Abstract

A flexible and efficient strategy, digital micromirror devices (DMD) based multistep lithography (DMSL), is proposed to fabricate arrays of user-defined microstructures. Through the combination of dose modulation, flexible pattern generation of DMD, and high-resolution step movement of piezoelectrical stage (PZS), this method enables prototyping a board range of 2D lattices with periodic/nonperiodic spatial distribution and arbitrary shapes and the critical feature size is down to 600 nm. We further explore the use of DMSL to fabricate microlens array by combining with the thermal reflowing process. The square shape and hexagonal shape microlens with customized distribution are realized and characterized. The results indicate that the proposed DMSL can be a significant role in the microfabrication techniques for manufacturing functional microstructures array.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation

Biao Yang, Jinyun Zhou, Qiming Chen, Liang Lei, and Kunhua Wen
Opt. Express 26(22) 28927-28937 (2018)

Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography

Jae-Beom Kim and Ki-Hun Jeong
Opt. Express 25(14) 16854-16859 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. M. Zhang, Y. Q. Gao, N. N. Luo, K. L. Zhong, and Z. H. Liu, “Multi-direction digital moving mask method for fabricating continuous microstructures,” Opt. Appl. 61(1), 79–99 (2015).
    [Crossref]
  2. R. Yang, S. A. Soper, and W. J. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators, A 127(1), 123–130 (2006).
    [Crossref]
  3. C. J. Ke, X. J. Yi, Z. M. Xu, and J. J. Lai, “Monolithic integration technology between microlens arrays and infrared charge coupled devices,” Opt. Laser Technol. 37(3), 239–243 (2005).
    [Crossref]
  4. C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, “Microfluidics technology for manipulation and analysis of biological cells,” Anal. Chim. Acta 560(1-2), 1–23 (2006).
    [Crossref]
  5. X. Zhang, X. N. Jiang, and C. Sun, “Micro-stereolithography of polymeric and ceramic microstructures,” Sens. Actuators, A 77(2), 149–156 (1999).
    [Crossref]
  6. C. Sun and X. Zhang, “The influences of the material properties on ceramic micro-stereolithography,” Sens. Actuators, A 101(3), 364–370 (2002).
    [Crossref]
  7. M. A. Verschuuren, M. W. Knight, M. Megens, and A. Polman, “Nanoscale spatial limitations of large-area substrate conformal imprint lithography,” Nanotechnology 30(34), 345301 (2019).
    [Crossref]
  8. H. Schift, “Nanoimprint lithography: an old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
    [Crossref]
  9. M. A. Verschuuren, M. Megens, Y. F. Ni, H. V. Sprang, and A. Polman, “Large area nanoimprint by substrate conformal imprint lithography (SCIL),” Adv. Opt. Technol. 6(3-4), 243–264 (2017).
    [Crossref]
  10. A. Zukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by directlaser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
    [Crossref]
  11. T. Kohoutek, M. A. Hughes, J. Orava, M. Mastumoto, T. Misumi, H. Kawashima, T. Suzuki, and Y. Ohishi, “Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass,” J. Opt. Soc. Am. B 29(10), 2779–2786 (2012).
    [Crossref]
  12. M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
    [Crossref]
  13. Q. Yang, S. Tong, F. Chen, Z. Deng, H. Bian, G. Du, J. Yong, and X. Hou, “Lens-on-lens microstructures,” Opt. Lett. 40(22), 5359–5362 (2015).
    [Crossref]
  14. Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
    [Crossref]
  15. B. Yang, J. Y. Zhou, Q. M. Chen, L. Lei, and K. H. Wen, “Fabrication of hexagonal compound eye microlens array using DMD-based lithography with dose modulation,” Opt. Express 26(22), 28927–28937 (2018).
    [Crossref]
  16. P. Kunwar, Z. Xiong, Y. Zhu, H. Y. Li, A. Filip, and P. Soman, “Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures,” Adv. Opt. Mater.1900656 (2019).
  17. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators, A 130-131, 387–392 (2006).
    [Crossref]
  18. A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators, B 153(1), 125–134 (2011).
    [Crossref]
  19. A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
    [Crossref]
  20. K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
    [Crossref]
  21. Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
    [Crossref]
  22. Z. Xiong, H. Liu, R. H. Chen, J. Xu, Q. K. Li, J. H. Li, and W. J. Zhang, “Illumination Uniformity Improvement in Digital Micromirror Devices based Scanning Photolithography System,” Opt. Express 26(14), 18597–18607 (2018).
    [Crossref]
  23. S. Z. Huang, M. J. Li, L. G. Shen, J. F. Qiu, and Y. Q. Zhou, “Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow,” Opt. Laser Technol. 100, 298–303 (2018).
    [Crossref]
  24. M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Lie, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
    [Crossref]

