Abstract

When an emitter is close to a plasmonic nanoantenna, besides coupling to the dipolar antenna mode, the emitter also considerably couples to a superposition of the high-order modes, referred to as a pseudomode. We comprehensively investigate the differences between the dipolar mode channel and the pseudomode channel in a representative system where a dipole emitter couples to a silver nanorod. The two channels are shown to be distinct in their mechanisms, characteristics (including chromatic dispersion and field distribution), and dependences on system parameters (including emitter-antenna distance, antenna geometry, and material loss). The study provides physical insight and reveals important design rules for controlling the competition between the two channels.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full three-dimensional power flow analysis of single-emitter–plasmonic-nanoantenna system

Jinhyung Kim, Jung-Hwan Song, Kwang-Yong Jeong, Ho-Seok Ee, and Min-Kyo Seo
Opt. Express 23(9) 11080-11091 (2015)

Coupling of a single-photon emitter in nanodiamond to surface plasmons of a nanochannel-enclosed silver nanowire

Morteza Aramesh, Jiri Cervenka, Ann Roberts, Amir Djalalian-Assl, Ranjith Rajasekharan, Jinghua Fang, Kostya Ostrikov, and Steven Prawer
Opt. Express 22(13) 15530-15541 (2014)

Optical scattering resonances of single and coupled dimer plasmonic nanoantennas

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas
Opt. Express 15(26) 17736-17746 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref]
  2. B. Szychowski, M. Pelton, and M. C. Daniel, “Preparation and properties of plasmonic-excitonic nanoparticle assemblies,” Nanophotonics 8(4), 517–547 (2019).
    [Crossref]
  3. O. Bitton, S. N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling,” Nanophotonics 8(4), 559–575 (2019).
    [Crossref]
  4. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]
  5. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
    [Crossref]
  6. J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
    [Crossref]
  7. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref]
  8. H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
    [Crossref]
  9. P. Zhang, P.-L. Ren, and X.-W. Chen, “On the Emission Pattern of Nanoscopic Emitters in Planar Anisotropic Matrix and Nanoantenna Structures,” Nanoscale 11(23), 11195–11201 (2019).
    [Crossref]
  10. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750 (2013).
    [Crossref]
  11. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
    [Crossref]
  12. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref]
  13. N. Gregersen, T. Suhr, M. Lorke, and J. Mork, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett. 100(13), 131107 (2012).
    [Crossref]
  14. P. Zhang, I. Protsenko, V. Sandoghdar, and X. W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
    [Crossref]
  15. S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
    [Crossref]
  16. G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
    [Crossref]
  17. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
    [Crossref]
  18. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), ncomms11823 (2016).
    [Crossref]
  19. Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
    [Crossref]
  20. H. Gross, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3), eaar4906 (2018).
    [Crossref]
  21. R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
    [Crossref]
  22. M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
    [Crossref]
  23. D. Zheng, S. P. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. X. Xu, “Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
    [Crossref]
  24. D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
    [Crossref]
  25. H. X. Leng, B. Szychowski, M. C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
    [Crossref]
  26. D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
    [Crossref]
  27. Q. Bai, M. Perrin, C. Sauvan, J. P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21(22), 27371–27382 (2013).
    [Crossref]
  28. W. Yan, R. Faggiani, and P. Lalanne, “Rigorous modal analysis of plasmonic nanoresonators,” Phys. Rev. B 97(20), 205422 (2018).
    [Crossref]
  29. A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
    [Crossref]
  30. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref]
  31. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [Crossref]
  32. N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
    [Crossref]
  33. G. Kewes, F. Binkowski, S. Burger, L. Zschiedrich, and O. Benson, “Heuristic Modeling of Strong Coupling in Plasmonic Resonators,” ACS Photonics 5(10), 4089–4097 (2018).
    [Crossref]
  34. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
    [Crossref]
  35. A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
    [Crossref]
  36. A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Fluorescence Enhancement with the Optical (Bi-) Conical Antenna,” J. Phys. Chem. C 114(16), 7372–7377 (2010).
    [Crossref]
  37. L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69(20), 205414 (2004).
    [Crossref]
  38. X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
    [Crossref]
  39. E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
    [Crossref]
  40. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
    [Crossref]
  41. E. Castanie, M. Boffety, and R. Carminati, “Fluorescence quenching by a metal nanoparticle in the extreme near-field regime,” Opt. Lett. 35(3), 291–293 (2010).
    [Crossref]
  42. M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863–3865 (2004).
    [Crossref]
  43. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  44. H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15(3), 1076–1083 (2007).
    [Crossref]
  45. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  46. N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
    [Crossref]
  47. J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a Nanoantenna and a Single Quantum Emitter,” Phys. Rev. Lett. 105(11), 117701 (2010).
    [Crossref]
  48. A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
    [Crossref]
  49. M. A. Kats, N. F. Yu, P. Genevet, Z. Gaburro, and F. Capasso, “Effect of radiation damping on the spectral response of plasmonic components,” Opt. Express 19(22), 21748–21753 (2011).
    [Crossref]
  50. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
    [Crossref]
  51. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
    [Crossref]
  52. R. Faggiani, J. J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
    [Crossref]
  53. J. J. Yang, R. Faggiani, and P. Lalanne, “Light emission in nanogaps: overcoming quenching,” Nanoscale Horiz. 1(1), 11–13 (2016).
    [Crossref]

