Abstract

In this study, the incorporation of surface plasmon resonance (SPR) spectroscopy with novel chitosan-graphene oxide/cadmium sulphide quantum dots (CdS QDs) active layer for cobalt ion (Co2+) detection has been developed. The interaction of different Co2+ concentrations with the novel modified active layer was monitored using the SPR technique. From the SPR results, detection range, sensitivity, full width at half maximum (FWHM), detection accuracy (DA) and signal-to-noise ratio (SNR) have been analysed. The results showed the detection range of this optical sensor was 0.01 to 10 ppm, and it was saturated for higher concentration of Co2+. The sensitivity obtained was 0.1188 ppm−1 for low concentration of Co2+ ranged from 0.01 to 1 ppm. The FWHM and DA were consistent for all concentration of Co2+, while the SNR of the SPR signal increased with the Co2+ concentration. The SPR angle shifts were also fitted using Langmuir, Freundlich and Sips (Langmuir-Freundlich) isotherm models, where Sips model fitted the best with the binding affinity of 0.939 ppm−1. The results proved that the novel chitosan-graphene oxide/CdS QDs modified gold thin film can detect Co2+ via SPR spectroscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

5 November 2019: A typographical correction was made to the author listing.


OSA Recommended Articles
Exploration of surface plasmon resonance for sensing copper ion based on nanocrystalline cellulose-modified thin film

Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Yap Wing Fen, Jaafar Abdullah, Amir Reza Sadrolhosseini, Silvan Saleviter, and Nur Alia Sheh Omar
Opt. Express 26(26) 34880-34893 (2018)

Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs

Yinquan Yuan, Xi Yang, Dejing Gong, Fang Liu, Wenbin Hu, Weiquan Cai, Jun Huang, and Minghong Yang
Opt. Express 25(4) 3884-3898 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Barałkiewicz and J. Siepak, “Chromium, Nickel and Cobalt in Environmental Samples and Existing Legal Norms,” Polish J. Environ. Stud. 8(4), 201–208 (1999).
  2. F. T. Manheim, “Marine cobalt resources,” Science 232(4750), 600–608 (1986).
    [Crossref]
  3. D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models,” Int. J. Mol. Sci. 13(7), 8388–8397 (2012).
    [Crossref]
  4. C. Lupi, M. Pasquali, and A. Dell’Era, “Nickel and Cobalt Recycling from Lithium-Ion Batteries by Electrochemical Processes,” Waste Manage. 25(2), 215–220 (2005).
    [Crossref]
  5. V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “Dopamine Dithiocarbamate Functionalized Silver Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Ion,” Anal. Methods 5(7), 1818–1822 (2013).
    [Crossref]
  6. R. Lauwerys and D. Lison, “Health Risks Associated with Cobalt Exposure An Overview,” Sci. Total Environ. 150(1-3), 1–6 (1994).
    [Crossref]
  7. H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
    [Crossref]
  8. D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger, “A Review of the Health Hazards Posed by Cobalt,” Crit. Rev. Toxicol. 43(4), 316–362 (2013).
    [Crossref]
  9. S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of Optical Sensor for Determination of Co(II) Based on Surface Plasmon Resonance Phenomenon,” Sens. Lett. 15(10), 862–867 (2017).
    [Crossref]
  10. N. A. Yusof and M. Ahmad, “A Flow Cell Optosensor for Determination of Co(II) Based on Immobilised 2-(4-Pyridylazo)Resorcinol in Chitosan Membrane by Using Stopped Flow, Flow Injection Analysis,” Sens. Actuators, B 86(2-3), 127–133 (2002).
    [Crossref]
  11. H. Sharma, A. Singh, N. Kaur, and N. Singh, “ZnO-Based Imine-Linked Coupled Biocompatible Chemosensor for Nanomolar Detection of Co2+,” ACS Sustainable Chem. Eng. 1(12), 1600–1608 (2013).
    [Crossref]
  12. M. Zhang, Y. Q. Liu, and B. C. Ye, “Colorimetric Assay for Parallel Detection of Cd2+, Ni2+ and Co2+ Using Peptide-Modified Gold Nanoparticles,” Analyst 137(3), 601–607 (2012).
    [Crossref]
  13. H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A Theoretical Model for the Temperature-dependent Sensitivity of the Optical Sensor Based on Surface Plasmon Resonance,” Opt. Commun. 188(5-6), 283–289 (2001).
    [Crossref]
  14. N. A. S. Omar and Y. W. Fen, “Recent Development of SPR Spectroscopy as Potential Method for Diagnosis of Dengue Virus E-Protein,” Sens. Rev. 38(1), 106–116 (2018).
    [Crossref]
  15. L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
    [Crossref]
  16. P. Singh, “SPR Biosensors: Historical Perspectives and Current Challenges,” Sens. Actuators, B 229, 110–130 (2016).
    [Crossref]
  17. A. Sionkowska and A. Płanecka, “Surface Properties of Thin Films Based on the Mixtures of Chitosan and Silk Fibroin,” J. Mol. Liq. 186, 157–162 (2013).
    [Crossref]
  18. O. Tabasi and C. Falamaki, “Analytical Methods Recent Advancements in the Methodologies Applied for the Sensitivity Enhancement of Surface Plasmon Resonance Sensors,” Sens. Actuators, B 10(32), 3906–3925 (2018).
  19. L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, and X. Dai, “Few-Layer Ti 3C2Tx MXene : A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity,” Sens. Actuators, B 277, 210–215 (2018).
    [Crossref]
  20. K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors 18(10), 3295 (2018).
    [Crossref]
  21. N. A. S. Omar, Y. W. Fen, J. Abdullah, M. H. M. Zaid, and M. A. Mahdi, “Structural, Optical and Sensing Properties of CdS-NH2GO Thin Film as a Dengue Virus E-protein Sensing Material,” Optik (Stuttg.) 171, 934–940 (2018).
    [Crossref]
  22. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface Plasmon Resonance Optical Sensor for Detection of Pb2+ Based on Immobilized P-Tert-Butylcalix[4]Arene-Tetrakis in Chitosan Thin Film as an Active Layer,” Sens. Actuators, B 171-172, 287–293 (2012).
    [Crossref]
  23. A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of Surface Plasmon Resonance with Novel Valinomycin Doped Chitosan-Graphene Oxide Thin Film for Sensing Potassium Ion. Spectrochim,” Spectrochim. Acta, Part A 191, 111–115 (2018).
    [Crossref]
  24. S. B. D. Borah, T. Bora, S. Baruah, and J. Dutta, “Heavy Metal Ion Sensing in Water Using Surface Plasmon Resonance of Metallic Nanostructures,” Groundw. Sustain. Dev. 1(1-2), 1–11 (2015).
    [Crossref]
  25. W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. Sheh Omar, “Preparation and Characterization of Hexadecyltrimethylammonium Bromide Modified Nanocrystalline Cellulose/Graphene Oxide Composite Thin Film and Its Potential in Sensing Copper Ion Using Surface Plasmon Resonance Technique,” Optik (Stuttg.) 173, 71–77 (2018).
    [Crossref]
  26. W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta, Part A 212, 25–31 (2019).
    [Crossref]
  27. Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) Ion Sensing by Crosslinked Chitosan Thin Film Using Surface Plasmon Resonance Spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
    [Crossref]
  28. Y. W. Fen and W. M. M. Yunus, “Surface Plasmon Resonance Spectroscopy as an Alternative for Sensing Heavy Metal Ions: A Review,” Sens. Rev. 33(4), 305–314 (2013).
    [Crossref]
  29. O. Pluchery, R. Vayron, and K. M. Van, “Laboratory Experiments for Exploring the Surface Plasmon Resonance,” Eur. J. Phys. 32(2), 585–599 (2011).
    [Crossref]
  30. X. Zhou, K. Chen, L. Li, W. Peng, and Q. Yu, “Angle Modulated Surface Plasmon Resonance Spectrometer for Refractive Index Sensing with Enhanced Detection Resolution,” Opt. Commun. 382, 610–614 (2017).
    [Crossref]
  31. A. Paliwal, R. Gaur, A. Sharma, M. Tomar, and V. Gupta, “Sensitive Optical Biosensor Based on Surface Plasmon Resonance Using ZnO/Au Bilayered Structure,” Optik (Stuttg.) 127(19), 7642–7647 (2016).
    [Crossref]
  32. A. A. Zainudin, Y. W. Fen, N. A. Yusof, and N. A. S. Omar, “Structural, Optical and Sensing Properties of Ionophore Doped Graphene Based Bionanocomposite Thin Film,” Optik (Stuttg.) 144, 308–315 (2017).
    [Crossref]
  33. W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Exploration of Surface Plasmon Resonance for Sensing Copper Ion Based on Nanocrystalline Cellulose-Modified Thin Film,” Opt. Express 26(26), 34880–34893 (2018).
    [Crossref]
  34. M. D. A. Roshidi, Y. W. Fen, W. M. E. M. M. Daniyal, N. A. S. Omar, and M. Zulholinda, “Structural and Optical Properties of Chitosan–Poly (amidoamine) Dendrimer Composite Thin Film for Potential Sensing Pb2+ using an Optical Spectroscopy,” Optik (Stuttg.) 185, 351–358 (2019).
    [Crossref]
  35. Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Optical Properties of Cross-Linked Chitosan Thin Film for Copper Ion Detection Using Surface Plasmon Resonance Technique,” Opt. Appl. 41(4), 999–1013 (2011).
  36. B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
    [Crossref]
  37. M. N. R. Kumar, “A Review of Chitin and Chitosan Applications. Reactive and Functional Polymers,” React. Funct. Polym. 46(1), 1–27 (2000).
    [Crossref]
  38. P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, “Bioresource Technology Environmental Applications of Chitosan and Cellulosic Biopolymers : A Comprehensive Outlook,” Bioresour. Technol. 242, 295–303 (2017).
    [Crossref]
  39. X. Luo, J. Zeng, S. Liu, and L. Zhang, “Bioresource Technology an Effective and Recyclable Adsorbent for the Removal of Heavy Metal Ions from Aqueous System : Magnetic Chitosan/Cellulose Microspheres,” Bioresour. Technol. 194, 403–406 (2015).
    [Crossref]
  40. N. F. Lokman, A. A. A. Bakar, H. F. S. Abdullah, W. B. W. A. Rahman, N. M. Huang, and M. H. Yaacob, “Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin Films toward Pb(II) Ions,” Sens. Actuators, B 195, 459–466 (2014).
    [Crossref]
  41. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
    [Crossref]
  42. J. Abolhasani, “Fluorescence Quenching of CdS Quantum Dots and Its Application to Determination of Copper and Nickel Contamination in Well and Dam Water,” J. Chem. Heal. Risks 5(2), 145–154 (2015).
  43. T. Khantaw, C. Boonmee, T. Tuntulani, and W. Ngeontae, “Selective Turn-on Fluorescence Sensor for Ag+ Using Cysteamine Capped CdS Quantum Dots: Determination of Free Ag+ in Silver Nanoparticles Solution,” Talanta 115, 849–856 (2013).
    [Crossref]
  44. S. Liu, W. Na, S. Pang, and X. Su, “Fluorescence Detection of Pb2+based on the DNA Sequence Functionalized CdS Quantum Dots,” Biosens. Bioelectron. 58, 17–21 (2014).
    [Crossref]
  45. S. Saleviter, Y. W. Fen, N. A. S. Omar, W. M. E. M. Daniyal, and J. Abdullah, “Structural and Optical Studies of Cadmium Sulfide Quantum Dot-Graphene Oxide-Chitosan Nanocomposite Thin Film as a Novel SPR Spectroscopy Active Layer,” J. Nanomater. 2018, 1–8 (2018).
    [Crossref]
  46. M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
    [Crossref]
  47. Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-Time Monitoring of Lead Ion Interaction on Gold/Chitosan Surface Using Surface Plasmon Resonance Spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
    [Crossref]
  48. Y. W. Fen and W. M. M. Yunus, “Characterization of the Optical Properties of Heavy Metal Ions Using Surface Plasmon Resonance Technique,” Opt. Photonics J. 01(03), 116–123 (2011).
    [Crossref]
  49. Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, Characterization and Optical Properties of Ionophore Doped Chitosan Biopolymer Thin Film and Its Potential Application for Sensing Metal Ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
    [Crossref]
  50. Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of Surface Plasmon Resonance Sensor for Determining Zinc Ion Using Novel Active Nanolayers as Probe,” Spectrochim. Acta, Part A 134, 48–52 (2015).
    [Crossref]
  51. U. Jeong, H. H. Shin, and Y. H. Kim, “Functionalized Magnetic Core-shell Fe@SiO2 Nanoparticles as Recoverable Colorimetric Sensor for Co2+ Ion,” Chem. Eng. J. 281, 428–433 (2015).
    [Crossref]
  52. U. B. Patel, V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “4-Aminothiophenol Functionalized Gold Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Using UV–Visible Spectrometry,” Res. Chem. Intermed. 39(2), 771–779 (2013).
    [Crossref]
  53. C. H. Zeng, X. T. Meng, S. S. Xu, L. J. Han, S. L. Zhong, and M. Y. Jia, “A Polymorphic Lanthanide Complex as Selective Co2+ Sensor and Luminescent Timer,” Sens. Actuators, B 221, 127–135 (2015).
    [Crossref]
  54. D. Kong, F. Y. Yan, J. X. Xu, X. F. Guo, and L. Chen, “Cobalt (II) Ions Detection Using Carbon Dots as an Sensitive and Selective Fluorescent Probe,” RSC Adv. 6(72), 67481–67487 (2016).
    [Crossref]
  55. A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
    [Crossref]
  56. N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an Optical Sensor Based on Surface Plasmon Resonance Phenomenon for Diagnosis of Dengue Virus E-Protein,” Water, Air, Soil Pollut. 20, 16–21 (2018).
    [Crossref]
  57. N. H. Kamaruddin, A. A. A. Bakar, M. H. Yaacob, M. A. Mahdi, M. S. D. Zan, and S. Shaari, “Enhancement of Chitosan-Graphene Oxide SPR Sensor with a Multi-Metallic Layers of Au-Ag-Au Nanostructure for Lead(II) Ion Detection,” Appl. Surf. Sci. 361, 177–184 (2016).
    [Crossref]
  58. N. Kamaruddin, A. A. Bakar, N. Mobarak, M. S. Zan, and N. Arsad, “Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions,” Sensors 17(10), 2277 (2017).
    [Crossref]
  59. Y. S. Ho, J. F. Porter, and G. McKay, “Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems,” Water, Air, Soil Pollut. 141(1/4), 1–33 (2002).
    [Crossref]
  60. Y. W. Fen and W. M. M. Yunus, “Utilization of Chitosan-Based Sensor Thin Films for the Detection of Lead Ion by Surface Plasmon Resonance Optical Sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
    [Crossref]
  61. A. Sharma, R. Jha, and B. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
    [Crossref]
  62. A. R. Sadrolhosseini, M. Naseri, and H. M. Kamari, “Surface Plasmon Resonance Sensor for Detecting of Arsenic in Aqueous Solution Using Polypyrrole-Chitosan-Cobalt Ferrite Nanoparticles Composite Layer,” Opt. Commun. 383, 132–137 (2017).
    [Crossref]
  63. S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem. 10(4), 1–14 (2016).
    [Crossref]
  64. G. P. Jeppu and T. P. A. Clement, “Modified Langmuir-Freundlich Isotherm Model for Simulating PH-Dependent Adsorption Effects,” J. Contam. Hydrol. 129-130, 46–53 (2012).
    [Crossref]
  65. M. Asgari, H. Anisi, H. Mohammadi, and S. Sadighi, “Designing a Commercial Scale Pressure Swing Adsorber for Hydrogen Purification,” Pet. Coal. 56(5), 552–561 (2014).