2019 (2)

M. A. Verschuuren, M. W. Knight, M. Megens, and A. Polman, “Nanoscale spatial limitations of large-area substrate conformal imprint lithography,” Nanotechnology 30(34), 345301 (2019).
[Crossref]

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

2018 (3)

2017 (1)

M. A. Verschuuren, M. Megens, Y. F. Ni, H. V. Sprang, and A. Polman, “Large area nanoimprint by substrate conformal imprint lithography (SCIL),” Adv. Opt. Technol. 6(3-4), 243–264 (2017).
[Crossref]

2016 (1)

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

2015 (3)

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Lie, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Z. M. Zhang, Y. Q. Gao, N. N. Luo, K. L. Zhong, and Z. H. Liu, “Multi-direction digital moving mask method for fabricating continuous microstructures,” Opt. Appl. 61(1), 79–99 (2015).
[Crossref]

Q. Yang, S. Tong, F. Chen, Z. Deng, H. Bian, G. Du, J. Yong, and X. Hou, “Lens-on-lens microstructures,” Opt. Lett. 40(22), 5359–5362 (2015).
[Crossref]

2014 (1)

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
[Crossref]

2012 (4)

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref]

A. Zukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by directlaser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
[Crossref]

T. Kohoutek, M. A. Hughes, J. Orava, M. Mastumoto, T. Misumi, H. Kawashima, T. Suzuki, and Y. Ohishi, “Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass,” J. Opt. Soc. Am. B 29(10), 2779–2786 (2012).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

2011 (1)

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators, B 153(1), 125–134 (2011).
[Crossref]

2008 (1)

H. Schift, “Nanoimprint lithography: an old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

2006 (3)

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators, A 130-131, 387–392 (2006).
[Crossref]

R. Yang, S. A. Soper, and W. J. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators, A 127(1), 123–130 (2006).
[Crossref]

C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, “Microfluidics technology for manipulation and analysis of biological cells,” Anal. Chim. Acta 560(1-2), 1–23 (2006).
[Crossref]

2005 (1)

C. J. Ke, X. J. Yi, Z. M. Xu, and J. J. Lai, “Monolithic integration technology between microlens arrays and infrared charge coupled devices,” Opt. Laser Technol. 37(3), 239–243 (2005).
[Crossref]

2002 (1)

C. Sun and X. Zhang, “The influences of the material properties on ceramic micro-stereolithography,” Sens. Actuators, A 101(3), 364–370 (2002).
[Crossref]

1999 (1)

X. Zhang, X. N. Jiang, and C. Sun, “Micro-stereolithography of polymeric and ceramic microstructures,” Sens. Actuators, A 77(2), 149–156 (1999).
[Crossref]

Balevicius, Z.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

Bian, H.

Chen, F.

Chen, Q. M.

Chen, R. H.

Chichkov, B. N.

Deng, Z.

Du, G.

Dwivedi, P. K.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators, B 153(1), 125–134 (2011).
[Crossref]

Esashi, M.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators, A 130-131, 387–392 (2006).
[Crossref]

Filip, A.

P. Kunwar, Z. Xiong, Y. Zhu, H. Y. Li, A. Filip, and P. Soman, “Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures,” Adv. Opt. Mater.1900656 (2019).