2019 (3)

B. Szychowski, M. Pelton, and M. C. Daniel, “Preparation and properties of plasmonic-excitonic nanoparticle assemblies,” Nanophotonics 8(4), 517–547 (2019).
[Crossref]

O. Bitton, S. N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling,” Nanophotonics 8(4), 559–575 (2019).
[Crossref]

P. Zhang, P.-L. Ren, and X.-W. Chen, “On the Emission Pattern of Nanoscopic Emitters in Planar Anisotropic Matrix and Nanoantenna Structures,” Nanoscale 11(23), 11195–11201 (2019).
[Crossref]

2018 (7)

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

H. Gross, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3), eaar4906 (2018).
[Crossref]

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

H. X. Leng, B. Szychowski, M. C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref]

W. Yan, R. Faggiani, and P. Lalanne, “Rigorous modal analysis of plasmonic nanoresonators,” Phys. Rev. B 97(20), 205422 (2018).
[Crossref]

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

G. Kewes, F. Binkowski, S. Burger, L. Zschiedrich, and O. Benson, “Heuristic Modeling of Strong Coupling in Plasmonic Resonators,” ACS Photonics 5(10), 4089–4097 (2018).
[Crossref]

2017 (6)

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

D. Zheng, S. P. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. X. Xu, “Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

P. Zhang, I. Protsenko, V. Sandoghdar, and X. W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

2016 (5)

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), ncomms11823 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

J. J. Yang, R. Faggiani, and P. Lalanne, “Light emission in nanogaps: overcoming quenching,” Nanoscale Horiz. 1(1), 11–13 (2016).
[Crossref]

2015 (4)

R. Faggiani, J. J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

2014 (3)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref]

2013 (3)

Q. Bai, M. Perrin, C. Sauvan, J. P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21(22), 27371–27382 (2013).
[Crossref]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750 (2013).
[Crossref]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref]

2012 (2)

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref]

N. Gregersen, T. Suhr, M. Lorke, and J. Mork, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett. 100(13), 131107 (2012).
[Crossref]

2011 (2)

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref]

M. A. Kats, N. F. Yu, P. Genevet, Z. Gaburro, and F. Capasso, “Effect of radiation damping on the spectral response of plasmonic components,” Opt. Express 19(22), 21748–21753 (2011).
[Crossref]

2010 (4)

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a Nanoantenna and a Single Quantum Emitter,” Phys. Rev. Lett. 105(11), 117701 (2010).
[Crossref]

E. Castanie, M. Boffety, and R. Carminati, “Fluorescence quenching by a metal nanoparticle in the extreme near-field regime,” Opt. Lett. 35(3), 291–293 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Fluorescence Enhancement with the Optical (Bi-) Conical Antenna,” J. Phys. Chem. C 114(16), 7372–7377 (2010).
[Crossref]

2009 (1)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

2008 (1)

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

2007 (4)

2006 (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref]

2005 (2)

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref]

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[Crossref]

2004 (2)

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863–3865 (2004).
[Crossref]

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69(20), 205414 (2004).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Agio, M.