2019 (3)

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta, Part A 212, 25–31 (2019).
[Crossref]

M. D. A. Roshidi, Y. W. Fen, W. M. E. M. M. Daniyal, N. A. S. Omar, and M. Zulholinda, “Structural and Optical Properties of Chitosan–Poly (amidoamine) Dendrimer Composite Thin Film for Potential Sensing Pb2+ using an Optical Spectroscopy,” Optik (Stuttg.) 185, 351–358 (2019).
[Crossref]

2018 (10)

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. Sheh Omar, “Preparation and Characterization of Hexadecyltrimethylammonium Bromide Modified Nanocrystalline Cellulose/Graphene Oxide Composite Thin Film and Its Potential in Sensing Copper Ion Using Surface Plasmon Resonance Technique,” Optik (Stuttg.) 173, 71–77 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of Surface Plasmon Resonance with Novel Valinomycin Doped Chitosan-Graphene Oxide Thin Film for Sensing Potassium Ion. Spectrochim,” Spectrochim. Acta, Part A 191, 111–115 (2018).
[Crossref]

O. Tabasi and C. Falamaki, “Analytical Methods Recent Advancements in the Methodologies Applied for the Sensitivity Enhancement of Surface Plasmon Resonance Sensors,” Sens. Actuators, B 10(32), 3906–3925 (2018).

L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, and X. Dai, “Few-Layer Ti 3C2Tx MXene : A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity,” Sens. Actuators, B 277, 210–215 (2018).
[Crossref]

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors 18(10), 3295 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, M. H. M. Zaid, and M. A. Mahdi, “Structural, Optical and Sensing Properties of CdS-NH2GO Thin Film as a Dengue Virus E-protein Sensing Material,” Optik (Stuttg.) 171, 934–940 (2018).
[Crossref]

N. A. S. Omar and Y. W. Fen, “Recent Development of SPR Spectroscopy as Potential Method for Diagnosis of Dengue Virus E-Protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, W. M. E. M. Daniyal, and J. Abdullah, “Structural and Optical Studies of Cadmium Sulfide Quantum Dot-Graphene Oxide-Chitosan Nanocomposite Thin Film as a Novel SPR Spectroscopy Active Layer,” J. Nanomater. 2018, 1–8 (2018).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Exploration of Surface Plasmon Resonance for Sensing Copper Ion Based on Nanocrystalline Cellulose-Modified Thin Film,” Opt. Express 26(26), 34880–34893 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an Optical Sensor Based on Surface Plasmon Resonance Phenomenon for Diagnosis of Dengue Virus E-Protein,” Water, Air, Soil Pollut. 20, 16–21 (2018).
[Crossref]

2017 (8)

N. Kamaruddin, A. A. Bakar, N. Mobarak, M. S. Zan, and N. Arsad, “Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions,” Sensors 17(10), 2277 (2017).
[Crossref]

A. R. Sadrolhosseini, M. Naseri, and H. M. Kamari, “Surface Plasmon Resonance Sensor for Detecting of Arsenic in Aqueous Solution Using Polypyrrole-Chitosan-Cobalt Ferrite Nanoparticles Composite Layer,” Opt. Commun. 383, 132–137 (2017).
[Crossref]

M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
[Crossref]

P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, “Bioresource Technology Environmental Applications of Chitosan and Cellulosic Biopolymers : A Comprehensive Outlook,” Bioresour. Technol. 242, 295–303 (2017).
[Crossref]

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of Optical Sensor for Determination of Co(II) Based on Surface Plasmon Resonance Phenomenon,” Sens. Lett. 15(10), 862–867 (2017).
[Crossref]

X. Zhou, K. Chen, L. Li, W. Peng, and Q. Yu, “Angle Modulated Surface Plasmon Resonance Spectrometer for Refractive Index Sensing with Enhanced Detection Resolution,” Opt. Commun. 382, 610–614 (2017).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, and N. A. S. Omar, “Structural, Optical and Sensing Properties of Ionophore Doped Graphene Based Bionanocomposite Thin Film,” Optik (Stuttg.) 144, 308–315 (2017).
[Crossref]

2016 (6)

A. Paliwal, R. Gaur, A. Sharma, M. Tomar, and V. Gupta, “Sensitive Optical Biosensor Based on Surface Plasmon Resonance Using ZnO/Au Bilayered Structure,” Optik (Stuttg.) 127(19), 7642–7647 (2016).
[Crossref]

P. Singh, “SPR Biosensors: Historical Perspectives and Current Challenges,” Sens. Actuators, B 229, 110–130 (2016).
[Crossref]

S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem. 10(4), 1–14 (2016).
[Crossref]

N. H. Kamaruddin, A. A. A. Bakar, M. H. Yaacob, M. A. Mahdi, M. S. D. Zan, and S. Shaari, “Enhancement of Chitosan-Graphene Oxide SPR Sensor with a Multi-Metallic Layers of Au-Ag-Au Nanostructure for Lead(II) Ion Detection,” Appl. Surf. Sci. 361, 177–184 (2016).
[Crossref]

D. Kong, F. Y. Yan, J. X. Xu, X. F. Guo, and L. Chen, “Cobalt (II) Ions Detection Using Carbon Dots as an Sensitive and Selective Fluorescent Probe,” RSC Adv. 6(72), 67481–67487 (2016).
[Crossref]

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

2015 (7)

C. H. Zeng, X. T. Meng, S. S. Xu, L. J. Han, S. L. Zhong, and M. Y. Jia, “A Polymorphic Lanthanide Complex as Selective Co2+ Sensor and Luminescent Timer,” Sens. Actuators, B 221, 127–135 (2015).
[Crossref]

X. Luo, J. Zeng, S. Liu, and L. Zhang, “Bioresource Technology an Effective and Recyclable Adsorbent for the Removal of Heavy Metal Ions from Aqueous System : Magnetic Chitosan/Cellulose Microspheres,” Bioresour. Technol. 194, 403–406 (2015).
[Crossref]

J. Abolhasani, “Fluorescence Quenching of CdS Quantum Dots and Its Application to Determination of Copper and Nickel Contamination in Well and Dam Water,” J. Chem. Heal. Risks 5(2), 145–154 (2015).

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, Characterization and Optical Properties of Ionophore Doped Chitosan Biopolymer Thin Film and Its Potential Application for Sensing Metal Ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of Surface Plasmon Resonance Sensor for Determining Zinc Ion Using Novel Active Nanolayers as Probe,” Spectrochim. Acta, Part A 134, 48–52 (2015).
[Crossref]

U. Jeong, H. H. Shin, and Y. H. Kim, “Functionalized Magnetic Core-shell Fe@SiO2 Nanoparticles as Recoverable Colorimetric Sensor for Co2+ Ion,” Chem. Eng. J. 281, 428–433 (2015).
[Crossref]

S. B. D. Borah, T. Bora, S. Baruah, and J. Dutta, “Heavy Metal Ion Sensing in Water Using Surface Plasmon Resonance of Metallic Nanostructures,” Groundw. Sustain. Dev. 1(1-2), 1–11 (2015).
[Crossref]

2014 (3)

N. F. Lokman, A. A. A. Bakar, H. F. S. Abdullah, W. B. W. A. Rahman, N. M. Huang, and M. H. Yaacob, “Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin Films toward Pb(II) Ions,” Sens. Actuators, B 195, 459–466 (2014).
[Crossref]

M. Asgari, H. Anisi, H. Mohammadi, and S. Sadighi, “Designing a Commercial Scale Pressure Swing Adsorber for Hydrogen Purification,” Pet. Coal. 56(5), 552–561 (2014).

S. Liu, W. Na, S. Pang, and X. Su, “Fluorescence Detection of Pb2+based on the DNA Sequence Functionalized CdS Quantum Dots,” Biosens. Bioelectron. 58, 17–21 (2014).
[Crossref]

2013 (10)

Y. W. Fen and W. M. M. Yunus, “Utilization of Chitosan-Based Sensor Thin Films for the Detection of Lead Ion by Surface Plasmon Resonance Optical Sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

T. Khantaw, C. Boonmee, T. Tuntulani, and W. Ngeontae, “Selective Turn-on Fluorescence Sensor for Ag+ Using Cysteamine Capped CdS Quantum Dots: Determination of Free Ag+ in Silver Nanoparticles Solution,” Talanta 115, 849–856 (2013).
[Crossref]

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

U. B. Patel, V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “4-Aminothiophenol Functionalized Gold Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Using UV–Visible Spectrometry,” Res. Chem. Intermed. 39(2), 771–779 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) Ion Sensing by Crosslinked Chitosan Thin Film Using Surface Plasmon Resonance Spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Surface Plasmon Resonance Spectroscopy as an Alternative for Sensing Heavy Metal Ions: A Review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

A. Sionkowska and A. Płanecka, “Surface Properties of Thin Films Based on the Mixtures of Chitosan and Silk Fibroin,” J. Mol. Liq. 186, 157–162 (2013).
[Crossref]

H. Sharma, A. Singh, N. Kaur, and N. Singh, “ZnO-Based Imine-Linked Coupled Biocompatible Chemosensor for Nanomolar Detection of Co2+,” ACS Sustainable Chem. Eng. 1(12), 1600–1608 (2013).
[Crossref]

D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger, “A Review of the Health Hazards Posed by Cobalt,” Crit. Rev. Toxicol. 43(4), 316–362 (2013).
[Crossref]

V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “Dopamine Dithiocarbamate Functionalized Silver Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Ion,” Anal. Methods 5(7), 1818–1822 (2013).
[Crossref]

2012 (5)

D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models,” Int. J. Mol. Sci. 13(7), 8388–8397 (2012).
[Crossref]

M. Zhang, Y. Q. Liu, and B. C. Ye, “Colorimetric Assay for Parallel Detection of Cd2+, Ni2+ and Co2+ Using Peptide-Modified Gold Nanoparticles,” Analyst 137(3), 601–607 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface Plasmon Resonance Optical Sensor for Detection of Pb2+ Based on Immobilized P-Tert-Butylcalix[4]Arene-Tetrakis in Chitosan Thin Film as an Active Layer,” Sens. Actuators, B 171-172, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-Time Monitoring of Lead Ion Interaction on Gold/Chitosan Surface Using Surface Plasmon Resonance Spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

G. P. Jeppu and T. P. A. Clement, “Modified Langmuir-Freundlich Isotherm Model for Simulating PH-Dependent Adsorption Effects,” J. Contam. Hydrol. 129-130, 46–53 (2012).
[Crossref]

2011 (4)

Y. W. Fen and W. M. M. Yunus, “Characterization of the Optical Properties of Heavy Metal Ions Using Surface Plasmon Resonance Technique,” Opt. Photonics J. 01(03), 116–123 (2011).
[Crossref]

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

O. Pluchery, R. Vayron, and K. M. Van, “Laboratory Experiments for Exploring the Surface Plasmon Resonance,” Eur. J. Phys. 32(2), 585–599 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Optical Properties of Cross-Linked Chitosan Thin Film for Copper Ion Detection Using Surface Plasmon Resonance Technique,” Opt. Appl. 41(4), 999–1013 (2011).

