Abstract

Light-converting polypropylene spunbond was first used in the study of the key physiological parameters of plants. A comparative study of the functioning of the photosynthetic apparatus and the dynamics of growth in late cabbage plants (Olga variety) and leaf lettuce (Emerald variety) was conducted using the ordinary nonwoven polypropylene fabric (spunbond) (density 30 g·m−2) and the spunbond containing a photoluminophore (PL) (1.6% yttrium oxysulfide doped with europium). The plants were grown in a glass greenhouse without spunbond and under the spunbond containing and not containing the PL that transforms a part of UV-radiation into red light radiation. The use of the spunbond led to a decrease in the rate of photosynthesis, activity of the photosystem 2, and the accumulation of plant biomass and to an increase in the stomatal conductance. By contrast to unmodified spunbond, the application of the spunbond containing the PL led to an increase in the rate of photosynthesis, the water-use efficiency (WUE), and the accumulation of the total biomass of plants by 30–50% but to a decrease in the transpiration rate and the stomatal conductance. It is assumed that the positive effect of the PL is associated with an increase in the fraction of fluorescent red light, which enhances photosynthetic activity and accelerates plant growth.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analyses of multi-color plant-growth light sources in achieving maximum photosynthesis efficiencies with enhanced color qualities

Tingzhu Wu, Yue Lin, Lili Zheng, Ziquan Guo, Jianxing Xu, Shijie Liang, Zhuguagn Liu, Yijun Lu, Tien-mo Shih, and Zhong Chen
Opt. Express 26(4) 4135-4147 (2018)

Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation

Emmett W. Chappelle, Frank M. Wood, James E. McMurtrey, and W. Wayne Newcomb
Appl. Opt. 23(1) 134-138 (1984)

Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants

Frank E. Hoge, R. N. Swift, and J. K. Yungel
Appl. Opt. 22(19) 2991-3000 (1983)

References

  • View by:
  • |
  • |
  • |

  1. A. González, R. Rodríguez, S. Bañón, J. A. Franco, and J. A. Fernández, “The influence of photoselective plastic films as greenhouse cover on sweet pepper yield and on insect pest levels,” Acta Hortic. (559), 233–238 (2001)..
    [Crossref]
  2. C. Edser, “Light manipulating additives extend opportunities for agricultural plastic films,” Plastics, Plast. Addit. Compd. 4(3), 20–24 (2002).
    [Crossref]
  3. R. P. Brown, “Polymers in agriculture and horticulture,” Rapra Rev. Rep. 15(2), 1–92 (2004).
  4. E. Espi, A. Salmeron, A. Fontecha, Y. García, and A. I. Real, “Plastic films for agricultural applications,” J. Plast. Film Sheeting 22(2), 85–102 (2006)..
    [Crossref]
  5. J. F. J. Max, U. Schurr, H.-J. Tantau, U. N. Mutwiwa, T. Hofmann, and A. Ulbrich, “Greenhouse Cover Technology,” Hortic. Rev. 40(1), 259–396 (2012).
    [Crossref]
  6. C. Lamnatou and D. Chemisana, “Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR-and UV-blocking materials,” Renewable Sustainable Energy Rev. 18, 271–287 (2013).
    [Crossref]
  7. S. M. El-Bashir, F. F. Al-Harbi, H. Elburaih, F. Al-Faif, and I. S. Yahia, “Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses,” Renewable Energy 85, 928–938 (2016).
    [Crossref]
  8. C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting-diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120(5), 808–813 (1995).
    [Crossref]
  9. K. K. Ohasi, M. Takase, N. Kon, K. Fujiwara, and K. Kurata, “Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna,” Environ. Control Biol. 45(3), 189–198 (2007).
    [Crossref]
  10. O. V. Avercheva, Y. A. Berkovich, and A. N. Erokhin, “Growth and photosynthesis of Chinese cabbage plants grown under light-emitting diode-based light source,” Russ. J. Plant Physiol. 56(1), 14–21 (2009).
    [Crossref]
  11. N. Su, Q. Wu, Z. Shen, K. Xia, and J. Cui, “Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings,” Plant Growth Regul. 73(3), 227–235 (2014).
    [Crossref]
  12. A. A. Kosobryukhov, V. D. Kreslavski, R. N. Khramov, L. R. Bratkova, and R. N. Shchelokov, “Effect of additional low intensity luminescence radiation 625 nm on plant growth and photosynthesis of plants,” Biotronics 29, 1–6 (2000).
  13. A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
    [Crossref]
  14. A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).
  15. F. R. De Salvador, G. Scarascia Mugnozza, G. Vox, E. Schettini, M. Mastrorilli, and M. Bou Jaoudé, “Innovative photoselective and photoluminescent plastic films for protected cultivation,” Acta Hortic. (801), 115–122 (2008).
    [Crossref]
  16. F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymers in agriculture: a review,” Am. J. Agric. Biol. Sci. 3(1), 299–314 (2008).
    [Crossref]
  17. S. K. Basu, “Agricultural and horticultural applications of agro textiles,” Indian Text. J. 121(12), 141–148 (2011).
  18. Y. N. Yuan, W. Jian, Z. Yanan, and G. E. Mingqiao, “Researches on preparation and properties of polypropylene nonwovens containing rare earth luminous materials,” J. Rare Earths 32(12), 1196–1200 (2014).
    [Crossref]
  19. H. Kansal, “Experimental investigation of properties of polypropylene and non-woven spunbond fabric,” JOSR. J. Polym. Text. Eng. (IOSR-JPTE) e-ISSN: 2348-019X, p-ISSN: 2348-0181, 3(5), 08–14 (2016).
    [Crossref]
  20. A. Scopa, V. Candido, S. Dumontet, V. Miccolis, and A. Scopa, “Greenhouse solarization: effects on soil microbiological parameters and agronomic aspects,” Sci. Hortic. 116(1), 98–103 (2008).
    [Crossref]
  21. S. E. Wortman, I. A. Kadoma, and M. D. Crandall, “Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops,” Sci. Hortic. 193, 209–217 (2015).
    [Crossref]
  22. L. R. Bratkova and R. N. Schelokov, “Light-converting material and composition for producing the same,” United States Patent 6, 589, 450; (July 8, 2003).
  23. V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
    [Crossref]
  24. H. M. Kalaji, V. Golstev, K. Bosa, S. I. Allakhverdiev, R. J. Strasser, and Govindjee, “Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker,” Photosynth. Res. 114(2), 69–96 (2012).
    [Crossref]
  25. V. Kreslavski, N. Tatarinzev, N. Shabnova, G. Semenova, and A. Kosobryukhov, “Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities,” J. Plant Physiol. 165(15), 1592–1600 (2008).
    [Crossref]
  26. V. S. Raida, A. E. Ivanitskii, A. V. Bushkov, A. I. Fedorov, and G. A. Tolstikov, “Determination of the contribution from light-transforming polymer films to red portion of transmitted solar radiation due to UV-excited luminescence,” Atmos Ocean Opt. 17(2–3), 215–220 (2004).
  27. V. D. Kreslavski, D. A. Los, F. J. Schmitt, S. K. Zharmukhamedov, V. V. Kuznetsov, and S. I. Allakhverdiev, “The impact of the phytochromes on photosynthetic processes,” Biochim. Biophys. Acta, Bioenerg. 1859(5), 400–408 (2018).
    [Crossref]
  28. K. M. Folta and S. A. Maruhnich, “Green light: a signal to slow down or stop,” J. Exp. Bot. 58(12), 3099–3111 (2007).
    [Crossref]
  29. K. Cao, J. Yu, D. Xu, K. Ai, E. Bao, and Z. Zou, “Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress,” BMC Plant Biol. 18(1), 92 (2018)..
    [Crossref]
  30. M. M. Neff, C. Fankhauser, and J. Chory, “Light: an indicator of time and place,” Genes Dev. 14(3), 257–271 (2000)..
    [Crossref]
  31. M. V. Trushin, “Light-mediated “conversation” among microorganisms,” Microbiol. Res. 159(1), 1–10 (2004).
    [Crossref]
  32. O. Tiphlova and T. Karu, “Stimulation of Escherichia coli division by low-intensity monochromatic visible light,” Photochem. Photobiol. 48(4), 467–471 (1988).
    [Crossref]
  33. R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, “Soil beneficial bacteria and their role in plant growth promotion: a review,” Ann. Microbiol. 60(4), 579–598 (2010).
    [Crossref]
  34. A. Marulanda, J.-M. Barea, and R. J. Azcön, “Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness,” J. Plant Growth Regul. 28(2), 115–124 (2009).
    [Crossref]
  35. L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
    [Crossref]
  36. Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
    [Crossref]
  37. S. Lian, C. Rong, D. Yin, and S. Liu, “Enhancing solar energy conversion efficiency: a tunable dual-excitation dual-emission phosphors and time-dependent density functional theory study,” J. Phys. Chem. C 113(15), 6298–6302 (2009).
    [Crossref]
  38. L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2(12), 1500218 (2015).
    [Crossref]