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref]

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Fluorescence Enhancement with the Optical (Bi-) Conical Antenna,” J. Phys. Chem. C 114(16), 7372–7377 (2010).
[Crossref]

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[Crossref]

Aharonovich, I.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Aizpurua, J.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Alexeev, E. M.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

Alu, A.

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

Antosiewicz, T. J.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Argyropoulos, C.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Arias-Gonzalez, J. R.

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863–3865 (2004).
[Crossref]

Bai, Q.

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Bao, F.

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

Baranov, D. G.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Baumberg, J. J.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Belov, P. A.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

Benson, O.

G. Kewes, F. Binkowski, S. Burger, L. Zschiedrich, and O. Benson, “Heuristic Modeling of Strong Coupling in Plasmonic Resonators,” ACS Photonics 5(10), 4089–4097 (2018).
[Crossref]

Benz, F.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Bharadwaj, P.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

Binkowski, F.

G. Kewes, F. Binkowski, S. Burger, L. Zschiedrich, and O. Benson, “Heuristic Modeling of Strong Coupling in Plasmonic Resonators,” ACS Photonics 5(10), 4089–4097 (2018).
[Crossref]

Bitton, O.

O. Bitton, S. N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling,” Nanophotonics 8(4), 559–575 (2019).
[Crossref]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), ncomms11823 (2016).
[Crossref]

Blanco, L. A.

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69(20), 205414 (2004).
[Crossref]

Boffety, M.

Boltasseva, A.

Bravo-Abad, J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref]

Burger, S.

G. Kewes, F. Binkowski, S. Burger, L. Zschiedrich, and O. Benson, “Heuristic Modeling of Strong Coupling in Plasmonic Resonators,” ACS Photonics 5(10), 4089–4097 (2018).
[Crossref]

Cai, W.

Cao, G.

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

Capasso, F.

Carminati, R.

E. Castanie, M. Boffety, and R. Carminati, “Fluorescence quenching by a metal nanoparticle in the extreme near-field regime,” Opt. Lett. 35(3), 291–293 (2010).
[Crossref]

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863–3865 (2004).
[Crossref]

Carnegie, C.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

Castanie, E.

Chang, D. E.

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

Chang, H.-C.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Chen, H. J.

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

Chen, H. Z.

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

Chen, X. W.

P. Zhang, I. Protsenko, V. Sandoghdar, and X. W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref]

Chen, X.-W.

P. Zhang, P.-L. Ren, and X.-W. Chen, “On the Emission Pattern of Nanoscopic Emitters in Planar Anisotropic Matrix and Nanoantenna Structures,” Nanoscale 11(23), 11195–11201 (2019).
[Crossref]

Cheng, Y.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Chettiar, U. K.

Chikkaraddy, R.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Chou, R. Y.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chuntonov, L.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), ncomms11823 (2016).
[Crossref]

Ciraci, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Cuadra, J.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

Curto, A. G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750 (2013).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Dai, L.

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

Daniel, M. C.

B. Szychowski, M. Pelton, and M. C. Daniel, “Preparation and properties of plasmonic-excitonic nanoparticle assemblies,” Nanophotonics 8(4), 517–547 (2019).
[Crossref]

H. X. Leng, B. Szychowski, M. C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref]

de Abajo, F. J. G.

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69(20), 205414 (2004).
[Crossref]

de Nijs, B.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

de Pury, A. C.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

Deacon, W.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

Delga, A.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref]

Demetriadou, A.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Deng, Q.

D. Zheng, S. P. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. X. Xu, “Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Dong, Z. C.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Drachev, V. P.

Dulkeith, E.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[Crossref]

Engheta, N.

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref]

Englund, D.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Esteban, R.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Evans, J.

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

Faggiani, R.

W. Yan, R. Faggiani, and P. Lalanne, “Rigorous modal analysis of plasmonic nanoresonators,” Phys. Rev. B 97(20), 205422 (2018).
[Crossref]

J. J. Yang, R. Faggiani, and P. Lalanne, “Light emission in nanogaps: overcoming quenching,” Nanoscale Horiz. 1(1), 11–13 (2016).
[Crossref]

R. Faggiani, J. J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Fang, M.

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

Feist, J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref]

Feldmann, J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[Crossref]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Gaburro, Z.

Garcia-Vidal, F. J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref]

Genevet, P.