2007 (1)

A. Sharma, R. Jha, and B. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

2005 (1)

C. Lupi, M. Pasquali, and A. Dell’Era, “Nickel and Cobalt Recycling from Lithium-Ion Batteries by Electrochemical Processes,” Waste Manage. 25(2), 215–220 (2005).
[Crossref]

2002 (2)

N. A. Yusof and M. Ahmad, “A Flow Cell Optosensor for Determination of Co(II) Based on Immobilised 2-(4-Pyridylazo)Resorcinol in Chitosan Membrane by Using Stopped Flow, Flow Injection Analysis,” Sens. Actuators, B 86(2-3), 127–133 (2002).
[Crossref]

Y. S. Ho, J. F. Porter, and G. McKay, “Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems,” Water, Air, Soil Pollut. 141(1/4), 1–33 (2002).
[Crossref]

2001 (1)

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A Theoretical Model for the Temperature-dependent Sensitivity of the Optical Sensor Based on Surface Plasmon Resonance,” Opt. Commun. 188(5-6), 283–289 (2001).
[Crossref]

2000 (1)

M. N. R. Kumar, “A Review of Chitin and Chitosan Applications. Reactive and Functional Polymers,” React. Funct. Polym. 46(1), 1–27 (2000).
[Crossref]

1999 (1)

D. Barałkiewicz and J. Siepak, “Chromium, Nickel and Cobalt in Environmental Samples and Existing Legal Norms,” Polish J. Environ. Stud. 8(4), 201–208 (1999).

1994 (1)

R. Lauwerys and D. Lison, “Health Risks Associated with Cobalt Exposure An Overview,” Sci. Total Environ. 150(1-3), 1–6 (1994).
[Crossref]

1986 (1)

F. T. Manheim, “Marine cobalt resources,” Science 232(4750), 600–608 (1986).
[Crossref]

Abdullah, H. F. S.

N. F. Lokman, A. A. A. Bakar, H. F. S. Abdullah, W. B. W. A. Rahman, N. M. Huang, and M. H. Yaacob, “Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin Films toward Pb(II) Ions,” Sens. Actuators, B 195, 459–466 (2014).
[Crossref]

Abdullah, J.

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta, Part A 212, 25–31 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. Sheh Omar, “Preparation and Characterization of Hexadecyltrimethylammonium Bromide Modified Nanocrystalline Cellulose/Graphene Oxide Composite Thin Film and Its Potential in Sensing Copper Ion Using Surface Plasmon Resonance Technique,” Optik (Stuttg.) 173, 71–77 (2018).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Exploration of Surface Plasmon Resonance for Sensing Copper Ion Based on Nanocrystalline Cellulose-Modified Thin Film,” Opt. Express 26(26), 34880–34893 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, M. H. M. Zaid, and M. A. Mahdi, “Structural, Optical and Sensing Properties of CdS-NH2GO Thin Film as a Dengue Virus E-protein Sensing Material,” Optik (Stuttg.) 171, 934–940 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, W. M. E. M. Daniyal, and J. Abdullah, “Structural and Optical Studies of Cadmium Sulfide Quantum Dot-Graphene Oxide-Chitosan Nanocomposite Thin Film as a Novel SPR Spectroscopy Active Layer,” J. Nanomater. 2018, 1–8 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an Optical Sensor Based on Surface Plasmon Resonance Phenomenon for Diagnosis of Dengue Virus E-Protein,” Water, Air, Soil Pollut. 20, 16–21 (2018).
[Crossref]

M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
[Crossref]

Abolhasani, J.

J. Abolhasani, “Fluorescence Quenching of CdS Quantum Dots and Its Application to Determination of Copper and Nickel Contamination in Well and Dam Water,” J. Chem. Heal. Risks 5(2), 145–154 (2015).

Ahmad, M.

N. A. Yusof and M. Ahmad, “A Flow Cell Optosensor for Determination of Co(II) Based on Immobilised 2-(4-Pyridylazo)Resorcinol in Chitosan Membrane by Using Stopped Flow, Flow Injection Analysis,” Sens. Actuators, B 86(2-3), 127–133 (2002).
[Crossref]

Al-Rekabi, S. H.

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of Surface Plasmon Resonance with Novel Valinomycin Doped Chitosan-Graphene Oxide Thin Film for Sensing Potassium Ion. Spectrochim,” Spectrochim. Acta, Part A 191, 111–115 (2018).
[Crossref]

Alwahib, A. A.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

An’Amt, M. N.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Anisi, H.

M. Asgari, H. Anisi, H. Mohammadi, and S. Sadighi, “Designing a Commercial Scale Pressure Swing Adsorber for Hydrogen Purification,” Pet. Coal. 56(5), 552–561 (2014).

Aravind, J.

P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, “Bioresource Technology Environmental Applications of Chitosan and Cellulosic Biopolymers : A Comprehensive Outlook,” Bioresour. Technol. 242, 295–303 (2017).
[Crossref]

Arsad, N.

N. Kamaruddin, A. A. Bakar, N. Mobarak, M. S. Zan, and N. Arsad, “Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions,” Sensors 17(10), 2277 (2017).
[Crossref]

Asgari, M.

M. Asgari, H. Anisi, H. Mohammadi, and S. Sadighi, “Designing a Commercial Scale Pressure Swing Adsorber for Hydrogen Purification,” Pet. Coal. 56(5), 552–561 (2014).

Bakar, A. A.

N. Kamaruddin, A. A. Bakar, N. Mobarak, M. S. Zan, and N. Arsad, “Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions,” Sensors 17(10), 2277 (2017).
[Crossref]

Bakar, A. A. A.

N. H. Kamaruddin, A. A. A. Bakar, M. H. Yaacob, M. A. Mahdi, M. S. D. Zan, and S. Shaari, “Enhancement of Chitosan-Graphene Oxide SPR Sensor with a Multi-Metallic Layers of Au-Ag-Au Nanostructure for Lead(II) Ion Detection,” Appl. Surf. Sci. 361, 177–184 (2016).
[Crossref]

N. F. Lokman, A. A. A. Bakar, H. F. S. Abdullah, W. B. W. A. Rahman, N. M. Huang, and M. H. Yaacob, “Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin Films toward Pb(II) Ions,” Sens. Actuators, B 195, 459–466 (2014).
[Crossref]

Bakar, M. H. A.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Baralkiewicz, D.

D. Barałkiewicz and J. Siepak, “Chromium, Nickel and Cobalt in Environmental Samples and Existing Legal Norms,” Polish J. Environ. Stud. 8(4), 201–208 (1999).

Baruah, S.

S. B. D. Borah, T. Bora, S. Baruah, and J. Dutta, “Heavy Metal Ion Sensing in Water Using Surface Plasmon Resonance of Metallic Nanostructures,” Groundw. Sustain. Dev. 1(1-2), 1–11 (2015).
[Crossref]

Boey, F.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Boonmee, C.

T. Khantaw, C. Boonmee, T. Tuntulani, and W. Ngeontae, “Selective Turn-on Fluorescence Sensor for Ag+ Using Cysteamine Capped CdS Quantum Dots: Determination of Free Ag+ in Silver Nanoparticles Solution,” Talanta 115, 849–856 (2013).
[Crossref]

Bora, T.

S. B. D. Borah, T. Bora, S. Baruah, and J. Dutta, “Heavy Metal Ion Sensing in Water Using Surface Plasmon Resonance of Metallic Nanostructures,” Groundw. Sustain. Dev. 1(1-2), 1–11 (2015).
[Crossref]

Borah, S. B. D.

S. B. D. Borah, T. Bora, S. Baruah, and J. Dutta, “Heavy Metal Ion Sensing in Water Using Surface Plasmon Resonance of Metallic Nanostructures,” Groundw. Sustain. Dev. 1(1-2), 1–11 (2015).
[Crossref]

Boukherroub, R.

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

Chen, K.

X. Zhou, K. Chen, L. Li, W. Peng, and Q. Yu, “Angle Modulated Surface Plasmon Resonance Spectrometer for Refractive Index Sensing with Enhanced Detection Resolution,” Opt. Commun. 382, 610–614 (2017).
[Crossref]

Chen, L.

D. Kong, F. Y. Yan, J. X. Xu, X. F. Guo, and L. Chen, “Cobalt (II) Ions Detection Using Carbon Dots as an Sensitive and Selective Fluorescent Probe,” RSC Adv. 6(72), 67481–67487 (2016).
[Crossref]

Chiang, H. P.

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A Theoretical Model for the Temperature-dependent Sensitivity of the Optical Sensor Based on Surface Plasmon Resonance,” Opt. Commun. 188(5-6), 283–289 (2001).
[Crossref]

Chik, C. E. N. C. E.

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an Optical Sensor Based on Surface Plasmon Resonance Phenomenon for Diagnosis of Dengue Virus E-Protein,” Water, Air, Soil Pollut. 20, 16–21 (2018).
[Crossref]

Choi, H. I.

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

Clement, T. P. A.

G. P. Jeppu and T. P. A. Clement, “Modified Langmuir-Freundlich Isotherm Model for Simulating PH-Dependent Adsorption Effects,” J. Contam. Hydrol. 129-130, 46–53 (2012).
[Crossref]

Dai, X.

L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, and X. Dai, “Few-Layer Ti 3C2Tx MXene : A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity,” Sens. Actuators, B 277, 210–215 (2018).
[Crossref]

Daniyal, W. M. E. M.

S. Saleviter, Y. W. Fen, N. A. S. Omar, W. M. E. M. Daniyal, and J. Abdullah, “Structural and Optical Studies of Cadmium Sulfide Quantum Dot-Graphene Oxide-Chitosan Nanocomposite Thin Film as a Novel SPR Spectroscopy Active Layer,” J. Nanomater. 2018, 1–8 (2018).
[Crossref]

Daniyal, W. M. E. M. M.

M. D. A. Roshidi, Y. W. Fen, W. M. E. M. M. Daniyal, N. A. S. Omar, and M. Zulholinda, “Structural and Optical Properties of Chitosan–Poly (amidoamine) Dendrimer Composite Thin Film for Potential Sensing Pb2+ using an Optical Spectroscopy,” Optik (Stuttg.) 185, 351–358 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta, Part A 212, 25–31 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. Sheh Omar, “Preparation and Characterization of Hexadecyltrimethylammonium Bromide Modified Nanocrystalline Cellulose/Graphene Oxide Composite Thin Film and Its Potential in Sensing Copper Ion Using Surface Plasmon Resonance Technique,” Optik (Stuttg.) 173, 71–77 (2018).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Exploration of Surface Plasmon Resonance for Sensing Copper Ion Based on Nanocrystalline Cellulose-Modified Thin Film,” Opt. Express 26(26), 34880–34893 (2018).
[Crossref]

Dell’Era, A.

C. Lupi, M. Pasquali, and A. Dell’Era, “Nickel and Cobalt Recycling from Lithium-Ion Batteries by Electrochemical Processes,” Waste Manage. 25(2), 215–220 (2005).
[Crossref]

Dutta, J.

S. B. D. Borah, T. Bora, S. Baruah, and J. Dutta, “Heavy Metal Ion Sensing in Water Using Surface Plasmon Resonance of Metallic Nanostructures,” Groundw. Sustain. Dev. 1(1-2), 1–11 (2015).
[Crossref]

Falamaki, C.