Fotakis, C.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

Fujishiro, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators, A 130-131, 387–392 (2006).
[Crossref]

Gadonas, R.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

A. Zukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by directlaser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
[Crossref]

Gaidukeviciu, A.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

Gao, Y. Q.

Z. M. Zhang, Y. Q. Gao, N. N. Luo, K. L. Zhong, and Z. H. Liu, “Multi-direction digital moving mask method for fabricating continuous microstructures,” Opt. Appl. 61(1), 79–99 (2015).
[Crossref]

Gray, D.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

Gu, E.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Lie, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Han, S.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

Han, X.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Lie, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Hou, X.

Huang, S. Z.

S. Z. Huang, M. J. Li, L. G. Shen, J. F. Qiu, and Y. Q. Zhou, “Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow,” Opt. Laser Technol. 100, 298–303 (2018).
[Crossref]

Hughes, M. A.

Ji, S. L.

C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, “Microfluidics technology for manipulation and analysis of biological cells,” Anal. Chim. Acta 560(1-2), 1–23 (2006).
[Crossref]

Jiang, X. N.

X. Zhang, X. N. Jiang, and C. Sun, “Micro-stereolithography of polymeric and ceramic microstructures,” Sens. Actuators, A 77(2), 149–156 (1999).
[Crossref]

Katepalli, H.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators, B 153(1), 125–134 (2011).
[Crossref]

Kawashima, H.

Ke, C. J.

C. J. Ke, X. J. Yi, Z. M. Xu, and J. J. Lai, “Monolithic integration technology between microlens arrays and infrared charge coupled devices,” Opt. Laser Technol. 37(3), 239–243 (2005).
[Crossref]

Kim, K.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

Knight, M. W.

M. A. Verschuuren, M. W. Knight, M. Megens, and A. Polman, “Nanoscale spatial limitations of large-area substrate conformal imprint lithography,” Nanotechnology 30(34), 345301 (2019).
[Crossref]

Kohoutek, T.

Kunwar, P.

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

P. Kunwar, Z. Xiong, Y. Zhu, H. Y. Li, A. Filip, and P. Soman, “Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures,” Adv. Opt. Mater.1900656 (2019).

Kwon, S.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

Lai, J. J.

C. J. Ke, X. J. Yi, Z. M. Xu, and J. J. Lai, “Monolithic integration technology between microlens arrays and infrared charge coupled devices,” Opt. Laser Technol. 37(3), 239–243 (2005).
[Crossref]

Lei, L.

Li, C. W.

C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, “Microfluidics technology for manipulation and analysis of biological cells,” Anal. Chim. Acta 560(1-2), 1–23 (2006).
[Crossref]

Li, C. X.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
[Crossref]

Li, H. Y.

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

P. Kunwar, Z. Xiong, Y. Zhu, H. Y. Li, A. Filip, and P. Soman, “Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures,” Adv. Opt. Mater.1900656 (2019).

Li, J. H.

Li, M. J.

S. Z. Huang, M. J. Li, L. G. Shen, J. F. Qiu, and Y. Q. Zhou, “Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow,” Opt. Laser Technol. 100, 298–303 (2018).
[Crossref]

Li, Q. K.

Lie, X.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Lie, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Liu, H.

Z. Xiong, H. Liu, R. H. Chen, J. Xu, Q. K. Li, J. H. Li, and W. J. Zhang, “Illumination Uniformity Improvement in Digital Micromirror Devices based Scanning Photolithography System,” Opt. Express 26(14), 18597–18607 (2018).
[Crossref]

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
[Crossref]

Liu, Z. H.

Z. M. Zhang, Y. Q. Gao, N. N. Luo, K. L. Zhong, and Z. H. Liu, “Multi-direction digital moving mask method for fabricating continuous microstructures,” Opt. Appl. 61(1), 79–99 (2015).
[Crossref]

Lu, Z. W.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
[Crossref]

Luo, N. N.