Gong, Q.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Greffet, J. J.

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a Nanoantenna and a Single Quantum Emitter,” Phys. Rev. Lett. 105(11), 117701 (2010).
[Crossref]

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863–3865 (2004).
[Crossref]

Gregersen, N.

N. Gregersen, T. Suhr, M. Lorke, and J. Mork, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett. 100(13), 131107 (2012).
[Crossref]

Gross, H.

H. Gross, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3), eaar4906 (2018).
[Crossref]

Grosse, C.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

Gupta, S. N.

O. Bitton, S. N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling,” Nanophotonics 8(4), 559–575 (2019).
[Crossref]

Hakanson, U.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref]

Hamm, J. M.

H. Gross, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3), eaar4906 (2018).
[Crossref]

Haran, G.

O. Bitton, S. N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling,” Nanophotonics 8(4), 559–575 (2019).
[Crossref]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), ncomms11823 (2016).
[Crossref]

He, S.

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

He, Y.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Hecht, B.

H. Gross, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3), eaar4906 (2018).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Hess, O.

H. Gross, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3), eaar4906 (2018).
[Crossref]

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hou, J. G.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Huang, J. N.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Hugonin, J. P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref]

Q. Bai, M. Perrin, C. Sauvan, J. P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21(22), 27371–27382 (2013).
[Crossref]

Hui, Y. Y.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Javier, A. M.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kall, M.

G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Kaminski, F.

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Fluorescence Enhancement with the Optical (Bi-) Conical Antenna,” J. Phys. Chem. C 114(16), 7372–7377 (2010).
[Crossref]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[Crossref]

Kang, M.

D. Zheng, S. P. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. X. Xu, “Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Kats, M. A.

Kewes, G.

G. Kewes, F. Binkowski, S. Burger, L. Zschiedrich, and O. Benson, “Heuristic Modeling of Strong Coupling in Plasmonic Resonators,” ACS Photonics 5(10), 4089–4097 (2018).
[Crossref]

Keyser, U. F.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

Kildishev, A. V.

Kivshar, Y. S.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

Klar, T. A.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[Crossref]

Kleemann, M. E.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

Koenderink, A. F.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[Crossref]

Kongsuwan, N.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

Kos, D.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

Krasnok, A. E.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750 (2013).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Kuhn, S.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref]

Lalanne, P.

W. Yan, R. Faggiani, and P. Lalanne, “Rigorous modal analysis of plasmonic nanoresonators,” Phys. Rev. B 97(20), 205422 (2018).
[Crossref]

J. J. Yang, R. Faggiani, and P. Lalanne, “Light emission in nanogaps: overcoming quenching,” Nanoscale Horiz. 1(1), 11–13 (2016).
[Crossref]

R. Faggiani, J. J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref]

Q. Bai, M. Perrin, C. Sauvan, J. P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21(22), 27371–27382 (2013).
[Crossref]

Laroche, M.

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a Nanoantenna and a Single Quantum Emitter,” Phys. Rev. Lett. 105(11), 117701 (2010).
[Crossref]

Leng, H. X.

H. X. Leng, B. Szychowski, M. C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref]

Li, B.

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

Liu, G. H.

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

Liu, R. M.

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

Lorke, M.

N. Gregersen, T. Suhr, M. Lorke, and J. Mork, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett. 100(13), 131107 (2012).
[Crossref]

Lu, G.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Lukin, M. D.

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

Luo, Y.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Ma, R. M.

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

Maksymov, I. S.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref]

Marquier, F.

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a Nanoantenna and a Single Quantum Emitter,” Phys. Rev. Lett. 105(11), 117701 (2010).
[Crossref]

Meng, Q. S.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Mertens, H.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[Crossref]

Mertens, J.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Miroshnichenko, A. E.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

Mohammadi, A.

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Fluorescence Enhancement with the Optical (Bi-) Conical Antenna,” J. Phys. Chem. C 114(16), 7372–7377 (2010).
[Crossref]

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

Mork, J.

N. Gregersen, T. Suhr, M. Lorke, and J. Mork, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett. 100(13), 131107 (2012).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Nilsson, S.

G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Nordlander, P.

D. Zheng, S. P. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. X. Xu, “Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Novotny, L.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Oulton, R. F.