O. Tabasi and C. Falamaki, “Analytical Methods Recent Advancements in the Methodologies Applied for the Sensitivity Enhancement of Surface Plasmon Resonance Sensors,” Sens. Actuators, B 10(32), 3906–3925 (2018).

Fen, Y. W.

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta, Part A 212, 25–31 (2019).
[Crossref]

M. D. A. Roshidi, Y. W. Fen, W. M. E. M. M. Daniyal, N. A. S. Omar, and M. Zulholinda, “Structural and Optical Properties of Chitosan–Poly (amidoamine) Dendrimer Composite Thin Film for Potential Sensing Pb2+ using an Optical Spectroscopy,” Optik (Stuttg.) 185, 351–358 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Exploration of Surface Plasmon Resonance for Sensing Copper Ion Based on Nanocrystalline Cellulose-Modified Thin Film,” Opt. Express 26(26), 34880–34893 (2018).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. Sheh Omar, “Preparation and Characterization of Hexadecyltrimethylammonium Bromide Modified Nanocrystalline Cellulose/Graphene Oxide Composite Thin Film and Its Potential in Sensing Copper Ion Using Surface Plasmon Resonance Technique,” Optik (Stuttg.) 173, 71–77 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, M. H. M. Zaid, and M. A. Mahdi, “Structural, Optical and Sensing Properties of CdS-NH2GO Thin Film as a Dengue Virus E-protein Sensing Material,” Optik (Stuttg.) 171, 934–940 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of Surface Plasmon Resonance with Novel Valinomycin Doped Chitosan-Graphene Oxide Thin Film for Sensing Potassium Ion. Spectrochim,” Spectrochim. Acta, Part A 191, 111–115 (2018).
[Crossref]

N. A. S. Omar and Y. W. Fen, “Recent Development of SPR Spectroscopy as Potential Method for Diagnosis of Dengue Virus E-Protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, W. M. E. M. Daniyal, and J. Abdullah, “Structural and Optical Studies of Cadmium Sulfide Quantum Dot-Graphene Oxide-Chitosan Nanocomposite Thin Film as a Novel SPR Spectroscopy Active Layer,” J. Nanomater. 2018, 1–8 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an Optical Sensor Based on Surface Plasmon Resonance Phenomenon for Diagnosis of Dengue Virus E-Protein,” Water, Air, Soil Pollut. 20, 16–21 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of Optical Sensor for Determination of Co(II) Based on Surface Plasmon Resonance Phenomenon,” Sens. Lett. 15(10), 862–867 (2017).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, and N. A. S. Omar, “Structural, Optical and Sensing Properties of Ionophore Doped Graphene Based Bionanocomposite Thin Film,” Optik (Stuttg.) 144, 308–315 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, Characterization and Optical Properties of Ionophore Doped Chitosan Biopolymer Thin Film and Its Potential Application for Sensing Metal Ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of Surface Plasmon Resonance Sensor for Determining Zinc Ion Using Novel Active Nanolayers as Probe,” Spectrochim. Acta, Part A 134, 48–52 (2015).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Utilization of Chitosan-Based Sensor Thin Films for the Detection of Lead Ion by Surface Plasmon Resonance Optical Sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) Ion Sensing by Crosslinked Chitosan Thin Film Using Surface Plasmon Resonance Spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Surface Plasmon Resonance Spectroscopy as an Alternative for Sensing Heavy Metal Ions: A Review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface Plasmon Resonance Optical Sensor for Detection of Pb2+ Based on Immobilized P-Tert-Butylcalix[4]Arene-Tetrakis in Chitosan Thin Film as an Active Layer,” Sens. Actuators, B 171-172, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-Time Monitoring of Lead Ion Interaction on Gold/Chitosan Surface Using Surface Plasmon Resonance Spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Characterization of the Optical Properties of Heavy Metal Ions Using Surface Plasmon Resonance Technique,” Opt. Photonics J. 01(03), 116–123 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Optical Properties of Cross-Linked Chitosan Thin Film for Copper Ion Detection Using Surface Plasmon Resonance Technique,” Opt. Appl. 41(4), 999–1013 (2011).

Finley, B. L.

D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger, “A Review of the Health Hazards Posed by Cobalt,” Crit. Rev. Toxicol. 43(4), 316–362 (2013).
[Crossref]

Gafur, M.

S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem. 10(4), 1–14 (2016).
[Crossref]

Gan, S.

L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, and X. Dai, “Few-Layer Ti 3C2Tx MXene : A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity,” Sens. Actuators, B 277, 210–215 (2018).
[Crossref]

Gaur, R.

A. Paliwal, R. Gaur, A. Sharma, M. Tomar, and V. Gupta, “Sensitive Optical Biosensor Based on Surface Plasmon Resonance Using ZnO/Au Bilayered Structure,” Optik (Stuttg.) 127(19), 7642–7647 (2016).
[Crossref]

Giraldo, L.

D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models,” Int. J. Mol. Sci. 13(7), 8388–8397 (2012).
[Crossref]

Guo, X. F.

D. Kong, F. Y. Yan, J. X. Xu, X. F. Guo, and L. Chen, “Cobalt (II) Ions Detection Using Carbon Dots as an Sensitive and Selective Fluorescent Probe,” RSC Adv. 6(72), 67481–67487 (2016).
[Crossref]

Gupta, B.

A. Sharma, R. Jha, and B. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Gupta, V.

A. Paliwal, R. Gaur, A. Sharma, M. Tomar, and V. Gupta, “Sensitive Optical Biosensor Based on Surface Plasmon Resonance Using ZnO/Au Bilayered Structure,” Optik (Stuttg.) 127(19), 7642–7647 (2016).
[Crossref]

Han, L. J.

C. H. Zeng, X. T. Meng, S. S. Xu, L. J. Han, S. L. Zhong, and M. Y. Jia, “A Polymorphic Lanthanide Complex as Selective Co2+ Sensor and Luminescent Timer,” Sens. Actuators, B 221, 127–135 (2015).
[Crossref]

He, L.

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

He, Q.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Ho, Y. S.

Y. S. Ho, J. F. Porter, and G. McKay, “Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems,” Water, Air, Soil Pollut. 141(1/4), 1–33 (2002).
[Crossref]

Hong, J. A.

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

Huang, N. M.

N. F. Lokman, A. A. A. Bakar, H. F. S. Abdullah, W. B. W. A. Rahman, N. M. Huang, and M. H. Yaacob, “Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin Films toward Pb(II) Ions,” Sens. Actuators, B 195, 459–466 (2014).
[Crossref]

Huang, X.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Ishak, N. S.

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, Characterization and Optical Properties of Ionophore Doped Chitosan Biopolymer Thin Film and Its Potential Application for Sensing Metal Ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Issa, R.

M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
[Crossref]

Jeong, U.

U. Jeong, H. H. Shin, and Y. H. Kim, “Functionalized Magnetic Core-shell Fe@SiO2 Nanoparticles as Recoverable Colorimetric Sensor for Co2+ Ion,” Chem. Eng. J. 281, 428–433 (2015).
[Crossref]

Jeppu, G. P.

G. P. Jeppu and T. P. A. Clement, “Modified Langmuir-Freundlich Isotherm Model for Simulating PH-Dependent Adsorption Effects,” J. Contam. Hydrol. 129-130, 46–53 (2012).
[Crossref]

Jha, R.

A. Sharma, R. Jha, and B. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Jia, M. Y.

C. H. Zeng, X. T. Meng, S. S. Xu, L. J. Han, S. L. Zhong, and M. Y. Jia, “A Polymorphic Lanthanide Complex as Selective Co2+ Sensor and Luminescent Timer,” Sens. Actuators, B 221, 127–135 (2015).
[Crossref]

Jung, S. H.

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

Kabiraz, M.

S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem. 10(4), 1–14 (2016).
[Crossref]

Kailasa, S. K.

U. B. Patel, V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “4-Aminothiophenol Functionalized Gold Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Using UV–Visible Spectrometry,” Res. Chem. Intermed. 39(2), 771–779 (2013).
[Crossref]

V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “Dopamine Dithiocarbamate Functionalized Silver Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Ion,” Anal. Methods 5(7), 1818–1822 (2013).
[Crossref]

Kamaraj, M.

P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, “Bioresource Technology Environmental Applications of Chitosan and Cellulosic Biopolymers : A Comprehensive Outlook,” Bioresour. Technol. 242, 295–303 (2017).
[Crossref]

Kamari, H. M.

A. R. Sadrolhosseini, M. Naseri, and H. M. Kamari, “Surface Plasmon Resonance Sensor for Detecting of Arsenic in Aqueous Solution Using Polypyrrole-Chitosan-Cobalt Ferrite Nanoparticles Composite Layer,” Opt. Commun. 383, 132–137 (2017).
[Crossref]

Kamaruddin, N.

N. Kamaruddin, A. A. Bakar, N. Mobarak, M. S. Zan, and N. Arsad, “Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions,” Sensors 17(10), 2277 (2017).
[Crossref]

Kamaruddin, N. H.

N. H. Kamaruddin, A. A. A. Bakar, M. H. Yaacob, M. A. Mahdi, M. S. D. Zan, and S. Shaari, “Enhancement of Chitosan-Graphene Oxide SPR Sensor with a Multi-Metallic Layers of Au-Ag-Au Nanostructure for Lead(II) Ion Detection,” Appl. Surf. Sci. 361, 177–184 (2016).
[Crossref]

Kanmani, P.

P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, “Bioresource Technology Environmental Applications of Chitosan and Cellulosic Biopolymers : A Comprehensive Outlook,” Bioresour. Technol. 242, 295–303 (2017).
[Crossref]

Karthikeyan, S.

P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, “Bioresource Technology Environmental Applications of Chitosan and Cellulosic Biopolymers : A Comprehensive Outlook,” Bioresour. Technol. 242, 295–303 (2017).
[Crossref]

Kaur, N.

H. Sharma, A. Singh, N. Kaur, and N. Singh, “ZnO-Based Imine-Linked Coupled Biocompatible Chemosensor for Nanomolar Detection of Co2+,” ACS Sustainable Chem. Eng. 1(12), 1600–1608 (2013).
[Crossref]

Kerger, B. D.

D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger, “A Review of the Health Hazards Posed by Cobalt,” Crit. Rev. Toxicol. 43(4), 316–362 (2013).
[Crossref]

Khantaw, T.

T. Khantaw, C. Boonmee, T. Tuntulani, and W. Ngeontae, “Selective Turn-on Fluorescence Sensor for Ag+ Using Cysteamine Capped CdS Quantum Dots: Determination of Free Ag+ in Silver Nanoparticles Solution,” Talanta 115, 849–856 (2013).
[Crossref]

Kim, J. J.

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

Kim, M. S.

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

Kim, Y. H.

U. Jeong, H. H. Shin, and Y. H. Kim, “Functionalized Magnetic Core-shell Fe@SiO2 Nanoparticles as Recoverable Colorimetric Sensor for Co2+ Ion,” Chem. Eng. J. 281, 428–433 (2015).
[Crossref]

Kong, D.

D. Kong, F. Y. Yan, J. X. Xu, X. F. Guo, and L. Chen, “Cobalt (II) Ions Detection Using Carbon Dots as an Sensitive and Selective Fluorescent Probe,” RSC Adv. 6(72), 67481–67487 (2016).
[Crossref]

Kumar, M. N. R.

M. N. R. Kumar, “A Review of Chitin and Chitosan Applications. Reactive and Functional Polymers,” React. Funct. Polym. 46(1), 1–27 (2000).
[Crossref]

Larroulet, I.

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

Lauwerys, R.

R. Lauwerys and D. Lison, “Health Risks Associated with Cobalt Exposure An Overview,” Sci. Total Environ. 150(1-3), 1–6 (1994).
[Crossref]

Lee, S. E.

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

Leung, P. T.

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A Theoretical Model for the Temperature-dependent Sensitivity of the Optical Sensor Based on Surface Plasmon Resonance,” Opt. Commun. 188(5-6), 283–289 (2001).
[Crossref]

Li, K.

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors 18(10), 3295 (2018).
[Crossref]

Li, L.

X. Zhou, K. Chen, L. Li, W. Peng, and Q. Yu, “Angle Modulated Surface Plasmon Resonance Spectrometer for Refractive Index Sensing with Enhanced Detection Resolution,” Opt. Commun. 382, 610–614 (2017).
[Crossref]

Liao, R.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Lim, H. N.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Lison, D.

R. Lauwerys and D. Lison, “Health Risks Associated with Cobalt Exposure An Overview,” Sci. Total Environ. 150(1-3), 1–6 (1994).
[Crossref]

Liu, J. H.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Liu, S.