2018 (2)

V. D. Kreslavski, D. A. Los, F. J. Schmitt, S. K. Zharmukhamedov, V. V. Kuznetsov, and S. I. Allakhverdiev, “The impact of the phytochromes on photosynthetic processes,” Biochim. Biophys. Acta, Bioenerg. 1859(5), 400–408 (2018).
[Crossref]

K. Cao, J. Yu, D. Xu, K. Ai, E. Bao, and Z. Zou, “Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress,” BMC Plant Biol. 18(1), 92 (2018)..
[Crossref]

2016 (3)

H. Kansal, “Experimental investigation of properties of polypropylene and non-woven spunbond fabric,” JOSR. J. Polym. Text. Eng. (IOSR-JPTE) e-ISSN: 2348-019X, p-ISSN: 2348-0181, 3(5), 08–14 (2016).
[Crossref]

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

S. M. El-Bashir, F. F. Al-Harbi, H. Elburaih, F. Al-Faif, and I. S. Yahia, “Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses,” Renewable Energy 85, 928–938 (2016).
[Crossref]

2015 (2)

S. E. Wortman, I. A. Kadoma, and M. D. Crandall, “Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops,” Sci. Hortic. 193, 209–217 (2015).
[Crossref]

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2(12), 1500218 (2015).
[Crossref]

2014 (2)

N. Su, Q. Wu, Z. Shen, K. Xia, and J. Cui, “Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings,” Plant Growth Regul. 73(3), 227–235 (2014).
[Crossref]

Y. N. Yuan, W. Jian, Z. Yanan, and G. E. Mingqiao, “Researches on preparation and properties of polypropylene nonwovens containing rare earth luminous materials,” J. Rare Earths 32(12), 1196–1200 (2014).
[Crossref]

2013 (3)

C. Lamnatou and D. Chemisana, “Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR-and UV-blocking materials,” Renewable Sustainable Energy Rev. 18, 271–287 (2013).
[Crossref]

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

2012 (2)

H. M. Kalaji, V. Golstev, K. Bosa, S. I. Allakhverdiev, R. J. Strasser, and Govindjee, “Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker,” Photosynth. Res. 114(2), 69–96 (2012).
[Crossref]

J. F. J. Max, U. Schurr, H.-J. Tantau, U. N. Mutwiwa, T. Hofmann, and A. Ulbrich, “Greenhouse Cover Technology,” Hortic. Rev. 40(1), 259–396 (2012).
[Crossref]

2011 (2)

S. K. Basu, “Agricultural and horticultural applications of agro textiles,” Indian Text. J. 121(12), 141–148 (2011).

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

2010 (1)

R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, “Soil beneficial bacteria and their role in plant growth promotion: a review,” Ann. Microbiol. 60(4), 579–598 (2010).
[Crossref]

2009 (3)

A. Marulanda, J.-M. Barea, and R. J. Azcön, “Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness,” J. Plant Growth Regul. 28(2), 115–124 (2009).
[Crossref]

S. Lian, C. Rong, D. Yin, and S. Liu, “Enhancing solar energy conversion efficiency: a tunable dual-excitation dual-emission phosphors and time-dependent density functional theory study,” J. Phys. Chem. C 113(15), 6298–6302 (2009).
[Crossref]

O. V. Avercheva, Y. A. Berkovich, and A. N. Erokhin, “Growth and photosynthesis of Chinese cabbage plants grown under light-emitting diode-based light source,” Russ. J. Plant Physiol. 56(1), 14–21 (2009).
[Crossref]

2008 (3)

F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymers in agriculture: a review,” Am. J. Agric. Biol. Sci. 3(1), 299–314 (2008).
[Crossref]

V. Kreslavski, N. Tatarinzev, N. Shabnova, G. Semenova, and A. Kosobryukhov, “Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities,” J. Plant Physiol. 165(15), 1592–1600 (2008).
[Crossref]

A. Scopa, V. Candido, S. Dumontet, V. Miccolis, and A. Scopa, “Greenhouse solarization: effects on soil microbiological parameters and agronomic aspects,” Sci. Hortic. 116(1), 98–103 (2008).
[Crossref]

2007 (2)

K. M. Folta and S. A. Maruhnich, “Green light: a signal to slow down or stop,” J. Exp. Bot. 58(12), 3099–3111 (2007).
[Crossref]

K. K. Ohasi, M. Takase, N. Kon, K. Fujiwara, and K. Kurata, “Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna,” Environ. Control Biol. 45(3), 189–198 (2007).
[Crossref]

2006 (2)

E. Espi, A. Salmeron, A. Fontecha, Y. García, and A. I. Real, “Plastic films for agricultural applications,” J. Plast. Film Sheeting 22(2), 85–102 (2006)..
[Crossref]

A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
[Crossref]

2004 (3)

R. P. Brown, “Polymers in agriculture and horticulture,” Rapra Rev. Rep. 15(2), 1–92 (2004).

V. S. Raida, A. E. Ivanitskii, A. V. Bushkov, A. I. Fedorov, and G. A. Tolstikov, “Determination of the contribution from light-transforming polymer films to red portion of transmitted solar radiation due to UV-excited luminescence,” Atmos Ocean Opt. 17(2–3), 215–220 (2004).

M. V. Trushin, “Light-mediated “conversation” among microorganisms,” Microbiol. Res. 159(1), 1–10 (2004).
[Crossref]

2002 (1)

C. Edser, “Light manipulating additives extend opportunities for agricultural plastic films,” Plastics, Plast. Addit. Compd. 4(3), 20–24 (2002).
[Crossref]

2000 (2)

A. A. Kosobryukhov, V. D. Kreslavski, R. N. Khramov, L. R. Bratkova, and R. N. Shchelokov, “Effect of additional low intensity luminescence radiation 625 nm on plant growth and photosynthesis of plants,” Biotronics 29, 1–6 (2000).