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

Parak, W. J.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[Crossref]

Pelton, M.

B. Szychowski, M. Pelton, and M. C. Daniel, “Preparation and properties of plasmonic-excitonic nanoparticle assemblies,” Nanophotonics 8(4), 517–547 (2019).
[Crossref]

H. X. Leng, B. Szychowski, M. C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref]

Perrin, M.

Poddubny, A. N.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

Polman, A.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[Crossref]

Protsenko, I.

P. Zhang, I. Protsenko, V. Sandoghdar, and X. W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750 (2013).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Ren, P.-L.

P. Zhang, P.-L. Ren, and X.-W. Chen, “On the Emission Pattern of Nanoscopic Emitters in Planar Anisotropic Matrix and Nanoantenna Structures,” Nanoscale 11(23), 11195–11201 (2019).
[Crossref]

Ringler, M.

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[Crossref]

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[Crossref]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref]

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref]

Sandoghdar, V.

P. Zhang, I. Protsenko, V. Sandoghdar, and X. W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref]

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Fluorescence Enhancement with the Optical (Bi-) Conical Antenna,” J. Phys. Chem. C 114(16), 7372–7377 (2010).
[Crossref]

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32(12), 1623–1625 (2007).
[Crossref]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref]

Santhosh, K.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), ncomms11823 (2016).
[Crossref]

Sauvan, C.

Q. Bai, M. Perrin, C. Sauvan, J. P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21(22), 27371–27382 (2013).
[Crossref]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15(3), 1076–1083 (2007).
[Crossref]

Shegai, T.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Shen, H.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Shen, J.

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

Simovski, C. R.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

Slobozhanyuk, A. P.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

Smith, D. R.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Suhr, T.

N. Gregersen, T. Suhr, M. Lorke, and J. Mork, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett. 100(13), 131107 (2012).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Szychowski, B.

B. Szychowski, M. Pelton, and M. C. Daniel, “Preparation and properties of plasmonic-excitonic nanoparticle assemblies,” Nanophotonics 8(4), 517–547 (2019).
[Crossref]

H. X. Leng, B. Szychowski, M. C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750 (2013).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Tang, J.

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

Tartakovskii, A. I.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

Thomas, M.

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863–3865 (2004).
[Crossref]

Tong, L.

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Toth, M.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Tretyakov, S. A.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

Tufarelli, T.

H. Gross, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3), eaar4906 (2018).
[Crossref]

Turek, V. A.

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

van Hulst, N. F.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750 (2013).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750 (2013).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Vuletic, V.

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

Wang, H.

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

Wang, S.

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

Wang, X. H.

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

Wang, X. Y.

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

Wang, Y. L.

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

Wei, Y. M.

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

Wersall, M.

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Xia, J.

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

Xu, H. X.

D. Zheng, S. P. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. X. Xu, “Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Yan, W.

W. Yan, R. Faggiani, and P. Lalanne, “Rigorous modal analysis of plasmonic nanoresonators,” Phys. Rev. B 97(20), 205422 (2018).
[Crossref]

Yang, B.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Yang, J. J.

J. J. Yang, R. Faggiani, and P. Lalanne, “Light emission in nanogaps: overcoming quenching,” Nanoscale Horiz. 1(1), 11–13 (2016).
[Crossref]

R. Faggiani, J. J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

Yang, J. L.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Yu, N. F.

Yu, Y. C.

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

Yu, Y. J.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Yuan, H.-K.

Zengin, G.

G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

Zhang, L.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Zhang, P.

P. Zhang, P.-L. Ren, and X.-W. Chen, “On the Emission Pattern of Nanoscopic Emitters in Planar Anisotropic Matrix and Nanoantenna Structures,” Nanoscale 11(23), 11195–11201 (2019).
[Crossref]

P. Zhang, I. Protsenko, V. Sandoghdar, and X. W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

Zhang, S. P.

D. Zheng, S. P. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. X. Xu, “Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Zhang, T. W.

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

Zhang, Y.

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

Zheng, D.

D. Zheng, S. P. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. X. Xu, “Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

Zhou, Z. K.

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Zschiedrich, L.