Z. M. Zhang, Y. Q. Gao, N. N. Luo, K. L. Zhong, and Z. H. Liu, “Multi-direction digital moving mask method for fabricating continuous microstructures,” Opt. Appl. 61(1), 79–99 (2015).
[Crossref]

Ma, Z.

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

Madou, M. J.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators, B 153(1), 125–134 (2011).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

A. Zukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by directlaser photopolymerization,” Appl. Opt. 51(21), 4995–5003 (2012).
[Crossref]

Martinez-Duarte, R.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators, B 153(1), 125–134 (2011).
[Crossref]

Mastumoto, M.

Mcloughlin, S.

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

Megens, M.

M. A. Verschuuren, M. W. Knight, M. Megens, and A. Polman, “Nanoscale spatial limitations of large-area substrate conformal imprint lithography,” Nanotechnology 30(34), 345301 (2019).
[Crossref]

M. A. Verschuuren, M. Megens, Y. F. Ni, H. V. Sprang, and A. Polman, “Large area nanoimprint by substrate conformal imprint lithography (SCIL),” Adv. Opt. Technol. 6(3-4), 243–264 (2017).
[Crossref]

Misumi, T.

Ni, Y. F.

M. A. Verschuuren, M. Megens, Y. F. Ni, H. V. Sprang, and A. Polman, “Large area nanoimprint by substrate conformal imprint lithography (SCIL),” Adv. Opt. Technol. 6(3-4), 243–264 (2017).
[Crossref]

Ohishi, Y.

Orava, J.

Park, H. K.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

Park, W.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

Piskarskas, A.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

Pissadakis, S.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

Polman, A.

M. A. Verschuuren, M. W. Knight, M. Megens, and A. Polman, “Nanoscale spatial limitations of large-area substrate conformal imprint lithography,” Nanotechnology 30(34), 345301 (2019).
[Crossref]

M. A. Verschuuren, M. Megens, Y. F. Ni, H. V. Sprang, and A. Polman, “Large area nanoimprint by substrate conformal imprint lithography (SCIL),” Adv. Opt. Technol. 6(3-4), 243–264 (2017).
[Crossref]

Purlys, V.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

Qiu, J. F.

S. Z. Huang, M. J. Li, L. G. Shen, J. F. Qiu, and Y. Q. Zhou, “Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow,” Opt. Laser Technol. 100, 298–303 (2018).
[Crossref]

Rammohan, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators, B 153(1), 125–134 (2011).
[Crossref]

Ramos, R.

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

Rapp, B. E.

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref]

Reinhardt, C.

Schift, H.

H. Schift, “Nanoimprint lithography: an old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

Schmitz, K.

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref]

Sharma, A.

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators, B 153(1), 125–134 (2011).
[Crossref]

Shen, L. G.

S. Z. Huang, M. J. Li, L. G. Shen, J. F. Qiu, and Y. Q. Zhou, “Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow,” Opt. Laser Technol. 100, 298–303 (2018).
[Crossref]

Soman, P.

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

P. Kunwar, Z. Xiong, Y. Zhu, H. Y. Li, A. Filip, and P. Soman, “Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures,” Adv. Opt. Mater.1900656 (2019).

Song, L. W.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
[Crossref]

Soper, S. A.

R. Yang, S. A. Soper, and W. J. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators, A 127(1), 123–130 (2006).
[Crossref]

Sprang, H. V.

M. A. Verschuuren, M. Megens, Y. F. Ni, H. V. Sprang, and A. Polman, “Large area nanoimprint by substrate conformal imprint lithography (SCIL),” Adv. Opt. Technol. 6(3-4), 243–264 (2017).
[Crossref]

Sun, C.

C. Sun and X. Zhang, “The influences of the material properties on ceramic micro-stereolithography,” Sens. Actuators, A 101(3), 364–370 (2002).
[Crossref]

X. Zhang, X. N. Jiang, and C. Sun, “Micro-stereolithography of polymeric and ceramic microstructures,” Sens. Actuators, A 77(2), 149–156 (1999).
[Crossref]

Suzuki, T.