M. M. Neff, C. Fankhauser, and J. Chory, “Light: an indicator of time and place,” Genes Dev. 14(3), 257–271 (2000)..
[Crossref]

1995 (1)

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting-diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120(5), 808–813 (1995).
[Crossref]

1988 (1)

O. Tiphlova and T. Karu, “Stimulation of Escherichia coli division by low-intensity monochromatic visible light,” Photochem. Photobiol. 48(4), 467–471 (1988).
[Crossref]

Ahmed, I.

R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, “Soil beneficial bacteria and their role in plant growth promotion: a review,” Ann. Microbiol. 60(4), 579–598 (2010).
[Crossref]

Ai, K.

K. Cao, J. Yu, D. Xu, K. Ai, E. Bao, and Z. Zou, “Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress,” BMC Plant Biol. 18(1), 92 (2018)..
[Crossref]

Al-Faif, F.

S. M. El-Bashir, F. F. Al-Harbi, H. Elburaih, F. Al-Faif, and I. S. Yahia, “Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses,” Renewable Energy 85, 928–938 (2016).
[Crossref]

Al-Harbi, F. F.

S. M. El-Bashir, F. F. Al-Harbi, H. Elburaih, F. Al-Faif, and I. S. Yahia, “Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses,” Renewable Energy 85, 928–938 (2016).
[Crossref]

Ali, S.

R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, “Soil beneficial bacteria and their role in plant growth promotion: a review,” Ann. Microbiol. 60(4), 579–598 (2010).
[Crossref]

Allakhverdiev, S. I.

V. D. Kreslavski, D. A. Los, F. J. Schmitt, S. K. Zharmukhamedov, V. V. Kuznetsov, and S. I. Allakhverdiev, “The impact of the phytochromes on photosynthetic processes,” Biochim. Biophys. Acta, Bioenerg. 1859(5), 400–408 (2018).
[Crossref]

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

H. M. Kalaji, V. Golstev, K. Bosa, S. I. Allakhverdiev, R. J. Strasser, and Govindjee, “Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker,” Photosynth. Res. 114(2), 69–96 (2012).
[Crossref]

Amara, U.

R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, “Soil beneficial bacteria and their role in plant growth promotion: a review,” Ann. Microbiol. 60(4), 579–598 (2010).
[Crossref]

Avercheva, O. V.

O. V. Avercheva, Y. A. Berkovich, and A. N. Erokhin, “Growth and photosynthesis of Chinese cabbage plants grown under light-emitting diode-based light source,” Russ. J. Plant Physiol. 56(1), 14–21 (2009).
[Crossref]

Azcön, R. J.

A. Marulanda, J.-M. Barea, and R. J. Azcön, “Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness,” J. Plant Growth Regul. 28(2), 115–124 (2009).
[Crossref]

Baba, W.

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

Bañón, S.

A. González, R. Rodríguez, S. Bañón, J. A. Franco, and J. A. Fernández, “The influence of photoselective plastic films as greenhouse cover on sweet pepper yield and on insect pest levels,” Acta Hortic. (559), 233–238 (2001)..
[Crossref]

Bao, E.

K. Cao, J. Yu, D. Xu, K. Ai, E. Bao, and Z. Zou, “Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress,” BMC Plant Biol. 18(1), 92 (2018)..
[Crossref]

Barea, J.-M.

A. Marulanda, J.-M. Barea, and R. J. Azcön, “Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness,” J. Plant Growth Regul. 28(2), 115–124 (2009).
[Crossref]

Basu, S. K.

S. K. Basu, “Agricultural and horticultural applications of agro textiles,” Indian Text. J. 121(12), 141–148 (2011).

Batentschuk, M.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

Berkovich, Y. A.

O. V. Avercheva, Y. A. Berkovich, and A. N. Erokhin, “Growth and photosynthesis of Chinese cabbage plants grown under light-emitting diode-based light source,” Russ. J. Plant Physiol. 56(1), 14–21 (2009).
[Crossref]

Borchardt, R.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Bosa, K.

H. M. Kalaji, V. Golstev, K. Bosa, S. I. Allakhverdiev, R. J. Strasser, and Govindjee, “Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker,” Photosynth. Res. 114(2), 69–96 (2012).
[Crossref]

Bou Jaoudé, M.

F. R. De Salvador, G. Scarascia Mugnozza, G. Vox, E. Schettini, M. Mastrorilli, and M. Bou Jaoudé, “Innovative photoselective and photoluminescent plastic films for protected cultivation,” Acta Hortic. (801), 115–122 (2008).
[Crossref]

Brabec, C. J.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

Bratkova, L. R.

A. A. Kosobryukhov, V. D. Kreslavski, R. N. Khramov, L. R. Bratkova, and R. N. Shchelokov, “Effect of additional low intensity luminescence radiation 625 nm on plant growth and photosynthesis of plants,” Biotronics 29, 1–6 (2000).

L. R. Bratkova and R. N. Schelokov, “Light-converting material and composition for producing the same,” United States Patent 6, 589, 450; (July 8, 2003).

Brown, C. S.

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting-diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120(5), 808–813 (1995).
[Crossref]

Brown, R. P.

R. P. Brown, “Polymers in agriculture and horticulture,” Rapra Rev. Rep. 15(2), 1–92 (2004).

Bushkov, A. V.

V. S. Raida, A. E. Ivanitskii, A. V. Bushkov, A. I. Fedorov, and G. A. Tolstikov, “Determination of the contribution from light-transforming polymer films to red portion of transmitted solar radiation due to UV-excited luminescence,” Atmos Ocean Opt. 17(2–3), 215–220 (2004).

Candido, V.

A. Scopa, V. Candido, S. Dumontet, V. Miccolis, and A. Scopa, “Greenhouse solarization: effects on soil microbiological parameters and agronomic aspects,” Sci. Hortic. 116(1), 98–103 (2008).
[Crossref]

Cao, K.

K. Cao, J. Yu, D. Xu, K. Ai, E. Bao, and Z. Zou, “Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress,” BMC Plant Biol. 18(1), 92 (2018)..
[Crossref]

Chemisana, D.

C. Lamnatou and D. Chemisana, “Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR-and UV-blocking materials,” Renewable Sustainable Energy Rev. 18, 271–287 (2013).
[Crossref]

Chory, J.

M. M. Neff, C. Fankhauser, and J. Chory, “Light: an indicator of time and place,” Genes Dev. 14(3), 257–271 (2000)..
[Crossref]

Cirillo, G.

F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymers in agriculture: a review,” Am. J. Agric. Biol. Sci. 3(1), 299–314 (2008).
[Crossref]

Crandall, M. D.

S. E. Wortman, I. A. Kadoma, and M. D. Crandall, “Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops,” Sci. Hortic. 193, 209–217 (2015).
[Crossref]

Cui, J.

N. Su, Q. Wu, Z. Shen, K. Xia, and J. Cui, “Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings,” Plant Growth Regul. 73(3), 227–235 (2014).
[Crossref]

Curcio, M.

F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymers in agriculture: a review,” Am. J. Agric. Biol. Sci. 3(1), 299–314 (2008).
[Crossref]

De Salvador, F. R.