G. Kewes, F. Binkowski, S. Burger, L. Zschiedrich, and O. Benson, “Heuristic Modeling of Strong Coupling in Plasmonic Resonators,” ACS Photonics 5(10), 4089–4097 (2018).
[Crossref]

ACS Photonics (5)

P. Zhang, I. Protsenko, V. Sandoghdar, and X. W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

D. G. Baranov, M. Wersall, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel Nanostructures and Materials for Strong Light Matter Interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

N. Kongsuwan, A. Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg, and O. Hess, “Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities,” ACS Photonics 5(1), 186–191 (2018).
[Crossref]

G. Kewes, F. Binkowski, S. Burger, L. Zschiedrich, and O. Benson, “Heuristic Modeling of Strong Coupling in Plasmonic Resonators,” ACS Photonics 5(10), 4089–4097 (2018).
[Crossref]

R. Faggiani, J. J. Yang, and P. Lalanne, “Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices,” ACS Photonics 2(12), 1739–1744 (2015).
[Crossref]

Appl. Phys. Lett. (2)

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863–3865 (2004).
[Crossref]

N. Gregersen, T. Suhr, M. Lorke, and J. Mork, “Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission,” Appl. Phys. Lett. 100(13), 131107 (2012).
[Crossref]

J. Phys. Chem. C (1)

A. Mohammadi, F. Kaminski, V. Sandoghdar, and M. Agio, “Fluorescence Enhancement with the Optical (Bi-) Conical Antenna,” J. Phys. Chem. C 114(16), 7372–7377 (2010).
[Crossref]

Laser Photonics Rev. (1)

H. Shen, R. Y. Chou, Y. Y. Hui, Y. He, Y. Cheng, H.-C. Chang, L. Tong, Q. Gong, and G. Lu, “Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure,” Laser Photonics Rev. 10(4), 647–655 (2016).
[Crossref]

Nano Lett. (3)

E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Lett. 5(4), 585–589 (2005).
[Crossref]

D. Zheng, S. P. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. X. Xu, “Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes,” Nano Lett. 11(3), 1020–1024 (2011).
[Crossref]

Nanophotonics (2)

B. Szychowski, M. Pelton, and M. C. Daniel, “Preparation and properties of plasmonic-excitonic nanoparticle assemblies,” Nanophotonics 8(4), 517–547 (2019).
[Crossref]

O. Bitton, S. N. Gupta, and G. Haran, “Quantum dot plasmonics: from weak to strong coupling,” Nanophotonics 8(4), 559–575 (2019).
[Crossref]

Nanoscale (1)

P. Zhang, P.-L. Ren, and X.-W. Chen, “On the Emission Pattern of Nanoscopic Emitters in Planar Anisotropic Matrix and Nanoantenna Structures,” Nanoscale 11(23), 11195–11201 (2019).
[Crossref]

Nanoscale Horiz. (1)

J. J. Yang, R. Faggiani, and P. Lalanne, “Light emission in nanogaps: overcoming quenching,” Nanoscale Horiz. 1(1), 11–13 (2016).
[Crossref]

Nat. Commun. (8)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750 (2013).
[Crossref]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6(1), 7788 (2015).
[Crossref]

J. Tang, J. Xia, M. Fang, F. Bao, G. Cao, J. Shen, J. Evans, and S. He, “Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity,” Nat. Commun. 9(1), 1705 (2018).
[Crossref]

S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton, and R. M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref]

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nat. Commun. 7(1), ncomms11823 (2016).
[Crossref]

Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, “Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity,” Nat. Commun. 8(1), 15225 (2017).
[Crossref]

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Grosse, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref]

H. X. Leng, B. Szychowski, M. C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Commun. 9(1), 4012 (2018).
[Crossref]

Nat. Photonics (3)

D. E. Chang, V. Vuletic, and M. D. Lukin, “Quantum nonlinear optics - photon by photon,” Nat. Photonics 8(9), 685–694 (2014).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciraci, C. Fang, J. N. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Nature (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

New J. Phys. (1)

A. Mohammadi, V. Sandoghdar, and M. Agio, “Gold nanorods and nanospheroids for enhancing spontaneous emission,” New J. Phys. 10(10), 105015 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (4)

W. Yan, R. Faggiani, and P. Lalanne, “Rigorous modal analysis of plasmonic nanoresonators,” Phys. Rev. B 97(20), 205422 (2018).
[Crossref]

L. A. Blanco and F. J. G. de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B 69(20), 205414 (2004).
[Crossref]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (9)