Tan, X. Q.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
[Crossref]

Tanaka, S.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators, A 130-131, 387–392 (2006).
[Crossref]

Tong, S.

Totsu, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators, A 130-131, 387–392 (2006).
[Crossref]

Verschuuren, M. A.

M. A. Verschuuren, M. W. Knight, M. Megens, and A. Polman, “Nanoscale spatial limitations of large-area substrate conformal imprint lithography,” Nanotechnology 30(34), 345301 (2019).
[Crossref]

M. A. Verschuuren, M. Megens, Y. F. Ni, H. V. Sprang, and A. Polman, “Large area nanoimprint by substrate conformal imprint lithography (SCIL),” Adv. Opt. Technol. 6(3-4), 243–264 (2017).
[Crossref]

Waldbaur, A.

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref]

Wang, M.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Lie, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Wang, T.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Lie, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Wang, W. J.

R. Yang, S. A. Soper, and W. J. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators, A 127(1), 123–130 (2006).
[Crossref]

Wang, Z.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
[Crossref]

Waterkotte, B.

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref]

Wen, K. H.

Winston, T.

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

Xiong, Z.

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

Z. Xiong, H. Liu, R. H. Chen, J. Xu, Q. K. Li, J. H. Li, and W. J. Zhang, “Illumination Uniformity Improvement in Digital Micromirror Devices based Scanning Photolithography System,” Opt. Express 26(14), 18597–18607 (2018).
[Crossref]

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
[Crossref]

P. Kunwar, Z. Xiong, Y. Zhu, H. Y. Li, A. Filip, and P. Soman, “Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures,” Adv. Opt. Mater.1900656 (2019).

Xu, J.

Xu, Z. M.

C. J. Ke, X. J. Yi, Z. M. Xu, and J. J. Lai, “Monolithic integration technology between microlens arrays and infrared charge coupled devices,” Opt. Laser Technol. 37(3), 239–243 (2005).
[Crossref]

Yang, B.

Yang, M. S.

C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, “Microfluidics technology for manipulation and analysis of biological cells,” Anal. Chim. Acta 560(1-2), 1–23 (2006).
[Crossref]

Yang, Q.

Yang, R.

R. Yang, S. A. Soper, and W. J. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators, A 127(1), 123–130 (2006).
[Crossref]

Yi, C. Q.

C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, “Microfluidics technology for manipulation and analysis of biological cells,” Anal. Chim. Acta 560(1-2), 1–23 (2006).
[Crossref]

Yi, X. J.

C. J. Ke, X. J. Yi, Z. M. Xu, and J. J. Lai, “Monolithic integration technology between microlens arrays and infrared charge coupled devices,” Opt. Laser Technol. 37(3), 239–243 (2005).
[Crossref]

Yong, J.

Yoon, J.

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

Yu, W.

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Lie, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Zhang, W. J.

Zhang, X.

C. Sun and X. Zhang, “The influences of the material properties on ceramic micro-stereolithography,” Sens. Actuators, A 101(3), 364–370 (2002).
[Crossref]

X. Zhang, X. N. Jiang, and C. Sun, “Micro-stereolithography of polymeric and ceramic microstructures,” Sens. Actuators, A 77(2), 149–156 (1999).
[Crossref]

Zhang, Z. M.

Z. M. Zhang, Y. Q. Gao, N. N. Luo, K. L. Zhong, and Z. H. Liu, “Multi-direction digital moving mask method for fabricating continuous microstructures,” Opt. Appl. 61(1), 79–99 (2015).
[Crossref]

Zhong, K. L.

Z. M. Zhang, Y. Q. Gao, N. N. Luo, K. L. Zhong, and Z. H. Liu, “Multi-direction digital moving mask method for fabricating continuous microstructures,” Opt. Appl. 61(1), 79–99 (2015).
[Crossref]

Zhou, J. Y.