X. Luo, J. Zeng, S. Liu, and L. Zhang, “Bioresource Technology an Effective and Recyclable Adsorbent for the Removal of Heavy Metal Ions from Aqueous System : Magnetic Chitosan/Cellulose Microspheres,” Bioresour. Technol. 194, 403–406 (2015).
[Crossref]

S. Liu, W. Na, S. Pang, and X. Su, “Fluorescence Detection of Pb2+based on the DNA Sequence Functionalized CdS Quantum Dots,” Biosens. Bioelectron. 58, 17–21 (2014).
[Crossref]

Liu, Y.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Liu, Y. Q.

M. Zhang, Y. Q. Liu, and B. C. Ye, “Colorimetric Assay for Parallel Detection of Cd2+, Ni2+ and Co2+ Using Peptide-Modified Gold Nanoparticles,” Analyst 137(3), 601–607 (2012).
[Crossref]

Lokman, N. F.

N. F. Lokman, A. A. A. Bakar, H. F. S. Abdullah, W. B. W. A. Rahman, N. M. Huang, and M. H. Yaacob, “Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin Films toward Pb(II) Ions,” Sens. Actuators, B 195, 459–466 (2014).
[Crossref]

Luo, J.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Luo, X.

X. Luo, J. Zeng, S. Liu, and L. Zhang, “Bioresource Technology an Effective and Recyclable Adsorbent for the Removal of Heavy Metal Ions from Aqueous System : Magnetic Chitosan/Cellulose Microspheres,” Bioresour. Technol. 194, 403–406 (2015).
[Crossref]

Lupi, C.

C. Lupi, M. Pasquali, and A. Dell’Era, “Nickel and Cobalt Recycling from Lithium-Ion Batteries by Electrochemical Processes,” Waste Manage. 25(2), 215–220 (2005).
[Crossref]

Mahdi, M. A.

N. A. S. Omar, Y. W. Fen, J. Abdullah, M. H. M. Zaid, and M. A. Mahdi, “Structural, Optical and Sensing Properties of CdS-NH2GO Thin Film as a Dengue Virus E-protein Sensing Material,” Optik (Stuttg.) 171, 934–940 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of Surface Plasmon Resonance with Novel Valinomycin Doped Chitosan-Graphene Oxide Thin Film for Sensing Potassium Ion. Spectrochim,” Spectrochim. Acta, Part A 191, 111–115 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an Optical Sensor Based on Surface Plasmon Resonance Phenomenon for Diagnosis of Dengue Virus E-Protein,” Water, Air, Soil Pollut. 20, 16–21 (2018).
[Crossref]

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

N. H. Kamaruddin, A. A. A. Bakar, M. H. Yaacob, M. A. Mahdi, M. S. D. Zan, and S. Shaari, “Enhancement of Chitosan-Graphene Oxide SPR Sensor with a Multi-Metallic Layers of Au-Ag-Au Nanostructure for Lead(II) Ion Detection,” Appl. Surf. Sci. 361, 177–184 (2016).
[Crossref]

Mandler, D.

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

Manheim, F. T.

F. T. Manheim, “Marine cobalt resources,” Science 232(4750), 600–608 (1986).
[Crossref]

Masum, S.

S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem. 10(4), 1–14 (2016).
[Crossref]

McKay, G.

Y. S. Ho, J. F. Porter, and G. McKay, “Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems,” Water, Air, Soil Pollut. 141(1/4), 1–33 (2002).
[Crossref]

Mehta, V. N.

U. B. Patel, V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “4-Aminothiophenol Functionalized Gold Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Using UV–Visible Spectrometry,” Res. Chem. Intermed. 39(2), 771–779 (2013).
[Crossref]

V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “Dopamine Dithiocarbamate Functionalized Silver Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Ion,” Anal. Methods 5(7), 1818–1822 (2013).
[Crossref]

Meng, X. T.

C. H. Zeng, X. T. Meng, S. S. Xu, L. J. Han, S. L. Zhong, and M. Y. Jia, “A Polymorphic Lanthanide Complex as Selective Co2+ Sensor and Luminescent Timer,” Sens. Actuators, B 221, 127–135 (2015).
[Crossref]

Ming, H. N.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Mobarak, N.

N. Kamaruddin, A. A. Bakar, N. Mobarak, M. S. Zan, and N. Arsad, “Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions,” Sensors 17(10), 2277 (2017).
[Crossref]

Mohammadi, H.

M. Asgari, H. Anisi, H. Mohammadi, and S. Sadighi, “Designing a Commercial Scale Pressure Swing Adsorber for Hydrogen Purification,” Pet. Coal. 56(5), 552–561 (2014).

Moreno-Piraján, J. C.

D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models,” Int. J. Mol. Sci. 13(7), 8388–8397 (2012).
[Crossref]

Mungara, A. K.

V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “Dopamine Dithiocarbamate Functionalized Silver Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Ion,” Anal. Methods 5(7), 1818–1822 (2013).
[Crossref]

U. B. Patel, V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “4-Aminothiophenol Functionalized Gold Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Using UV–Visible Spectrometry,” Res. Chem. Intermed. 39(2), 771–779 (2013).
[Crossref]

Na, W.

S. Liu, W. Na, S. Pang, and X. Su, “Fluorescence Detection of Pb2+based on the DNA Sequence Functionalized CdS Quantum Dots,” Biosens. Bioelectron. 58, 17–21 (2014).
[Crossref]

Naseri, M.

A. R. Sadrolhosseini, M. Naseri, and H. M. Kamari, “Surface Plasmon Resonance Sensor for Detecting of Arsenic in Aqueous Solution Using Polypyrrole-Chitosan-Cobalt Ferrite Nanoparticles Composite Layer,” Opt. Commun. 383, 132–137 (2017).
[Crossref]

Ngeontae, W.

T. Khantaw, C. Boonmee, T. Tuntulani, and W. Ngeontae, “Selective Turn-on Fluorescence Sensor for Ag+ Using Cysteamine Capped CdS Quantum Dots: Determination of Free Ag+ in Silver Nanoparticles Solution,” Talanta 115, 849–856 (2013).
[Crossref]

Noh, M. F. M.

M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
[Crossref]

Omar, N. A. S.

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta, Part A 212, 25–31 (2019).
[Crossref]

M. D. A. Roshidi, Y. W. Fen, W. M. E. M. M. Daniyal, N. A. S. Omar, and M. Zulholinda, “Structural and Optical Properties of Chitosan–Poly (amidoamine) Dendrimer Composite Thin Film for Potential Sensing Pb2+ using an Optical Spectroscopy,” Optik (Stuttg.) 185, 351–358 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Exploration of Surface Plasmon Resonance for Sensing Copper Ion Based on Nanocrystalline Cellulose-Modified Thin Film,” Opt. Express 26(26), 34880–34893 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of Surface Plasmon Resonance with Novel Valinomycin Doped Chitosan-Graphene Oxide Thin Film for Sensing Potassium Ion. Spectrochim,” Spectrochim. Acta, Part A 191, 111–115 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, M. H. M. Zaid, and M. A. Mahdi, “Structural, Optical and Sensing Properties of CdS-NH2GO Thin Film as a Dengue Virus E-protein Sensing Material,” Optik (Stuttg.) 171, 934–940 (2018).
[Crossref]

N. A. S. Omar and Y. W. Fen, “Recent Development of SPR Spectroscopy as Potential Method for Diagnosis of Dengue Virus E-Protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, W. M. E. M. Daniyal, and J. Abdullah, “Structural and Optical Studies of Cadmium Sulfide Quantum Dot-Graphene Oxide-Chitosan Nanocomposite Thin Film as a Novel SPR Spectroscopy Active Layer,” J. Nanomater. 2018, 1–8 (2018).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an Optical Sensor Based on Surface Plasmon Resonance Phenomenon for Diagnosis of Dengue Virus E-Protein,” Water, Air, Soil Pollut. 20, 16–21 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of Optical Sensor for Determination of Co(II) Based on Surface Plasmon Resonance Phenomenon,” Sens. Lett. 15(10), 862–867 (2017).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, and N. A. S. Omar, “Structural, Optical and Sensing Properties of Ionophore Doped Graphene Based Bionanocomposite Thin Film,” Optik (Stuttg.) 144, 308–315 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, Characterization and Optical Properties of Ionophore Doped Chitosan Biopolymer Thin Film and Its Potential Application for Sensing Metal Ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Pagneux, Q.

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

Paliwal, A.

A. Paliwal, R. Gaur, A. Sharma, M. Tomar, and V. Gupta, “Sensitive Optical Biosensor Based on Surface Plasmon Resonance Using ZnO/Au Bilayered Structure,” Optik (Stuttg.) 127(19), 7642–7647 (2016).
[Crossref]

Pang, S.

S. Liu, W. Na, S. Pang, and X. Su, “Fluorescence Detection of Pb2+based on the DNA Sequence Functionalized CdS Quantum Dots,” Biosens. Bioelectron. 58, 17–21 (2014).
[Crossref]

Pasquali, M.

C. Lupi, M. Pasquali, and A. Dell’Era, “Nickel and Cobalt Recycling from Lithium-Ion Batteries by Electrochemical Processes,” Waste Manage. 25(2), 215–220 (2005).
[Crossref]

Patel, U. B.

U. B. Patel, V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “4-Aminothiophenol Functionalized Gold Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Using UV–Visible Spectrometry,” Res. Chem. Intermed. 39(2), 771–779 (2013).
[Crossref]

Paustenbach, D. J.

D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger, “A Review of the Health Hazards Posed by Cobalt,” Crit. Rev. Toxicol. 43(4), 316–362 (2013).
[Crossref]

Peng, W.

X. Zhou, K. Chen, L. Li, W. Peng, and Q. Yu, “Angle Modulated Surface Plasmon Resonance Spectrometer for Refractive Index Sensing with Enhanced Detection Resolution,” Opt. Commun. 382, 610–614 (2017).
[Crossref]

Pesquera, A.

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

Planecka, A.

A. Sionkowska and A. Płanecka, “Surface Properties of Thin Films Based on the Mixtures of Chitosan and Silk Fibroin,” J. Mol. Liq. 186, 157–162 (2013).
[Crossref]

Pluchery, O.

O. Pluchery, R. Vayron, and K. M. Van, “Laboratory Experiments for Exploring the Surface Plasmon Resonance,” Eur. J. Phys. 32(2), 585–599 (2011).
[Crossref]

Porter, J. F.

Y. S. Ho, J. F. Porter, and G. McKay, “Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems,” Water, Air, Soil Pollut. 141(1/4), 1–33 (2002).
[Crossref]

Qadir, M.

S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem. 10(4), 1–14 (2016).
[Crossref]

Qi, X.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Rahman, W. B. W. A.

N. F. Lokman, A. A. A. Bakar, H. F. S. Abdullah, W. B. W. A. Rahman, N. M. Huang, and M. H. Yaacob, “Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin Films toward Pb(II) Ions,” Sens. Actuators, B 195, 459–466 (2014).
[Crossref]

Roshidi, M. D. A.

M. D. A. Roshidi, Y. W. Fen, W. M. E. M. M. Daniyal, N. A. S. Omar, and M. Zulholinda, “Structural and Optical Properties of Chitosan–Poly (amidoamine) Dendrimer Composite Thin Film for Potential Sensing Pb2+ using an Optical Spectroscopy,” Optik (Stuttg.) 185, 351–358 (2019).
[Crossref]

Sadighi, S.

M. Asgari, H. Anisi, H. Mohammadi, and S. Sadighi, “Designing a Commercial Scale Pressure Swing Adsorber for Hydrogen Purification,” Pet. Coal. 56(5), 552–561 (2014).

Sadrolhosseini, A. R.

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta, Part A 212, 25–31 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Exploration of Surface Plasmon Resonance for Sensing Copper Ion Based on Nanocrystalline Cellulose-Modified Thin Film,” Opt. Express 26(26), 34880–34893 (2018).
[Crossref]

A. R. Sadrolhosseini, M. Naseri, and H. M. Kamari, “Surface Plasmon Resonance Sensor for Detecting of Arsenic in Aqueous Solution Using Polypyrrole-Chitosan-Cobalt Ferrite Nanoparticles Composite Layer,” Opt. Commun. 383, 132–137 (2017).
[Crossref]

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

Saha, B.

S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem. 10(4), 1–14 (2016).
[Crossref]

Saleviter, S.