F. R. De Salvador, G. Scarascia Mugnozza, G. Vox, E. Schettini, M. Mastrorilli, and M. Bou Jaoudé, “Innovative photoselective and photoluminescent plastic films for protected cultivation,” Acta Hortic. (801), 115–122 (2008).
[Crossref]

Dumontet, S.

A. Scopa, V. Candido, S. Dumontet, V. Miccolis, and A. Scopa, “Greenhouse solarization: effects on soil microbiological parameters and agronomic aspects,” Sci. Hortic. 116(1), 98–103 (2008).
[Crossref]

Edser, C.

C. Edser, “Light manipulating additives extend opportunities for agricultural plastic films,” Plastics, Plast. Addit. Compd. 4(3), 20–24 (2002).
[Crossref]

Efimova, M. V.

A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
[Crossref]

El-Bashir, S. M.

S. M. El-Bashir, F. F. Al-Harbi, H. Elburaih, F. Al-Faif, and I. S. Yahia, “Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses,” Renewable Energy 85, 928–938 (2016).
[Crossref]

Elburaih, H.

S. M. El-Bashir, F. F. Al-Harbi, H. Elburaih, F. Al-Faif, and I. S. Yahia, “Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses,” Renewable Energy 85, 928–938 (2016).
[Crossref]

Erokhin, A. N.

O. V. Avercheva, Y. A. Berkovich, and A. N. Erokhin, “Growth and photosynthesis of Chinese cabbage plants grown under light-emitting diode-based light source,” Russ. J. Plant Physiol. 56(1), 14–21 (2009).
[Crossref]

Espi, E.

E. Espi, A. Salmeron, A. Fontecha, Y. García, and A. I. Real, “Plastic films for agricultural applications,” J. Plast. Film Sheeting 22(2), 85–102 (2006)..
[Crossref]

Fankhauser, C.

M. M. Neff, C. Fankhauser, and J. Chory, “Light: an indicator of time and place,” Genes Dev. 14(3), 257–271 (2000)..
[Crossref]

Fedorov, A. I.

V. S. Raida, A. E. Ivanitskii, A. V. Bushkov, A. I. Fedorov, and G. A. Tolstikov, “Determination of the contribution from light-transforming polymer films to red portion of transmitted solar radiation due to UV-excited luminescence,” Atmos Ocean Opt. 17(2–3), 215–220 (2004).

Fernández, J. A.

A. González, R. Rodríguez, S. Bañón, J. A. Franco, and J. A. Fernández, “The influence of photoselective plastic films as greenhouse cover on sweet pepper yield and on insect pest levels,” Acta Hortic. (559), 233–238 (2001)..
[Crossref]

Filatov, D. A.

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

Folta, K. M.

K. M. Folta and S. A. Maruhnich, “Green light: a signal to slow down or stop,” J. Exp. Bot. 58(12), 3099–3111 (2007).
[Crossref]

Fontecha, A.

E. Espi, A. Salmeron, A. Fontecha, Y. García, and A. I. Real, “Plastic films for agricultural applications,” J. Plast. Film Sheeting 22(2), 85–102 (2006)..
[Crossref]

Franco, J. A.

A. González, R. Rodríguez, S. Bañón, J. A. Franco, and J. A. Fernández, “The influence of photoselective plastic films as greenhouse cover on sweet pepper yield and on insect pest levels,” Acta Hortic. (559), 233–238 (2001)..
[Crossref]

Fujiwara, K.

K. K. Ohasi, M. Takase, N. Kon, K. Fujiwara, and K. Kurata, “Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna,” Environ. Control Biol. 45(3), 189–198 (2007).
[Crossref]

García, Y.

E. Espi, A. Salmeron, A. Fontecha, Y. García, and A. I. Real, “Plastic films for agricultural applications,” J. Plast. Film Sheeting 22(2), 85–102 (2006)..
[Crossref]

Golovatskaya, I. F.

A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
[Crossref]

Golstev, V.

H. M. Kalaji, V. Golstev, K. Bosa, S. I. Allakhverdiev, R. J. Strasser, and Govindjee, “Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker,” Photosynth. Res. 114(2), 69–96 (2012).
[Crossref]

Goltsev, V. N.

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

González, A.

A. González, R. Rodríguez, S. Bañón, J. A. Franco, and J. A. Fernández, “The influence of photoselective plastic films as greenhouse cover on sweet pepper yield and on insect pest levels,” Acta Hortic. (559), 233–238 (2001)..
[Crossref]

Govindjee,

H. M. Kalaji, V. Golstev, K. Bosa, S. I. Allakhverdiev, R. J. Strasser, and Govindjee, “Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker,” Photosynth. Res. 114(2), 69–96 (2012).
[Crossref]

Häder, D. P.

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

Hayat, R.

R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, “Soil beneficial bacteria and their role in plant growth promotion: a review,” Ann. Microbiol. 60(4), 579–598 (2010).
[Crossref]

Hofmann, T.

J. F. J. Max, U. Schurr, H.-J. Tantau, U. N. Mutwiwa, T. Hofmann, and A. Ulbrich, “Greenhouse Cover Technology,” Hortic. Rev. 40(1), 259–396 (2012).
[Crossref]

Horaczek, T.

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

Iemma, F.

F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymers in agriculture: a review,” Am. J. Agric. Biol. Sci. 3(1), 299–314 (2008).
[Crossref]

Ivanitskii, A. E.

V. S. Raida, A. E. Ivanitskii, A. V. Bushkov, A. I. Fedorov, and G. A. Tolstikov, “Determination of the contribution from light-transforming polymer films to red portion of transmitted solar radiation due to UV-excited luminescence,” Atmos Ocean Opt. 17(2–3), 215–220 (2004).

Ivanitsky, A. E.

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

Ivlev, G. A.

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

Jian, W.

Y. N. Yuan, W. Jian, Z. Yanan, and G. E. Mingqiao, “Researches on preparation and properties of polypropylene nonwovens containing rare earth luminous materials,” J. Rare Earths 32(12), 1196–1200 (2014).
[Crossref]

Kadoma, I. A.

S. E. Wortman, I. A. Kadoma, and M. D. Crandall, “Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops,” Sci. Hortic. 193, 209–217 (2015).
[Crossref]

Kalaji, H. M.

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

H. M. Kalaji, V. Golstev, K. Bosa, S. I. Allakhverdiev, R. J. Strasser, and Govindjee, “Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker,” Photosynth. Res. 114(2), 69–96 (2012).
[Crossref]

Kansal, H.

H. Kansal, “Experimental investigation of properties of polypropylene and non-woven spunbond fabric,” JOSR. J. Polym. Text. Eng. (IOSR-JPTE) e-ISSN: 2348-019X, p-ISSN: 2348-0181, 3(5), 08–14 (2016).
[Crossref]

Karnachuk, R. A.

A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
[Crossref]

Karu, T.

O. Tiphlova and T. Karu, “Stimulation of Escherichia coli division by low-intensity monochromatic visible light,” Photochem. Photobiol. 48(4), 467–471 (1988).
[Crossref]

Khalid, R.

R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, “Soil beneficial bacteria and their role in plant growth promotion: a review,” Ann. Microbiol. 60(4), 579–598 (2010).
[Crossref]

Khramov, R. N.