Zhou, Y. Q.

S. Z. Huang, M. J. Li, L. G. Shen, J. F. Qiu, and Y. Q. Zhou, “Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow,” Opt. Laser Technol. 100, 298–303 (2018).
[Crossref]

Zhu, Y.

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

P. Kunwar, Z. Xiong, Y. Zhu, H. Y. Li, A. Filip, and P. Soman, “Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures,” Adv. Opt. Mater.1900656 (2019).

Zukauskas, A.

Žukauskas, A.

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

Adv. Opt. Technol. (1)

M. A. Verschuuren, M. Megens, Y. F. Ni, H. V. Sprang, and A. Polman, “Large area nanoimprint by substrate conformal imprint lithography (SCIL),” Adv. Opt. Technol. 6(3-4), 243–264 (2017).
[Crossref]

Anal. Chim. Acta (1)

C. Q. Yi, C. W. Li, S. L. Ji, and M. S. Yang, “Microfluidics technology for manipulation and analysis of biological cells,” Anal. Chim. Acta 560(1-2), 1–23 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Kim, S. Han, J. Yoon, S. Kwon, H. K. Park, and W. Park, “Lithographic resolution enhancement of a maskless lithography system based on a wobulation technique for flow lithography,” Appl. Phys. Lett. 109(23), 234101 (2016).
[Crossref]

Biofabrication (1)

Z. Xiong, H. Y. Li, P. Kunwar, Y. Zhu, R. Ramos, S. Mcloughlin, T. Winston, Z. Ma, and P. Soman, “Femtosecond laser induced densification within cell-laden hydrogels results in cellular alignment,” Biofabrication 11(3), 035005 (2019).
[Crossref]

J. Micro/Nanolithogr., MEMS, MOEMS (1)

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system,” J. Micro/Nanolithogr., MEMS, MOEMS 13(4), 043016 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

H. Schift, “Nanoimprint lithography: an old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008).
[Crossref]

Nanotechnology (1)

M. A. Verschuuren, M. W. Knight, M. Megens, and A. Polman, “Nanoscale spatial limitations of large-area substrate conformal imprint lithography,” Nanotechnology 30(34), 345301 (2019).
[Crossref]

Opt. Appl. (1)

Z. M. Zhang, Y. Q. Gao, N. N. Luo, K. L. Zhong, and Z. H. Liu, “Multi-direction digital moving mask method for fabricating continuous microstructures,” Opt. Appl. 61(1), 79–99 (2015).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (2)

C. J. Ke, X. J. Yi, Z. M. Xu, and J. J. Lai, “Monolithic integration technology between microlens arrays and infrared charge coupled devices,” Opt. Laser Technol. 37(3), 239–243 (2005).
[Crossref]

S. Z. Huang, M. J. Li, L. G. Shen, J. F. Qiu, and Y. Q. Zhou, “Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow,” Opt. Laser Technol. 100, 298–303 (2018).
[Crossref]

Opt. Lasers Eng. (1)

M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiu, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, and R. Gadonas, “3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing,” Opt. Lasers Eng. 50(12), 1785–1788 (2012).
[Crossref]

Opt. Lett. (1)

RSC Adv. (1)

M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Lie, “A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number,” RSC Adv. 5(44), 35311–35316 (2015).
[Crossref]

Sens. Actuators, A (4)

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators, A 130-131, 387–392 (2006).
[Crossref]

R. Yang, S. A. Soper, and W. J. Wang, “Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8,” Sens. Actuators, A 127(1), 123–130 (2006).
[Crossref]

X. Zhang, X. N. Jiang, and C. Sun, “Micro-stereolithography of polymeric and ceramic microstructures,” Sens. Actuators, A 77(2), 149–156 (1999).
[Crossref]

C. Sun and X. Zhang, “The influences of the material properties on ceramic micro-stereolithography,” Sens. Actuators, A 101(3), 364–370 (2002).
[Crossref]

Sens. Actuators, B (1)