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta, Part A 212, 25–31 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. Sheh Omar, “Preparation and Characterization of Hexadecyltrimethylammonium Bromide Modified Nanocrystalline Cellulose/Graphene Oxide Composite Thin Film and Its Potential in Sensing Copper Ion Using Surface Plasmon Resonance Technique,” Optik (Stuttg.) 173, 71–77 (2018).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Exploration of Surface Plasmon Resonance for Sensing Copper Ion Based on Nanocrystalline Cellulose-Modified Thin Film,” Opt. Express 26(26), 34880–34893 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, W. M. E. M. Daniyal, and J. Abdullah, “Structural and Optical Studies of Cadmium Sulfide Quantum Dot-Graphene Oxide-Chitosan Nanocomposite Thin Film as a Novel SPR Spectroscopy Active Layer,” J. Nanomater. 2018, 1–8 (2018).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of Optical Sensor for Determination of Co(II) Based on Surface Plasmon Resonance Phenomenon,” Sens. Lett. 15(10), 862–867 (2017).
[Crossref]

Serrano, A. Y.

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

Shaari, S.

N. H. Kamaruddin, A. A. A. Bakar, M. H. Yaacob, M. A. Mahdi, M. S. D. Zan, and S. Shaari, “Enhancement of Chitosan-Graphene Oxide SPR Sensor with a Multi-Metallic Layers of Au-Ag-Au Nanostructure for Lead(II) Ion Detection,” Appl. Surf. Sci. 361, 177–184 (2016).
[Crossref]

Shan, Y.

L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, and X. Dai, “Few-Layer Ti 3C2Tx MXene : A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity,” Sens. Actuators, B 277, 210–215 (2018).
[Crossref]

Sharma, A.

A. Paliwal, R. Gaur, A. Sharma, M. Tomar, and V. Gupta, “Sensitive Optical Biosensor Based on Surface Plasmon Resonance Using ZnO/Au Bilayered Structure,” Optik (Stuttg.) 127(19), 7642–7647 (2016).
[Crossref]

A. Sharma, R. Jha, and B. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Sharma, H.

H. Sharma, A. Singh, N. Kaur, and N. Singh, “ZnO-Based Imine-Linked Coupled Biocompatible Chemosensor for Nanomolar Detection of Co2+,” ACS Sustainable Chem. Eng. 1(12), 1600–1608 (2013).
[Crossref]

Sheh Omar, N. A.

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. Sheh Omar, “Preparation and Characterization of Hexadecyltrimethylammonium Bromide Modified Nanocrystalline Cellulose/Graphene Oxide Composite Thin Film and Its Potential in Sensing Copper Ion Using Surface Plasmon Resonance Technique,” Optik (Stuttg.) 173, 71–77 (2018).
[Crossref]

Shin, H. H.

U. Jeong, H. H. Shin, and Y. H. Kim, “Functionalized Magnetic Core-shell Fe@SiO2 Nanoparticles as Recoverable Colorimetric Sensor for Co2+ Ion,” Chem. Eng. J. 281, 428–433 (2015).
[Crossref]

Siepak, J.

D. Barałkiewicz and J. Siepak, “Chromium, Nickel and Cobalt in Environmental Samples and Existing Legal Norms,” Polish J. Environ. Stud. 8(4), 201–208 (1999).

Singh, A.

H. Sharma, A. Singh, N. Kaur, and N. Singh, “ZnO-Based Imine-Linked Coupled Biocompatible Chemosensor for Nanomolar Detection of Co2+,” ACS Sustainable Chem. Eng. 1(12), 1600–1608 (2013).
[Crossref]

Singh, N.

H. Sharma, A. Singh, N. Kaur, and N. Singh, “ZnO-Based Imine-Linked Coupled Biocompatible Chemosensor for Nanomolar Detection of Co2+,” ACS Sustainable Chem. Eng. 1(12), 1600–1608 (2013).
[Crossref]

Singh, P.

P. Singh, “SPR Biosensors: Historical Perspectives and Current Challenges,” Sens. Actuators, B 229, 110–130 (2016).
[Crossref]

Sionkowska, A.

A. Sionkowska and A. Płanecka, “Surface Properties of Thin Films Based on the Mixtures of Chitosan and Silk Fibroin,” J. Mol. Liq. 186, 157–162 (2013).
[Crossref]

Song, J. S.

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

Su, X.

S. Liu, W. Na, S. Pang, and X. Su, “Fluorescence Detection of Pb2+based on the DNA Sequence Functionalized CdS Quantum Dots,” Biosens. Bioelectron. 58, 17–21 (2014).
[Crossref]

Sulaiman, Y.

M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
[Crossref]

Sureshbabu, P.

P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, “Bioresource Technology Environmental Applications of Chitosan and Cellulosic Biopolymers : A Comprehensive Outlook,” Bioresour. Technol. 242, 295–303 (2017).
[Crossref]

Szunerits, S.

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

Tabasi, O.

O. Tabasi and C. Falamaki, “Analytical Methods Recent Advancements in the Methodologies Applied for the Sensitivity Enhancement of Surface Plasmon Resonance Sensors,” Sens. Actuators, B 10(32), 3906–3925 (2018).

Talib, Z. A.

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of Surface Plasmon Resonance Sensor for Determining Zinc Ion Using Novel Active Nanolayers as Probe,” Spectrochim. Acta, Part A 134, 48–52 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) Ion Sensing by Crosslinked Chitosan Thin Film Using Surface Plasmon Resonance Spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-Time Monitoring of Lead Ion Interaction on Gold/Chitosan Surface Using Surface Plasmon Resonance Spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Tomar, M.

A. Paliwal, R. Gaur, A. Sharma, M. Tomar, and V. Gupta, “Sensitive Optical Biosensor Based on Surface Plasmon Resonance Using ZnO/Au Bilayered Structure,” Optik (Stuttg.) 127(19), 7642–7647 (2016).
[Crossref]

Tse, W. S.

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A Theoretical Model for the Temperature-dependent Sensitivity of the Optical Sensor Based on Surface Plasmon Resonance,” Opt. Commun. 188(5-6), 283–289 (2001).
[Crossref]

Tuntulani, T.

T. Khantaw, C. Boonmee, T. Tuntulani, and W. Ngeontae, “Selective Turn-on Fluorescence Sensor for Ag+ Using Cysteamine Capped CdS Quantum Dots: Determination of Free Ag+ in Silver Nanoparticles Solution,” Talanta 115, 849–856 (2013).
[Crossref]

Tvermoes, B. E.

D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger, “A Review of the Health Hazards Posed by Cobalt,” Crit. Rev. Toxicol. 43(4), 316–362 (2013).
[Crossref]

Unice, K. M.

D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger, “A Review of the Health Hazards Posed by Cobalt,” Crit. Rev. Toxicol. 43(4), 316–362 (2013).
[Crossref]

Van, K. M.

O. Pluchery, R. Vayron, and K. M. Van, “Laboratory Experiments for Exploring the Surface Plasmon Resonance,” Eur. J. Phys. 32(2), 585–599 (2011).
[Crossref]

Vargas, D. P.

D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models,” Int. J. Mol. Sci. 13(7), 8388–8397 (2012).
[Crossref]

Vayron, R.

O. Pluchery, R. Vayron, and K. M. Van, “Laboratory Experiments for Exploring the Surface Plasmon Resonance,” Eur. J. Phys. 32(2), 585–599 (2011).
[Crossref]

Wan, J.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Wang, H.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Wang, Y. C.

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A Theoretical Model for the Temperature-dependent Sensitivity of the Optical Sensor Based on Surface Plasmon Resonance,” Opt. Commun. 188(5-6), 283–289 (2001).
[Crossref]

Wasoh, H.

M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
[Crossref]

Wu, L.

L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, and X. Dai, “Few-Layer Ti 3C2Tx MXene : A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity,” Sens. Actuators, B 277, 210–215 (2018).
[Crossref]

Wu, S.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Xu, J.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Xu, J. X.

D. Kong, F. Y. Yan, J. X. Xu, X. F. Guo, and L. Chen, “Cobalt (II) Ions Detection Using Carbon Dots as an Sensitive and Selective Fluorescent Probe,” RSC Adv. 6(72), 67481–67487 (2016).
[Crossref]

Xu, S. S.

C. H. Zeng, X. T. Meng, S. S. Xu, L. J. Han, S. L. Zhong, and M. Y. Jia, “A Polymorphic Lanthanide Complex as Selective Co2+ Sensor and Luminescent Timer,” Sens. Actuators, B 221, 127–135 (2015).
[Crossref]

Yaacob, M. H.

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

N. H. Kamaruddin, A. A. A. Bakar, M. H. Yaacob, M. A. Mahdi, M. S. D. Zan, and S. Shaari, “Enhancement of Chitosan-Graphene Oxide SPR Sensor with a Multi-Metallic Layers of Au-Ag-Au Nanostructure for Lead(II) Ion Detection,” Appl. Surf. Sci. 361, 177–184 (2016).
[Crossref]

N. F. Lokman, A. A. A. Bakar, H. F. S. Abdullah, W. B. W. A. Rahman, N. M. Huang, and M. H. Yaacob, “Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin Films toward Pb(II) Ions,” Sens. Actuators, B 195, 459–466 (2014).
[Crossref]

Yan, F. Y.

D. Kong, F. Y. Yan, J. X. Xu, X. F. Guo, and L. Chen, “Cobalt (II) Ions Detection Using Carbon Dots as an Sensitive and Selective Fluorescent Probe,” RSC Adv. 6(72), 67481–67487 (2016).
[Crossref]

Yan, Q.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Yang, S. T.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Yasmeen, S.

S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem. 10(4), 1–14 (2016).
[Crossref]

Ye, B. C.

M. Zhang, Y. Q. Liu, and B. C. Ye, “Colorimetric Assay for Parallel Detection of Cd2+, Ni2+ and Co2+ Using Peptide-Modified Gold Nanoparticles,” Analyst 137(3), 601–607 (2012).
[Crossref]

Yin, Z.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Yoon, P. W.

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

You, Q.

L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, and X. Dai, “Few-Layer Ti 3C2Tx MXene : A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity,” Sens. Actuators, B 277, 210–215 (2018).
[Crossref]

Yu, B.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Yu, Q.

X. Zhou, K. Chen, L. Li, W. Peng, and Q. Yu, “Angle Modulated Surface Plasmon Resonance Spectrometer for Refractive Index Sensing with Enhanced Detection Resolution,” Opt. Commun. 382, 610–614 (2017).
[Crossref]

Yunus, W. M. M.

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of Surface Plasmon Resonance Sensor for Determining Zinc Ion Using Novel Active Nanolayers as Probe,” Spectrochim. Acta, Part A 134, 48–52 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, Characterization and Optical Properties of Ionophore Doped Chitosan Biopolymer Thin Film and Its Potential Application for Sensing Metal Ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Utilization of Chitosan-Based Sensor Thin Films for the Detection of Lead Ion by Surface Plasmon Resonance Optical Sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Surface Plasmon Resonance Spectroscopy as an Alternative for Sensing Heavy Metal Ions: A Review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) Ion Sensing by Crosslinked Chitosan Thin Film Using Surface Plasmon Resonance Spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface Plasmon Resonance Optical Sensor for Detection of Pb2+ Based on Immobilized P-Tert-Butylcalix[4]Arene-Tetrakis in Chitosan Thin Film as an Active Layer,” Sens. Actuators, B 171-172, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-Time Monitoring of Lead Ion Interaction on Gold/Chitosan Surface Using Surface Plasmon Resonance Spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Characterization of the Optical Properties of Heavy Metal Ions Using Surface Plasmon Resonance Technique,” Opt. Photonics J. 01(03), 116–123 (2011).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Optical Properties of Cross-Linked Chitosan Thin Film for Copper Ion Detection Using Surface Plasmon Resonance Technique,” Opt. Appl. 41(4), 999–1013 (2011).

Yusof, N. A.

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of Surface Plasmon Resonance with Novel Valinomycin Doped Chitosan-Graphene Oxide Thin Film for Sensing Potassium Ion. Spectrochim,” Spectrochim. Acta, Part A 191, 111–115 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, and N. A. S. Omar, “Structural, Optical and Sensing Properties of Ionophore Doped Graphene Based Bionanocomposite Thin Film,” Optik (Stuttg.) 144, 308–315 (2017).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of Optical Sensor for Determination of Co(II) Based on Surface Plasmon Resonance Phenomenon,” Sens. Lett. 15(10), 862–867 (2017).
[Crossref]

M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, Characterization and Optical Properties of Ionophore Doped Chitosan Biopolymer Thin Film and Its Potential Application for Sensing Metal Ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of Surface Plasmon Resonance Sensor for Determining Zinc Ion Using Novel Active Nanolayers as Probe,” Spectrochim. Acta, Part A 134, 48–52 (2015).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface Plasmon Resonance Optical Sensor for Detection of Pb2+ Based on Immobilized P-Tert-Butylcalix[4]Arene-Tetrakis in Chitosan Thin Film as an Active Layer,” Sens. Actuators, B 171-172, 287–293 (2012).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Optical Properties of Cross-Linked Chitosan Thin Film for Copper Ion Detection Using Surface Plasmon Resonance Technique,” Opt. Appl. 41(4), 999–1013 (2011).