A. A. Kosobryukhov, V. D. Kreslavski, R. N. Khramov, L. R. Bratkova, and R. N. Shchelokov, “Effect of additional low intensity luminescence radiation 625 nm on plant growth and photosynthesis of plants,” Biotronics 29, 1–6 (2000).

Kociel, H.

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

Kon, N.

K. K. Ohasi, M. Takase, N. Kon, K. Fujiwara, and K. Kurata, “Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna,” Environ. Control Biol. 45(3), 189–198 (2007).
[Crossref]

Kosobryukhov, A.

V. Kreslavski, N. Tatarinzev, N. Shabnova, G. Semenova, and A. Kosobryukhov, “Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities,” J. Plant Physiol. 165(15), 1592–1600 (2008).
[Crossref]

Kosobryukhov, A. A.

A. A. Kosobryukhov, V. D. Kreslavski, R. N. Khramov, L. R. Bratkova, and R. N. Shchelokov, “Effect of additional low intensity luminescence radiation 625 nm on plant growth and photosynthesis of plants,” Biotronics 29, 1–6 (2000).

Kreslavski, V.

V. Kreslavski, N. Tatarinzev, N. Shabnova, G. Semenova, and A. Kosobryukhov, “Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities,” J. Plant Physiol. 165(15), 1592–1600 (2008).
[Crossref]

Kreslavski, V. D.

V. D. Kreslavski, D. A. Los, F. J. Schmitt, S. K. Zharmukhamedov, V. V. Kuznetsov, and S. I. Allakhverdiev, “The impact of the phytochromes on photosynthetic processes,” Biochim. Biophys. Acta, Bioenerg. 1859(5), 400–408 (2018).
[Crossref]

A. A. Kosobryukhov, V. D. Kreslavski, R. N. Khramov, L. R. Bratkova, and R. N. Shchelokov, “Effect of additional low intensity luminescence radiation 625 nm on plant growth and photosynthesis of plants,” Biotronics 29, 1–6 (2000).

Kurata, K.

K. K. Ohasi, M. Takase, N. Kon, K. Fujiwara, and K. Kurata, “Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna,” Environ. Control Biol. 45(3), 189–198 (2007).
[Crossref]

Kuznetsov, V. V.

V. D. Kreslavski, D. A. Los, F. J. Schmitt, S. K. Zharmukhamedov, V. V. Kuznetsov, and S. I. Allakhverdiev, “The impact of the phytochromes on photosynthetic processes,” Biochim. Biophys. Acta, Bioenerg. 1859(5), 400–408 (2018).
[Crossref]

Lamnatou, C.

C. Lamnatou and D. Chemisana, “Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR-and UV-blocking materials,” Renewable Sustainable Energy Rev. 18, 271–287 (2013).
[Crossref]

Lian, S.

S. Lian, C. Rong, D. Yin, and S. Liu, “Enhancing solar energy conversion efficiency: a tunable dual-excitation dual-emission phosphors and time-dependent density functional theory study,” J. Phys. Chem. C 113(15), 6298–6302 (2009).
[Crossref]

Liu, S.

S. Lian, C. Rong, D. Yin, and S. Liu, “Enhancing solar energy conversion efficiency: a tunable dual-excitation dual-emission phosphors and time-dependent density functional theory study,” J. Phys. Chem. C 113(15), 6298–6302 (2009).
[Crossref]

Los, D. A.

V. D. Kreslavski, D. A. Los, F. J. Schmitt, S. K. Zharmukhamedov, V. V. Kuznetsov, and S. I. Allakhverdiev, “The impact of the phytochromes on photosynthetic processes,” Biochim. Biophys. Acta, Bioenerg. 1859(5), 400–408 (2018).
[Crossref]

Maruhnich, S. A.

K. M. Folta and S. A. Maruhnich, “Green light: a signal to slow down or stop,” J. Exp. Bot. 58(12), 3099–3111 (2007).
[Crossref]

Marulanda, A.

A. Marulanda, J.-M. Barea, and R. J. Azcön, “Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness,” J. Plant Growth Regul. 28(2), 115–124 (2009).
[Crossref]

Mastrorilli, M.

F. R. De Salvador, G. Scarascia Mugnozza, G. Vox, E. Schettini, M. Mastrorilli, and M. Bou Jaoudé, “Innovative photoselective and photoluminescent plastic films for protected cultivation,” Acta Hortic. (801), 115–122 (2008).
[Crossref]

Max, J. F. J.

J. F. J. Max, U. Schurr, H.-J. Tantau, U. N. Mutwiwa, T. Hofmann, and A. Ulbrich, “Greenhouse Cover Technology,” Hortic. Rev. 40(1), 259–396 (2012).
[Crossref]

Méndez-Ramos, J.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2(12), 1500218 (2015).
[Crossref]

Miccolis, V.

A. Scopa, V. Candido, S. Dumontet, V. Miccolis, and A. Scopa, “Greenhouse solarization: effects on soil microbiological parameters and agronomic aspects,” Sci. Hortic. 116(1), 98–103 (2008).
[Crossref]

Mingqiao, G. E.

Y. N. Yuan, W. Jian, Z. Yanan, and G. E. Mingqiao, “Researches on preparation and properties of polypropylene nonwovens containing rare earth luminous materials,” J. Rare Earths 32(12), 1196–1200 (2014).
[Crossref]

Minich, A. S.

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
[Crossref]

Minich, I. B.

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
[Crossref]

Mojski, J.

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

Müller, F. A.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2(12), 1500218 (2015).
[Crossref]

Mutwiwa, U. N.

J. F. J. Max, U. Schurr, H.-J. Tantau, U. N. Mutwiwa, T. Hofmann, and A. Ulbrich, “Greenhouse Cover Technology,” Hortic. Rev. 40(1), 259–396 (2012).
[Crossref]

Neff, M. M.

M. M. Neff, C. Fankhauser, and J. Chory, “Light: an indicator of time and place,” Genes Dev. 14(3), 257–271 (2000)..
[Crossref]

Ohasi, K. K.

K. K. Ohasi, M. Takase, N. Kon, K. Fujiwara, and K. Kurata, “Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna,” Environ. Control Biol. 45(3), 189–198 (2007).
[Crossref]

Osvet, A.

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

Paunov, M.

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

Permyakova, N. L.

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

Picci, N.

F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymers in agriculture: a review,” Am. J. Agric. Biol. Sci. 3(1), 299–314 (2008).
[Crossref]

Puoci, F.

F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymers in agriculture: a review,” Am. J. Agric. Biol. Sci. 3(1), 299–314 (2008).
[Crossref]

Raida, V. S.

A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
[Crossref]

V. S. Raida, A. E. Ivanitskii, A. V. Bushkov, A. I. Fedorov, and G. A. Tolstikov, “Determination of the contribution from light-transforming polymer films to red portion of transmitted solar radiation due to UV-excited luminescence,” Atmos Ocean Opt. 17(2–3), 215–220 (2004).

Real, A. I.

E. Espi, A. Salmeron, A. Fontecha, Y. García, and A. I. Real, “Plastic films for agricultural applications,” J. Plast. Film Sheeting 22(2), 85–102 (2006)..
[Crossref]

Richter, P.

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

Rodríguez, R.

A. González, R. Rodríguez, S. Bañón, J. A. Franco, and J. A. Fernández, “The influence of photoselective plastic films as greenhouse cover on sweet pepper yield and on insect pest levels,” Acta Hortic. (559), 233–238 (2001)..
[Crossref]

Rong, C.