A. Rammohan, P. K. Dwivedi, R. Martinez-Duarte, H. Katepalli, M. J. Madou, and A. Sharma, “One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8,” Sens. Actuators, B 153(1), 125–134 (2011).
[Crossref]

Small (1)

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref]

Other (1)

P. Kunwar, Z. Xiong, Y. Zhu, H. Y. Li, A. Filip, and P. Soman, “Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures,” Adv. Opt. Mater.1900656 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of DMD based multistep lithography system including UV light source, DMD, tube lens, beam splitter, mirror, objective, piezoelectric stage (PZS) and CCD camera. User-defined dot array pattern (i) was inputted into DMD where each pixel corresponds to intensity distribution (ii). Through multistep movement of PZS (iii), final exposed structure (iv) was formed on the photoresist.
Fig. 2.
Fig. 2. Simulation result of dose modulation. With decreasing exposure dose, the FWHM of intensity profile above the photoresist threshold is decreased and the subpixel resolution is realized.
Fig. 3.
Fig. 3. Schematic of multistep lithography. (A) Pattern on the DMD, which corresponds to (B) intensity profile of each DMD pixel on the photoresist. With (C) PZS multistep moving, the (D) multistep exposure is formed on the photoresist (E) are actual exposure results characterized under Olympus bright-field microscope.
Fig. 4.
Fig. 4. Flow chart of techniques combination in DMSL and the application examples in this paper. The blue charts illustrate the process of achieving user-defined microstructures array. The red charts represent the three main techniques applied in the DMSL. The green charts are the application examples in 3.1, 3.2 and 3.3.
Fig. 5.
Fig. 5. (A) and (B) schematic of multistep lithography to achieve dots matrix and (C)-(E) the brightfield images of the actual exposure results with different periods. Scale bar: 3 µm.
Fig. 6.
Fig. 6. (A) The diagram of feature size and exposure dose (intensity and exposure time). (B) Brightfield microscope images of micro/submicro dots matrix with different intensity and exposure time. (C) and (D) Micro/submicrodots matrix fabricated under 1.4 mW, 2 s/1 s exposure dose and characterized by SEM. Scale bar: 10 µm.
Fig. 7.
Fig. 7. Simulation (A-D) and fabrication (E-H) of lines pattern with different moving step (1.3 µm, 1.2 µm, 1.1 µm and 1.0 µm). Scale bar: 10 µm.
Fig. 8.
Fig. 8. User-defined period and nonperiodic microstructures arrays fabricated by DMSL with combined techniques. (A) and (E) initial pattern and moving path. (B) and (F) the exposure results are simulated in MATLAB. (C) and (G) the actual exposure results characterized under Olympus microscope. (D) and (H) the acutal exposure results characterized under SEM. Scale bar: 20 µm.
Fig. 9.
Fig. 9. Fabrication of microlens array with user-defined shape (square-shape, hexagonal shape) and customized spatial distribution (2D period, hexagonal period and nonperiod). (A), (E) and (I) represent the initial pattern on DMD. (B), (F) and (J) presents the simulated exposure results using Gaussian model. (C), (G) and (K) presents the exposed substrate before thermal reflowing process characterized under Olympus bright-field microscope. (D), (H) and (L) present microlens arrays after thermal reflowing process characterized under SEM. Scale bar: 50 µm
Fig. 10.
Fig. 10. Imaging quality characterization of user-defined microlens array. (A) Schematic of the characterization system using Olympus microscope. (B) Imaging quality of square-shape microlens array with 2D period array characterized by using positive photomask. (C) Imaging quality of Hexagonal shape microlens array with hexagonal period. (D) and (E) Focus spot image characterized by using pinhole. (F) Resolution test characterized by 12.7 lp/mm resolution target. Scale bar: 50 µm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I 0 e [ ( x a ) 2 + ( y b ) 2 ]
D = I ( x , y ) × T
{ N 1 × d = N 2 × D ( along y direction ) N 3 × 3 d = N 4 × D ( along x direction )

Metrics