N. A. Yusof and M. Ahmad, “A Flow Cell Optosensor for Determination of Co(II) Based on Immobilised 2-(4-Pyridylazo)Resorcinol in Chitosan Membrane by Using Stopped Flow, Flow Injection Analysis,” Sens. Actuators, B 86(2-3), 127–133 (2002).
[Crossref]

Zaid, M. H. M.

N. A. S. Omar, Y. W. Fen, J. Abdullah, M. H. M. Zaid, and M. A. Mahdi, “Structural, Optical and Sensing Properties of CdS-NH2GO Thin Film as a Dengue Virus E-protein Sensing Material,” Optik (Stuttg.) 171, 934–940 (2018).
[Crossref]

M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
[Crossref]

Zainudin, A. A.

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of Surface Plasmon Resonance with Novel Valinomycin Doped Chitosan-Graphene Oxide Thin Film for Sensing Potassium Ion. Spectrochim,” Spectrochim. Acta, Part A 191, 111–115 (2018).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, and N. A. S. Omar, “Structural, Optical and Sensing Properties of Ionophore Doped Graphene Based Bionanocomposite Thin Film,” Optik (Stuttg.) 144, 308–315 (2017).
[Crossref]

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of Optical Sensor for Determination of Co(II) Based on Surface Plasmon Resonance Phenomenon,” Sens. Lett. 15(10), 862–867 (2017).
[Crossref]

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, Characterization and Optical Properties of Ionophore Doped Chitosan Biopolymer Thin Film and Its Potential Application for Sensing Metal Ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

Zan, M. S.

N. Kamaruddin, A. A. Bakar, N. Mobarak, M. S. Zan, and N. Arsad, “Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions,” Sensors 17(10), 2277 (2017).
[Crossref]

Zan, M. S. D.

N. H. Kamaruddin, A. A. A. Bakar, M. H. Yaacob, M. A. Mahdi, M. S. D. Zan, and S. Shaari, “Enhancement of Chitosan-Graphene Oxide SPR Sensor with a Multi-Metallic Layers of Au-Ag-Au Nanostructure for Lead(II) Ion Detection,” Appl. Surf. Sci. 361, 177–184 (2016).
[Crossref]

Zeng, C. H.

C. H. Zeng, X. T. Meng, S. S. Xu, L. J. Han, S. L. Zhong, and M. Y. Jia, “A Polymorphic Lanthanide Complex as Selective Co2+ Sensor and Luminescent Timer,” Sens. Actuators, B 221, 127–135 (2015).
[Crossref]

Zeng, J.

X. Luo, J. Zeng, S. Liu, and L. Zhang, “Bioresource Technology an Effective and Recyclable Adsorbent for the Removal of Heavy Metal Ions from Aqueous System : Magnetic Chitosan/Cellulose Microspheres,” Bioresour. Technol. 194, 403–406 (2015).
[Crossref]

Zeng, S.

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors 18(10), 3295 (2018).
[Crossref]

Zhang, H.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Zhang, L.

X. Luo, J. Zeng, S. Liu, and L. Zhang, “Bioresource Technology an Effective and Recyclable Adsorbent for the Removal of Heavy Metal Ions from Aqueous System : Magnetic Chitosan/Cellulose Microspheres,” Bioresour. Technol. 194, 403–406 (2015).
[Crossref]

Zhang, M.

M. Zhang, Y. Q. Liu, and B. C. Ye, “Colorimetric Assay for Parallel Detection of Cd2+, Ni2+ and Co2+ Using Peptide-Modified Gold Nanoparticles,” Analyst 137(3), 601–607 (2012).
[Crossref]

Zhang, Q.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Zhao, Y.

L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, and X. Dai, “Few-Layer Ti 3C2Tx MXene : A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity,” Sens. Actuators, B 277, 210–215 (2018).
[Crossref]

Zhong, S. L.

C. H. Zeng, X. T. Meng, S. S. Xu, L. J. Han, S. L. Zhong, and M. Y. Jia, “A Polymorphic Lanthanide Complex as Selective Co2+ Sensor and Luminescent Timer,” Sens. Actuators, B 221, 127–135 (2015).
[Crossref]

Zhou, Q.

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

Zhou, W.

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors 18(10), 3295 (2018).
[Crossref]

Zhou, X.

X. Zhou, K. Chen, L. Li, W. Peng, and Q. Yu, “Angle Modulated Surface Plasmon Resonance Spectrometer for Refractive Index Sensing with Enhanced Detection Resolution,” Opt. Commun. 382, 610–614 (2017).
[Crossref]

Zulholinda, M.

M. D. A. Roshidi, Y. W. Fen, W. M. E. M. M. Daniyal, N. A. S. Omar, and M. Zulholinda, “Structural and Optical Properties of Chitosan–Poly (amidoamine) Dendrimer Composite Thin Film for Potential Sensing Pb2+ using an Optical Spectroscopy,” Optik (Stuttg.) 185, 351–358 (2019).
[Crossref]

Zurutuza, A.

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

ACS Sustainable Chem. Eng. (1)

H. Sharma, A. Singh, N. Kaur, and N. Singh, “ZnO-Based Imine-Linked Coupled Biocompatible Chemosensor for Nanomolar Detection of Co2+,” ACS Sustainable Chem. Eng. 1(12), 1600–1608 (2013).
[Crossref]

Anal. Methods (1)

V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “Dopamine Dithiocarbamate Functionalized Silver Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Ion,” Anal. Methods 5(7), 1818–1822 (2013).
[Crossref]

Analyst (1)

M. Zhang, Y. Q. Liu, and B. C. Ye, “Colorimetric Assay for Parallel Detection of Cd2+, Ni2+ and Co2+ Using Peptide-Modified Gold Nanoparticles,” Analyst 137(3), 601–607 (2012).
[Crossref]

Appl. Surf. Sci. (1)

N. H. Kamaruddin, A. A. A. Bakar, M. H. Yaacob, M. A. Mahdi, M. S. D. Zan, and S. Shaari, “Enhancement of Chitosan-Graphene Oxide SPR Sensor with a Multi-Metallic Layers of Au-Ag-Au Nanostructure for Lead(II) Ion Detection,” Appl. Surf. Sci. 361, 177–184 (2016).
[Crossref]

Bioresour. Technol. (2)

P. Kanmani, J. Aravind, M. Kamaraj, P. Sureshbabu, and S. Karthikeyan, “Bioresource Technology Environmental Applications of Chitosan and Cellulosic Biopolymers : A Comprehensive Outlook,” Bioresour. Technol. 242, 295–303 (2017).
[Crossref]

X. Luo, J. Zeng, S. Liu, and L. Zhang, “Bioresource Technology an Effective and Recyclable Adsorbent for the Removal of Heavy Metal Ions from Aqueous System : Magnetic Chitosan/Cellulose Microspheres,” Bioresour. Technol. 194, 403–406 (2015).
[Crossref]

Biosens. Bioelectron. (2)

S. Liu, W. Na, S. Pang, and X. Su, “Fluorescence Detection of Pb2+based on the DNA Sequence Functionalized CdS Quantum Dots,” Biosens. Bioelectron. 58, 17–21 (2014).
[Crossref]

L. He, Q. Pagneux, I. Larroulet, A. Y. Serrano, A. Pesquera, A. Zurutuza, D. Mandler, R. Boukherroub, and S. Szunerits, “Label-Free Femtomolar Cancer Biomarker Detection in Human Serum Using Graphene-Coated Surface Plasmon Resonance Chips,” Biosens. Bioelectron. 89, 606–611 (2017).
[Crossref]

Cardiovasc. Toxicol. (1)

H. I. Choi, J. A. Hong, M. S. Kim, S. E. Lee, S. H. Jung, P. W. Yoon, J. S. Song, and J. J. Kim, “Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes,” Cardiovasc. Toxicol. 19(1), 82–89 (2019).
[Crossref]

Chem. Eng. J. (1)

U. Jeong, H. H. Shin, and Y. H. Kim, “Functionalized Magnetic Core-shell Fe@SiO2 Nanoparticles as Recoverable Colorimetric Sensor for Co2+ Ion,” Chem. Eng. J. 281, 428–433 (2015).
[Crossref]

Crit. Rev. Toxicol. (1)

D. J. Paustenbach, B. E. Tvermoes, K. M. Unice, B. L. Finley, and B. D. Kerger, “A Review of the Health Hazards Posed by Cobalt,” Crit. Rev. Toxicol. 43(4), 316–362 (2013).
[Crossref]

Eur. J. Phys. (1)

O. Pluchery, R. Vayron, and K. M. Van, “Laboratory Experiments for Exploring the Surface Plasmon Resonance,” Eur. J. Phys. 32(2), 585–599 (2011).
[Crossref]

Groundw. Sustain. Dev. (1)

S. B. D. Borah, T. Bora, S. Baruah, and J. Dutta, “Heavy Metal Ion Sensing in Water Using Surface Plasmon Resonance of Metallic Nanostructures,” Groundw. Sustain. Dev. 1(1-2), 1–11 (2015).
[Crossref]

IEEE Photonics J. (1)

A. A. Alwahib, A. R. Sadrolhosseini, M. N. An’Amt, H. N. Lim, M. H. Yaacob, M. H. A. Bakar, H. N. Ming, and M. A. Mahdi, “Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance,” IEEE Photonics J. 8(4), 1–9 (2016).
[Crossref]

IEEE Sens. J. (2)

Y. W. Fen and W. M. M. Yunus, “Utilization of Chitosan-Based Sensor Thin Films for the Detection of Lead Ion by Surface Plasmon Resonance Optical Sensor,” IEEE Sens. J. 13(5), 1413–1418 (2013).
[Crossref]

A. Sharma, R. Jha, and B. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[Crossref]

Indian J. Phys. (1)

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Real-Time Monitoring of Lead Ion Interaction on Gold/Chitosan Surface Using Surface Plasmon Resonance Spectroscopy,” Indian J. Phys. 86(7), 619–623 (2012).
[Crossref]

Int. J. Mol. Sci. (1)

D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models,” Int. J. Mol. Sci. 13(7), 8388–8397 (2012).
[Crossref]

Int. Res. J. Pure Appl. Chem. (1)

S. Yasmeen, M. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum, “Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite as Adsorbent,” Int. Res. J. Pure Appl. Chem. 10(4), 1–14 (2016).
[Crossref]

J. Chem. Heal. Risks (1)

J. Abolhasani, “Fluorescence Quenching of CdS Quantum Dots and Its Application to Determination of Copper and Nickel Contamination in Well and Dam Water,” J. Chem. Heal. Risks 5(2), 145–154 (2015).

J. Contam. Hydrol. (1)

G. P. Jeppu and T. P. A. Clement, “Modified Langmuir-Freundlich Isotherm Model for Simulating PH-Dependent Adsorption Effects,” J. Contam. Hydrol. 129-130, 46–53 (2012).
[Crossref]

J. Environ. Chem. Eng. (1)

B. Yu, J. Xu, J. H. Liu, S. T. Yang, J. Luo, Q. Zhou, J. Wan, R. Liao, H. Wang, and Y. Liu, “Adsorption Behavior of Copper Ions on Graphene Oxide-Chitosan Aerogel,” J. Environ. Chem. Eng. 1(4), 1044–1050 (2013).
[Crossref]

J. Mol. Liq. (1)

A. Sionkowska and A. Płanecka, “Surface Properties of Thin Films Based on the Mixtures of Chitosan and Silk Fibroin,” J. Mol. Liq. 186, 157–162 (2013).
[Crossref]

J. Nanomater. (1)

S. Saleviter, Y. W. Fen, N. A. S. Omar, W. M. E. M. Daniyal, and J. Abdullah, “Structural and Optical Studies of Cadmium Sulfide Quantum Dot-Graphene Oxide-Chitosan Nanocomposite Thin Film as a Novel SPR Spectroscopy Active Layer,” J. Nanomater. 2018, 1–8 (2018).
[Crossref]

Opt. Appl. (1)

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Optical Properties of Cross-Linked Chitosan Thin Film for Copper Ion Detection Using Surface Plasmon Resonance Technique,” Opt. Appl. 41(4), 999–1013 (2011).