S. Lian, C. Rong, D. Yin, and S. Liu, “Enhancing solar energy conversion efficiency: a tunable dual-excitation dual-emission phosphors and time-dependent density functional theory study,” J. Phys. Chem. C 113(15), 6298–6302 (2009).
[Crossref]

Sager, J. C.

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting-diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120(5), 808–813 (1995).
[Crossref]

Salmeron, A.

E. Espi, A. Salmeron, A. Fontecha, Y. García, and A. I. Real, “Plastic films for agricultural applications,” J. Plast. Film Sheeting 22(2), 85–102 (2006)..
[Crossref]

Scarascia Mugnozza, G.

F. R. De Salvador, G. Scarascia Mugnozza, G. Vox, E. Schettini, M. Mastrorilli, and M. Bou Jaoudé, “Innovative photoselective and photoluminescent plastic films for protected cultivation,” Acta Hortic. (801), 115–122 (2008).
[Crossref]

Scheiner, S.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Schelokov, R. N.

L. R. Bratkova and R. N. Schelokov, “Light-converting material and composition for producing the same,” United States Patent 6, 589, 450; (July 8, 2003).

Schettini, E.

F. R. De Salvador, G. Scarascia Mugnozza, G. Vox, E. Schettini, M. Mastrorilli, and M. Bou Jaoudé, “Innovative photoselective and photoluminescent plastic films for protected cultivation,” Acta Hortic. (801), 115–122 (2008).
[Crossref]

Schmidt, M. A.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Schmitt, F. J.

V. D. Kreslavski, D. A. Los, F. J. Schmitt, S. K. Zharmukhamedov, V. V. Kuznetsov, and S. I. Allakhverdiev, “The impact of the phytochromes on photosynthetic processes,” Biochim. Biophys. Acta, Bioenerg. 1859(5), 400–408 (2018).
[Crossref]

Schneider, J.

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

Schuerger, A. C.

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting-diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120(5), 808–813 (1995).
[Crossref]

Schurr, U.

J. F. J. Max, U. Schurr, H.-J. Tantau, U. N. Mutwiwa, T. Hofmann, and A. Ulbrich, “Greenhouse Cover Technology,” Hortic. Rev. 40(1), 259–396 (2012).
[Crossref]

Schweizer, P.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Scopa, A.

A. Scopa, V. Candido, S. Dumontet, V. Miccolis, and A. Scopa, “Greenhouse solarization: effects on soil microbiological parameters and agronomic aspects,” Sci. Hortic. 116(1), 98–103 (2008).
[Crossref]

A. Scopa, V. Candido, S. Dumontet, V. Miccolis, and A. Scopa, “Greenhouse solarization: effects on soil microbiological parameters and agronomic aspects,” Sci. Hortic. 116(1), 98–103 (2008).
[Crossref]

Seemann, B.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Semenova, G.

V. Kreslavski, N. Tatarinzev, N. Shabnova, G. Semenova, and A. Kosobryukhov, “Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities,” J. Plant Physiol. 165(15), 1592–1600 (2008).
[Crossref]

Shabnova, N.

V. Kreslavski, N. Tatarinzev, N. Shabnova, G. Semenova, and A. Kosobryukhov, “Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities,” J. Plant Physiol. 165(15), 1592–1600 (2008).
[Crossref]

Shaitarova, O. V.

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

Shchelokov, R. N.

A. A. Kosobryukhov, V. D. Kreslavski, R. N. Khramov, L. R. Bratkova, and R. N. Shchelokov, “Effect of additional low intensity luminescence radiation 625 nm on plant growth and photosynthesis of plants,” Biotronics 29, 1–6 (2000).

Shen, Z.

N. Su, Q. Wu, Z. Shen, K. Xia, and J. Cui, “Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings,” Plant Growth Regul. 73(3), 227–235 (2014).
[Crossref]

Spizzirri, U. G.

F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymers in agriculture: a review,” Am. J. Agric. Biol. Sci. 3(1), 299–314 (2008).
[Crossref]

Strasser, R. J.

H. M. Kalaji, V. Golstev, K. Bosa, S. I. Allakhverdiev, R. J. Strasser, and Govindjee, “Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker,” Photosynth. Res. 114(2), 69–96 (2012).
[Crossref]

Su, N.

N. Su, Q. Wu, Z. Shen, K. Xia, and J. Cui, “Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings,” Plant Growth Regul. 73(3), 227–235 (2014).
[Crossref]

Takase, M.

K. K. Ohasi, M. Takase, N. Kon, K. Fujiwara, and K. Kurata, “Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna,” Environ. Control Biol. 45(3), 189–198 (2007).
[Crossref]

Tantau, H.-J.

J. F. J. Max, U. Schurr, H.-J. Tantau, U. N. Mutwiwa, T. Hofmann, and A. Ulbrich, “Greenhouse Cover Technology,” Hortic. Rev. 40(1), 259–396 (2012).
[Crossref]

Tatarinzev, N.

V. Kreslavski, N. Tatarinzev, N. Shabnova, G. Semenova, and A. Kosobryukhov, “Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities,” J. Plant Physiol. 165(15), 1592–1600 (2008).
[Crossref]

Tiphlova, O.

O. Tiphlova and T. Karu, “Stimulation of Escherichia coli division by low-intensity monochromatic visible light,” Photochem. Photobiol. 48(4), 467–471 (1988).
[Crossref]

Tolstikov, G. A.

V. S. Raida, A. E. Ivanitskii, A. V. Bushkov, A. I. Fedorov, and G. A. Tolstikov, “Determination of the contribution from light-transforming polymer films to red portion of transmitted solar radiation due to UV-excited luminescence,” Atmos Ocean Opt. 17(2–3), 215–220 (2004).

Trushin, M. V.

M. V. Trushin, “Light-mediated “conversation” among microorganisms,” Microbiol. Res. 159(1), 1–10 (2004).
[Crossref]

Tyystjärvi, E.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2(12), 1500218 (2015).
[Crossref]

Ulbrich, A.

J. F. J. Max, U. Schurr, H.-J. Tantau, U. N. Mutwiwa, T. Hofmann, and A. Ulbrich, “Greenhouse Cover Technology,” Hortic. Rev. 40(1), 259–396 (2012).
[Crossref]

Vox, G.

F. R. De Salvador, G. Scarascia Mugnozza, G. Vox, E. Schettini, M. Mastrorilli, and M. Bou Jaoudé, “Innovative photoselective and photoluminescent plastic films for protected cultivation,” Acta Hortic. (801), 115–122 (2008).
[Crossref]

Winnacker, A.

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

Wondraczek, L.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2(12), 1500218 (2015).
[Crossref]

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Wortman, S. E.

S. E. Wortman, I. A. Kadoma, and M. D. Crandall, “Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops,” Sci. Hortic. 193, 209–217 (2015).
[Crossref]

Wu, Q.

N. Su, Q. Wu, Z. Shen, K. Xia, and J. Cui, “Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings,” Plant Growth Regul. 73(3), 227–235 (2014).
[Crossref]

Xia, K.

N. Su, Q. Wu, Z. Shen, K. Xia, and J. Cui, “Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings,” Plant Growth Regul. 73(3), 227–235 (2014).
[Crossref]

Xia, Q.

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

Xu, D.

