crossref]

P. Liu, X. Sun, Y. Zhao, and Z. Li, “Ultrafast volume holographic recording with exposure reciprocity matching for TI/PMMAs application,” Opt. Express 27(14), 19583–19595 (2019).
[Crossref]

T. Utsugi and M. Yamaguchi, “Reduction of the recorded speckle noise in holographic 3D printer,” Opt. Express 21(1), 662–674 (2013).
[Crossref]

H. Keehoon, P. Soon-Gi, Y. Jiwoon, K. Jonghyun, C. Ni, P. Kyungsuk, C. Chilsung, K. Sunil, A. Jungkwuen, and L. Hong-Seok, “Resolution enhancement of holographic printer using a hogel overlapping method,” Opt. Express 21(12), 14047–14055 (2013).
[Crossref]

H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23(4), 3901–3913 (2015).
[Crossref]

Proc. IEEE (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Proc. SPIE (1)

M. W. Halle, S. A. Benton, M. A. Klug, and J. S. Underkoffler, “Ultragram: a generalized holographic stereogram,” Proc. SPIE 1461, 142–155 (1991).
[Crossref]

Sci. Rep. (1)

J. Su, X. Yan, X. Jiang, Y. Huang, Y. Chen, and T. Zhang, “Characteristic and optimization of the effective perspective images’ segmentation and mosaicking (EPISM) based holographic stereogram: an optical transfer function approach,” Sci. Rep. 8(1), 4488 (2018).
[Crossref]

Other (7)

J. Jurik, T. Burnett, M. Klug, and P. Debevec, “Geometry-corrected light field rendering for creating a holographic stereogram,” in IEEE Computer Vision and Pattern Recognition Workshops (CVPR), pp. 9–13 (2012).

M. Yamaguchi and K. Wakunami, “13.7 Scanning Vertical Camera Array for Computational Holography,” in Multi-Dimensional Imaging (eds B. Javidi, E. Tajahuerce, and P. Andrés), IEEE Press, Wiley, pp. 315–322 (2014)

E. Sahin, S. Vagharshakyan, J. Makinen, R. Bregovic, and A. Gotchev, “Shearlet-domain light field reconstruction for holographic stereogram generation,” in IEEE International Conference on Image Processing (ICIP), pp. 1479–1483 (2016).

Y. Li, X. Sang, D. Chen, P. Wang, H. Wang, J. Yuan, K. Wang, and B. Yan, “A Hole-filling Method for DIBR Based on Convolutional Neural Network,” in Conference on Lasers and Electro-Optics/Pacific Rim, pp. F1F. 5 (2018).

D. Brotherton-Ratcliffe and A. Rodin, “Holographic printer,” US patent 7161722 (2002).

D. Brotherton-Ratcliffe, A. Rodin, and L. Hrynkiw, “Method of writing a composite 1-step hologram,” US patent 7333252 (2002).

H. Bjelkhagen and D. Brotherton-Ratcliffe, “Ultra-realistic imaging: advanced techniques in analogue and digital colour holography,” (Taylor & Francis: CRC Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Principal implementation of EPISM. (a) capturing perspective images, (b) segmentation and mosaicking of effective perspective image, (c) exposure of hogel.
Fig. 2.
Fig. 2. Analysis on the reconstruction error of EPISM
Fig. 3.
Fig. 3. Characteristic of reconstruction error for object points not located on the reference plane.
Fig. 4.
Fig. 4. Numerical example of the reconstruction error. ${L_1} = {L_2} = 175\textrm{ mm}$, ${\Delta _c} = 5\textrm{ mm}$, and $OC \bot {C_u}{C_l}$.
Fig. 5.
Fig. 5. Principle of the MRP based EPISM. RP: reference plane, ESPI: effectively synthetic perspective image.
Fig. 6.
Fig. 6. Implementation of the MRP based EPISM
Fig. 7.
Fig. 7. (a) configuration of the sampling, (b) geometrical parameters for the generation of effectively synthetic perspective images, (c)–(e) the generated effectively synthetic perspective image based on EPISM with single reference plane RP1, RP2, and RP3 respectively, (f) the effectively synthetic perspective image generated by MRP based EPISM.
Fig. 8.
Fig. 8. Experiment setup of the printing of full-parallax holographic stereogram using the MRP based EPISM.
Fig. 9.
Fig. 9. (a) Geometrical configuration for the validation, (b) and (c) are reconstructed images focused on the smiling face and crying face with traditional EPISM respectively, and (d) and (e) are reconstructed images focused on the smiling face and crying face with MRP based EPISM respectively.
Fig. 10.
Fig. 10. Reconstructed images focused on part 2 (a) and part 1 (b) with traditional EPISM, and focused on part 2 (c) and part 1 (d) with MRP based EPISM.
Fig. 11.
Fig. 11. (a)–(i) are the reconstructed perspective images perceived at nine different angles of view.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ v R = L 1 + L 2 ( L 1 + Δ x R ) L 2 Δ x R Δ y R
Δ v L = L 1 + L 2 ( L 1 Δ x L ) L 2 Δ x L Δ y L
Δ v R Δ v L = L 1 = Δ x L 1 + Δ x < 1
M ( i , j ) = { 0 ,   I far ( i , j ) alpha = 255 1 ,   I far ( i , j ) alpha = 0
I MRP ( i , j ) = M ( i , j ) × I near ( i , j ) + [ 1 M ( i , j ) ] × I far ( i , j )
I 1 2 ( i , j ) = M 1 , 2 ( i , j ) × I 2 ( i , j ) + [ 1 M 1 , 2 ( i , j ) ] × I 1 ( i , j ) I 1 3 ( i , j ) = M 1 2 , 3 ( i , j ) × I 3 ( i , j ) + [ 1 M 1 2 , 3 ( i , j ) ] × I 1 2 ( i , j )   I 1 k ( i , j ) = M 1 ( k 1 ) , k ( i , j ) × I k ( i , j ) + [ 1 M 1 ( k 1 ) , k ( i , j ) ] × I 1 ( k 1 ) ( i , j )   I MRP ( i , j ) = M 1 ( n 1 ) , n ( i , j ) × I n ( i , j ) + [ 1 M 1 ( n 1 ) , n ( i , j ) ] × I 1 ( n 1 ) ( i , j )

Metrics