Opt. Commun. (3)

X. Zhou, K. Chen, L. Li, W. Peng, and Q. Yu, “Angle Modulated Surface Plasmon Resonance Spectrometer for Refractive Index Sensing with Enhanced Detection Resolution,” Opt. Commun. 382, 610–614 (2017).
[Crossref]

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A Theoretical Model for the Temperature-dependent Sensitivity of the Optical Sensor Based on Surface Plasmon Resonance,” Opt. Commun. 188(5-6), 283–289 (2001).
[Crossref]

A. R. Sadrolhosseini, M. Naseri, and H. M. Kamari, “Surface Plasmon Resonance Sensor for Detecting of Arsenic in Aqueous Solution Using Polypyrrole-Chitosan-Cobalt Ferrite Nanoparticles Composite Layer,” Opt. Commun. 383, 132–137 (2017).
[Crossref]

Opt. Express (1)

Opt. Photonics J. (1)

Y. W. Fen and W. M. M. Yunus, “Characterization of the Optical Properties of Heavy Metal Ions Using Surface Plasmon Resonance Technique,” Opt. Photonics J. 01(03), 116–123 (2011).
[Crossref]

Optik (Stuttg.) (7)

Y. W. Fen, W. M. M. Yunus, N. A. Yusof, N. S. Ishak, N. A. S. Omar, and A. A. Zainudin, “Preparation, Characterization and Optical Properties of Ionophore Doped Chitosan Biopolymer Thin Film and Its Potential Application for Sensing Metal Ion,” Optik (Stuttg.) 126(23), 4688–4692 (2015).
[Crossref]

A. Paliwal, R. Gaur, A. Sharma, M. Tomar, and V. Gupta, “Sensitive Optical Biosensor Based on Surface Plasmon Resonance Using ZnO/Au Bilayered Structure,” Optik (Stuttg.) 127(19), 7642–7647 (2016).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, and N. A. S. Omar, “Structural, Optical and Sensing Properties of Ionophore Doped Graphene Based Bionanocomposite Thin Film,” Optik (Stuttg.) 144, 308–315 (2017).
[Crossref]

M. D. A. Roshidi, Y. W. Fen, W. M. E. M. M. Daniyal, N. A. S. Omar, and M. Zulholinda, “Structural and Optical Properties of Chitosan–Poly (amidoamine) Dendrimer Composite Thin Film for Potential Sensing Pb2+ using an Optical Spectroscopy,” Optik (Stuttg.) 185, 351–358 (2019).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, S. Saleviter, and N. A. Sheh Omar, “Preparation and Characterization of Hexadecyltrimethylammonium Bromide Modified Nanocrystalline Cellulose/Graphene Oxide Composite Thin Film and Its Potential in Sensing Copper Ion Using Surface Plasmon Resonance Technique,” Optik (Stuttg.) 173, 71–77 (2018).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and Z. A. Talib, “Analysis of Pb(II) Ion Sensing by Crosslinked Chitosan Thin Film Using Surface Plasmon Resonance Spectroscopy,” Optik (Stuttg.) 124(2), 126–133 (2013).
[Crossref]

N. A. S. Omar, Y. W. Fen, J. Abdullah, M. H. M. Zaid, and M. A. Mahdi, “Structural, Optical and Sensing Properties of CdS-NH2GO Thin Film as a Dengue Virus E-protein Sensing Material,” Optik (Stuttg.) 171, 934–940 (2018).
[Crossref]

Pet. Coal. (1)

M. Asgari, H. Anisi, H. Mohammadi, and S. Sadighi, “Designing a Commercial Scale Pressure Swing Adsorber for Hydrogen Purification,” Pet. Coal. 56(5), 552–561 (2014).

Polish J. Environ. Stud. (1)

D. Barałkiewicz and J. Siepak, “Chromium, Nickel and Cobalt in Environmental Samples and Existing Legal Norms,” Polish J. Environ. Stud. 8(4), 201–208 (1999).

React. Funct. Polym. (1)

M. N. R. Kumar, “A Review of Chitin and Chitosan Applications. Reactive and Functional Polymers,” React. Funct. Polym. 46(1), 1–27 (2000).
[Crossref]

Res. Chem. Intermed. (1)

U. B. Patel, V. N. Mehta, A. K. Mungara, and S. K. Kailasa, “4-Aminothiophenol Functionalized Gold Nanoparticles as Colorimetric Sensors for the Detection of Cobalt Using UV–Visible Spectrometry,” Res. Chem. Intermed. 39(2), 771–779 (2013).
[Crossref]

RSC Adv. (1)

D. Kong, F. Y. Yan, J. X. Xu, X. F. Guo, and L. Chen, “Cobalt (II) Ions Detection Using Carbon Dots as an Sensitive and Selective Fluorescent Probe,” RSC Adv. 6(72), 67481–67487 (2016).
[Crossref]

Sci. Total Environ. (1)

R. Lauwerys and D. Lison, “Health Risks Associated with Cobalt Exposure An Overview,” Sci. Total Environ. 150(1-3), 1–6 (1994).
[Crossref]

Science (1)

F. T. Manheim, “Marine cobalt resources,” Science 232(4750), 600–608 (1986).
[Crossref]

Sens. Actuators, B (8)

O. Tabasi and C. Falamaki, “Analytical Methods Recent Advancements in the Methodologies Applied for the Sensitivity Enhancement of Surface Plasmon Resonance Sensors,” Sens. Actuators, B 10(32), 3906–3925 (2018).

L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, and X. Dai, “Few-Layer Ti 3C2Tx MXene : A Promising Surface Plasmon Resonance Biosensing Material to Enhance the Sensitivity,” Sens. Actuators, B 277, 210–215 (2018).
[Crossref]

N. A. Yusof and M. Ahmad, “A Flow Cell Optosensor for Determination of Co(II) Based on Immobilised 2-(4-Pyridylazo)Resorcinol in Chitosan Membrane by Using Stopped Flow, Flow Injection Analysis,” Sens. Actuators, B 86(2-3), 127–133 (2002).
[Crossref]

Y. W. Fen, W. M. M. Yunus, and N. A. Yusof, “Surface Plasmon Resonance Optical Sensor for Detection of Pb2+ Based on Immobilized P-Tert-Butylcalix[4]Arene-Tetrakis in Chitosan Thin Film as an Active Layer,” Sens. Actuators, B 171-172, 287–293 (2012).
[Crossref]

P. Singh, “SPR Biosensors: Historical Perspectives and Current Challenges,” Sens. Actuators, B 229, 110–130 (2016).
[Crossref]

C. H. Zeng, X. T. Meng, S. S. Xu, L. J. Han, S. L. Zhong, and M. Y. Jia, “A Polymorphic Lanthanide Complex as Selective Co2+ Sensor and Luminescent Timer,” Sens. Actuators, B 221, 127–135 (2015).
[Crossref]

M. H. M. Zaid, J. Abdullah, N. A. Yusof, Y. Sulaiman, H. Wasoh, M. F. M. Noh, and R. Issa, “PNA Biosensor Based on Reduced Graphene Oxide/Water Soluble Quantum Dots for the Detection of Mycobacterium Tuberculosis,” Sens. Actuators, B 241, 1024–1034 (2017).
[Crossref]

N. F. Lokman, A. A. A. Bakar, H. F. S. Abdullah, W. B. W. A. Rahman, N. M. Huang, and M. H. Yaacob, “Highly Sensitive SPR Response of Au/Chitosan/Graphene Oxide Nanostructured Thin Films toward Pb(II) Ions,” Sens. Actuators, B 195, 459–466 (2014).
[Crossref]

Sens. Lett. (1)

S. Saleviter, Y. W. Fen, N. A. S. Omar, A. A. Zainudin, and N. A. Yusof, “Development of Optical Sensor for Determination of Co(II) Based on Surface Plasmon Resonance Phenomenon,” Sens. Lett. 15(10), 862–867 (2017).
[Crossref]

Sens. Rev. (2)

N. A. S. Omar and Y. W. Fen, “Recent Development of SPR Spectroscopy as Potential Method for Diagnosis of Dengue Virus E-Protein,” Sens. Rev. 38(1), 106–116 (2018).
[Crossref]

Y. W. Fen and W. M. M. Yunus, “Surface Plasmon Resonance Spectroscopy as an Alternative for Sensing Heavy Metal Ions: A Review,” Sens. Rev. 33(4), 305–314 (2013).
[Crossref]

Sensors (2)

K. Li, W. Zhou, and S. Zeng, “Optical Micro/Nanofiber-Based Localized Surface Plasmon Resonance Biosensors: Fiber Diameter Dependence,” Sensors 18(10), 3295 (2018).
[Crossref]

N. Kamaruddin, A. A. Bakar, N. Mobarak, M. S. Zan, and N. Arsad, “Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions,” Sensors 17(10), 2277 (2017).
[Crossref]

Small (1)

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small 7(14), 1876–1902 (2011).
[Crossref]

Spectrochim. Acta, Part A (3)

Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of Surface Plasmon Resonance Sensor for Determining Zinc Ion Using Novel Active Nanolayers as Probe,” Spectrochim. Acta, Part A 134, 48–52 (2015).
[Crossref]

W. M. E. M. M. Daniyal, Y. W. Fen, J. Abdullah, A. R. Sadrolhosseini, S. Saleviter, and N. A. S. Omar, “Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion,” Spectrochim. Acta, Part A 212, 25–31 (2019).
[Crossref]

A. A. Zainudin, Y. W. Fen, N. A. Yusof, S. H. Al-Rekabi, M. A. Mahdi, and N. A. S. Omar, “Incorporation of Surface Plasmon Resonance with Novel Valinomycin Doped Chitosan-Graphene Oxide Thin Film for Sensing Potassium Ion. Spectrochim,” Spectrochim. Acta, Part A 191, 111–115 (2018).
[Crossref]

Talanta (1)

T. Khantaw, C. Boonmee, T. Tuntulani, and W. Ngeontae, “Selective Turn-on Fluorescence Sensor for Ag+ Using Cysteamine Capped CdS Quantum Dots: Determination of Free Ag+ in Silver Nanoparticles Solution,” Talanta 115, 849–856 (2013).
[Crossref]

Waste Manage. (1)

C. Lupi, M. Pasquali, and A. Dell’Era, “Nickel and Cobalt Recycling from Lithium-Ion Batteries by Electrochemical Processes,” Waste Manage. 25(2), 215–220 (2005).
[Crossref]

Water, Air, Soil Pollut. (2)

N. A. S. Omar, Y. W. Fen, J. Abdullah, C. E. N. C. E. Chik, and M. A. Mahdi, “Development of an Optical Sensor Based on Surface Plasmon Resonance Phenomenon for Diagnosis of Dengue Virus E-Protein,” Water, Air, Soil Pollut. 20, 16–21 (2018).
[Crossref]

Y. S. Ho, J. F. Porter, and G. McKay, “Equilibrium Isotherm Studies for the Sorption of Divalent Metal Ions onto Peat: Copper, Nickel and Lead Single Component Systems,” Water, Air, Soil Pollut. 141(1/4), 1–33 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of surface plasmon resonance spectroscopy.
Fig. 2.
Fig. 2. SPR curve of gold film in contact with deionized water.
Fig. 3.
Fig. 3. SPR curves of gold film in contact with different concentration of Co2+ (0 to 100 ppm).
Fig. 4.
Fig. 4. SPR curve of gold/chitosan-GO/CdS QDs active layer in contact with deionized water.
Fig. 5.
Fig. 5. SPR curves of gold/chitosan-GO/CdS QDs active layer in contact with different concentration of Co2+ (0 to 100 ppm).
Fig. 6.
Fig. 6. SPR angle shift against Co2+ concentration.
Fig. 7.
Fig. 7. The FWHM of SPR curve corresponding to half from its maximum value.
Fig. 8.
Fig. 8. Detection accuracy of the chitosan-GO/CdS QDs based SPR sensor towards Co2+.
Fig. 9.
Fig. 9. Signal-to-noise ratio of the chitosan-GO/CdS QDs based SPR sensor towards Co2+.
Fig. 10.
Fig. 10. Equilibrium isotherm models fitting for the resonance angle shift of Co2+ in contact with gold/chitosan-GO/CdS Qds active layer and gold thin film.

Tables (3)

Tables Icon

Table 1. Comparison of gold/chitosan-GO/CdS QDs active layer via SPR method for the detection of Co2+ with previous reports.

Tables Icon

Table 2. Values of FWHM and DA of different concentration of Co2+.

Tables Icon

Table 3. Fitted values of Freundlich, Langmuir and Sips parameters for the adsorption of Co2+ on the gold/chitosan-GO/CdS QDs active layer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S N R = Δ θ S P R F W H M = Δ θ S P R D A
Δ θ s a t = K f C n
Δ θ s a t = Δ θ m a x K L C 1 + K L C
Δ θ s a t = Δ θ m a x ( K s C ) n 1 + ( K s C ) n

Metrics