K. Cao, J. Yu, D. Xu, K. Ai, E. Bao, and Z. Zou, “Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress,” BMC Plant Biol. 18(1), 92 (2018)..
[Crossref]

Yahia, I. S.

S. M. El-Bashir, F. F. Al-Harbi, H. Elburaih, F. Al-Faif, and I. S. Yahia, “Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses,” Renewable Energy 85, 928–938 (2016).
[Crossref]

Yanan, Z.

Y. N. Yuan, W. Jian, Z. Yanan, and G. E. Mingqiao, “Researches on preparation and properties of polypropylene nonwovens containing rare earth luminous materials,” J. Rare Earths 32(12), 1196–1200 (2014).
[Crossref]

Yin, D.

S. Lian, C. Rong, D. Yin, and S. Liu, “Enhancing solar energy conversion efficiency: a tunable dual-excitation dual-emission phosphors and time-dependent density functional theory study,” J. Phys. Chem. C 113(15), 6298–6302 (2009).
[Crossref]

Yu, J.

K. Cao, J. Yu, D. Xu, K. Ai, E. Bao, and Z. Zou, “Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress,” BMC Plant Biol. 18(1), 92 (2018)..
[Crossref]

Yuan, Y. N.

Y. N. Yuan, W. Jian, Z. Yanan, and G. E. Mingqiao, “Researches on preparation and properties of polypropylene nonwovens containing rare earth luminous materials,” J. Rare Earths 32(12), 1196–1200 (2014).
[Crossref]

Zelenchukova, N. S.

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
[Crossref]

Zhang, Q.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2(12), 1500218 (2015).
[Crossref]

Zharmukhamedov, S. K.

V. D. Kreslavski, D. A. Los, F. J. Schmitt, S. K. Zharmukhamedov, V. V. Kuznetsov, and S. I. Allakhverdiev, “The impact of the phytochromes on photosynthetic processes,” Biochim. Biophys. Acta, Bioenerg. 1859(5), 400–408 (2018).
[Crossref]

Zou, Z.

K. Cao, J. Yu, D. Xu, K. Ai, E. Bao, and Z. Zou, “Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress,” BMC Plant Biol. 18(1), 92 (2018)..
[Crossref]

Adv. Sci. (1)

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2(12), 1500218 (2015).
[Crossref]

Am. J. Agric. Biol. Sci. (1)

F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, and N. Picci, “Polymers in agriculture: a review,” Am. J. Agric. Biol. Sci. 3(1), 299–314 (2008).
[Crossref]

Ann. Microbiol. (1)

R. Hayat, S. Ali, U. Amara, R. Khalid, and I. Ahmed, “Soil beneficial bacteria and their role in plant growth promotion: a review,” Ann. Microbiol. 60(4), 579–598 (2010).
[Crossref]

Atmos Ocean Opt. (1)

V. S. Raida, A. E. Ivanitskii, A. V. Bushkov, A. I. Fedorov, and G. A. Tolstikov, “Determination of the contribution from light-transforming polymer films to red portion of transmitted solar radiation due to UV-excited luminescence,” Atmos Ocean Opt. 17(2–3), 215–220 (2004).

Biochim. Biophys. Acta, Bioenerg. (1)

V. D. Kreslavski, D. A. Los, F. J. Schmitt, S. K. Zharmukhamedov, V. V. Kuznetsov, and S. I. Allakhverdiev, “The impact of the phytochromes on photosynthetic processes,” Biochim. Biophys. Acta, Bioenerg. 1859(5), 400–408 (2018).
[Crossref]

Biotronics (1)

A. A. Kosobryukhov, V. D. Kreslavski, R. N. Khramov, L. R. Bratkova, and R. N. Shchelokov, “Effect of additional low intensity luminescence radiation 625 nm on plant growth and photosynthesis of plants,” Biotronics 29, 1–6 (2000).

BMC Plant Biol. (1)

K. Cao, J. Yu, D. Xu, K. Ai, E. Bao, and Z. Zou, “Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress,” BMC Plant Biol. 18(1), 92 (2018)..
[Crossref]

Environ. Control Biol. (1)

K. K. Ohasi, M. Takase, N. Kon, K. Fujiwara, and K. Kurata, “Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna,” Environ. Control Biol. 45(3), 189–198 (2007).
[Crossref]

Genes Dev. (1)

M. M. Neff, C. Fankhauser, and J. Chory, “Light: an indicator of time and place,” Genes Dev. 14(3), 257–271 (2000)..
[Crossref]

Hortic. Rev. (1)

J. F. J. Max, U. Schurr, H.-J. Tantau, U. N. Mutwiwa, T. Hofmann, and A. Ulbrich, “Greenhouse Cover Technology,” Hortic. Rev. 40(1), 259–396 (2012).
[Crossref]

Indian Text. J. (1)

S. K. Basu, “Agricultural and horticultural applications of agro textiles,” Indian Text. J. 121(12), 141–148 (2011).

J. Am. Soc. Hortic. Sci. (1)

C. S. Brown, A. C. Schuerger, and J. C. Sager, “Growth and photomorphogenesis of pepper plants under red light-emitting-diodes with supplemental blue or far-red lighting,” J. Am. Soc. Hortic. Sci. 120(5), 808–813 (1995).
[Crossref]

J. Exp. Bot. (1)

K. M. Folta and S. A. Maruhnich, “Green light: a signal to slow down or stop,” J. Exp. Bot. 58(12), 3099–3111 (2007).
[Crossref]

J. Phys. Chem. C (1)

S. Lian, C. Rong, D. Yin, and S. Liu, “Enhancing solar energy conversion efficiency: a tunable dual-excitation dual-emission phosphors and time-dependent density functional theory study,” J. Phys. Chem. C 113(15), 6298–6302 (2009).
[Crossref]

J. Plant Growth Regul. (1)

A. Marulanda, J.-M. Barea, and R. J. Azcön, “Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness,” J. Plant Growth Regul. 28(2), 115–124 (2009).
[Crossref]

J. Plant Physiol. (1)

V. Kreslavski, N. Tatarinzev, N. Shabnova, G. Semenova, and A. Kosobryukhov, “Characterization of the nature of photosynthetic recovery of wheat seedlings from short-term dark heat exposures and analysis of the mode of acclimation to different light intensities,” J. Plant Physiol. 165(15), 1592–1600 (2008).
[Crossref]

J. Plast. Film Sheeting (1)

E. Espi, A. Salmeron, A. Fontecha, Y. García, and A. I. Real, “Plastic films for agricultural applications,” J. Plast. Film Sheeting 22(2), 85–102 (2006)..
[Crossref]

J. Rare Earths (1)

Y. N. Yuan, W. Jian, Z. Yanan, and G. E. Mingqiao, “Researches on preparation and properties of polypropylene nonwovens containing rare earth luminous materials,” J. Rare Earths 32(12), 1196–1200 (2014).
[Crossref]

JOSR. J. Polym. Text. Eng. (IOSR-JPTE) (1)

H. Kansal, “Experimental investigation of properties of polypropylene and non-woven spunbond fabric,” JOSR. J. Polym. Text. Eng. (IOSR-JPTE) e-ISSN: 2348-019X, p-ISSN: 2348-0181, 3(5), 08–14 (2016).
[Crossref]

Microbiol. Res. (1)

M. V. Trushin, “Light-mediated “conversation” among microorganisms,” Microbiol. Res. 159(1), 1–10 (2004).
[Crossref]

Nat. Commun. (1)

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4(1), 2047 (2013).
[Crossref]

Opt. Express (1)

Q. Xia, M. Batentschuk, A. Osvet, P. Richter, D. P. Häder, J. Schneider, C. J. Brabec, L. Wondraczek, and A. Winnacker, “Enhanced photosynthetic activity in Spinacia oleracea by spectral modification with a photoluminescent light converting material,” Opt. Express 21(S6), 909 (2013).
[Crossref]

Photochem. Photobiol. (1)

O. Tiphlova and T. Karu, “Stimulation of Escherichia coli division by low-intensity monochromatic visible light,” Photochem. Photobiol. 48(4), 467–471 (1988).
[Crossref]

Photosynth. Res. (1)

H. M. Kalaji, V. Golstev, K. Bosa, S. I. Allakhverdiev, R. J. Strasser, and Govindjee, “Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker,” Photosynth. Res. 114(2), 69–96 (2012).
[Crossref]

Plant Growth Regul. (1)

N. Su, Q. Wu, Z. Shen, K. Xia, and J. Cui, “Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings,” Plant Growth Regul. 73(3), 227–235 (2014).
[Crossref]

Plastics, Plast. Addit. Compd. (1)

C. Edser, “Light manipulating additives extend opportunities for agricultural plastic films,” Plastics, Plast. Addit. Compd. 4(3), 20–24 (2002).
[Crossref]

Rapra Rev. Rep. (1)

R. P. Brown, “Polymers in agriculture and horticulture,” Rapra Rev. Rep. 15(2), 1–92 (2004).

Renewable Energy (1)

S. M. El-Bashir, F. F. Al-Harbi, H. Elburaih, F. Al-Faif, and I. S. Yahia, “Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses,” Renewable Energy 85, 928–938 (2016).
[Crossref]

Renewable Sustainable Energy Rev. (1)

C. Lamnatou and D. Chemisana, “Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR-and UV-blocking materials,” Renewable Sustainable Energy Rev. 18, 271–287 (2013).
[Crossref]

Russ. J. Plant Physiol. (3)

A. S. Minich, I. B. Minich, N. S. Zelenchukova, R. A. Karnachuk, I. F. Golovatskaya, M. V. Efimova, and V. S. Raida, “The Role of low intensity red luminescent radiation in the control of Arabidopsis thaliana. Morphogenesis and hormonal balance,” Russ. J. Plant Physiol. 53(6), 762–767 (2006).
[Crossref]

V. N. Goltsev, H. M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, and S. I. Allakhverdiev, “Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus,” Russ. J. Plant Physiol. 63(6), 869–893 (2016).
[Crossref]

O. V. Avercheva, Y. A. Berkovich, and A. N. Erokhin, “Growth and photosynthesis of Chinese cabbage plants grown under light-emitting diode-based light source,” Russ. J. Plant Physiol. 56(1), 14–21 (2009).
[Crossref]

Sci. Hortic. (2)

A. Scopa, V. Candido, S. Dumontet, V. Miccolis, and A. Scopa, “Greenhouse solarization: effects on soil microbiological parameters and agronomic aspects,” Sci. Hortic. 116(1), 98–103 (2008).
[Crossref]

S. E. Wortman, I. A. Kadoma, and M. D. Crandall, “Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops,” Sci. Hortic. 193, 209–217 (2015).
[Crossref]

Vestnik TGPU (1)

A. S. Minich, I. B. Minich, O. V. Shaitarova, N. L. Permyakova, N. S. Zelenchukova, A. E. Ivanitsky, D. A. Filatov, and G. A. Ivlev, “Vital activity of Lactuca sativa and soil microorganisms under fluorescent films,” Vestnik TGPU 8(110), 78–84 (2011). (cite. vestnik.tspu.edu.ru).

Other (3)

F. R. De Salvador, G. Scarascia Mugnozza, G. Vox, E. Schettini, M. Mastrorilli, and M. Bou Jaoudé, “Innovative photoselective and photoluminescent plastic films for protected cultivation,” Acta Hortic. (801), 115–122 (2008).
[Crossref]

L. R. Bratkova and R. N. Schelokov, “Light-converting material and composition for producing the same,” United States Patent 6, 589, 450; (July 8, 2003).

A. González, R. Rodríguez, S. Bañón, J. A. Franco, and J. A. Fernández, “The influence of photoselective plastic films as greenhouse cover on sweet pepper yield and on insect pest levels,” Acta Hortic. (559), 233–238 (2001)..
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. A photograph of a part of our setup used for plant growing (left). Modified and non-modified spunbond under UV-A radiation (on right). Red light is emitted with photoluminophore.
Fig. 2.
Fig. 2. The fluorescence and excitation spectra of the PL introduced into the spunbond material. Excitation of fluorescence at a wavelength of 365 nm. Fluorescence spectrum at a wavelength of 625 nm.
Fig. 3.
Fig. 3. Changes in solar spectrum after textiles without PL (red curve) and with PL introduced (black points). Black curve - spectrum of solar irradiation before textiles.
Fig. 4.
Fig. 4. Changes in solar spectrum after polypropylene films with a content of 5% and 10% Y2O2SEu. At the top there is a direct recording from a spectroradiometer, at the bottom and in the inset, the luminescence of films with 5 and 10% Y2O2SEu content is shown on an enlarged scale. The intensity of sunlight in region of 380 nm–780 nm was 533.8 W m−2 (film thickness 40 мкм).
Fig. 5.
Fig. 5. Dependence of the average total biomass of one cabbage plant on the time of the growing of seedlings under the spunbond and the type of covering. +PL - modified spunbond. Control – control without any covering. -PL - unmodified spunbond. The means ± SD are given, n = 10.
Fig. 6.
Fig. 6. Spectral distribution of day solar radiation incident on plants (continuous curve) and in the dense shadow of plants (intermittent curve). Red triangles show additional luminescent light. From [30] with modification.

Tables (3)

Tables Icon

Table 1. Photosynthesis and total biomass accumulation by 20-d-old lettuce plants after growing. Control - without any coating. -PL - unmodified spunbond without photoluminophore. +PL - spunbond with the introduced photoluminophore. For biomass, average data from 28 plants are given; for photosynthesis, 10 leaves for each variant were used. Middle light intensity on the leaves of top tiers was 640 µmol photons m−2 s−1 and in the shade of leaves ranged between a few µmol photons m−2 s−1and 100 µmol photons m−2 s−1. The means ± SD are given.

Tables Icon

Table 2. The performance of the photosynthetic apparatus 42-d-old cabbage plants grown under the covering material spunbond with the addition of photoluminophore (+PL) and without additive (-PL) and without a coating (Cont.). Water use efficiency (WUE) is equal to the ratio of the rate of photosynthesis (Pn) to the rate of transpiration. The average data for 12 leaves of cabbage plants in each variant are given. The values are means ±SD.

Tables Icon

Table 3. Changes in the relative maximal amplitude of the DF induction curves ((Im-D) / D in the case of a spunbond with an introduced photoluminophore (+PL) and without it (-PL). Control - uncoated control. 12 leaves of 42-d-old cabbage plants in each variant and 10 leaves of 20-d-old lettuce plants were taken from 5–6 different plants. The growing conditions are the same as in Tables 1 and 2.

Metrics