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref]

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum Emitters Near a Metal Nanoparticle: Strong Coupling and Quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref]

R. M. Liu, Z. K. Zhou, Y. C. Yu, T. W. Zhang, H. Wang, G. H. Liu, Y. M. Wei, H. J. Chen, and X. H. Wang, “Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref]

G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, and T. Shegai, “Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions,” Phys. Rev. Lett. 114(15), 157401 (2015).
[Crossref]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the Spontaneous Optical Emission of Nanosize Photonic and Plasmon Resonators,” Phys. Rev. Lett. 110(23), 237401 (2013).
[Crossref]

N. Engheta, A. Salandrino, and A. Alu, “Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[Crossref]

J. J. Greffet, M. Laroche, and F. Marquier, “Impedance of a Nanoantenna and a Single Quantum Emitter,” Phys. Rev. Lett. 105(11), 117701 (2010).
[Crossref]

Sci. Adv. (1)

H. Gross, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, “Near-field strong coupling of single quantum dots,” Sci. Adv. 4(3), eaar4906 (2018).
[Crossref]

Sci. Rep. (1)

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The emitter-antenna system. (a) The structure of the emitter-plasmon coupling system. (b) The electric displacement field distribution (in the xy plane of z = 0) at the resonance wavelength of the dipolar mode (i.e., at 808 nm) for the system with a = 40 nm, l = 190 nm and d = 6 nm.
Fig. 2.
Fig. 2. Influences of the geometric parameters on the interaction factor. (a) The interaction factor ${{{\mathop{\rm Re}\nolimits} \{{{G_{{\mathop{\rm int}} }}} \}} \mathord{\left/ {\vphantom {{{\mathop{\rm Re}\nolimits} \{{{G_{{\mathop{\rm int}} }}} \}} S}} \right.} S}$ as a function of a and d. (b) The factor $a{[{{{{\mathop{\rm Re}\nolimits} \{{{G_{{\mathop{\rm int}} }}} \}} \mathord{\left/ {\vphantom {{{\mathop{\rm Re}\nolimits} \{{{G_{{\mathop{\rm int}} }}} \}} S}} \right.} S}} ]^2}$ as a function of a and d. The black dots highlight the maximal values of the factor for different d.
Fig. 3.
Fig. 3. Influence of the emitter-antenna distance on the coupling rates. (a) The normalized coupling rates at the resonance wavelength as a function of d for three different nanoantennas with three different end sizes but the same resonance wavelength (black: a = 40 nm, l = 190 nm; blue: a = 20 nm, l = 130 nm; red: a = 10 nm, l = 72 nm). (b) The dispersion curves of the total coupling rates for different d (the end size a = 40 nm).
Fig. 4.
Fig. 4. Influence of the end size on the coupling rates. (a-c) The field distributions at resonance for the three different nanoantennas with different end sizes but the same resonance wavelength. The emitter-antenna distance d = 2 nm. They share the size scale and color scale. (d) The dispersion curves of the total coupling rates for different end sizes. The emitter-antenna distance d = 4 nm.
Fig. 5.
Fig. 5. Influence of the material loss on the coupling rates. (a) The normalized coupling rates (at the resonance wavelength) as a function of d for nanoantennas with different material losses (i.e., different damping rates ${\gamma _\textrm{p}}$). The coupling rates plotted with black color and blue color are for nanoantennas with geometry parameters a = 40 nm, l = 190 nm (black: ${\gamma _\textrm{p}} = 1.6 \times {10^{14}}{\textrm{s}^{{ - }1}}$; blue: ${\gamma _\textrm{p}} = 0.4 \times {10^{14}}{\textrm{s}^{{ - }1}}$). The coupling rates plotted with red color and green color are for nanoantennas with geometry parameters a = 10 nm, l = 72 nm (red: ${\gamma _\textrm{p}} = 1.6 \times {10^{14}}{\textrm{s}^{{ - }1}}$; green: ${\gamma _\textrm{p}} = 0.4 \times {10^{14}}{\textrm{s}^{{ - }1}}$). (b) The dispersion curves of the total coupling rates for nanoantennas with different material losses but with the same geometric parameters a = 40 nm, l = 190 nm (the emitter-antenna distance d = 4 nm).
Fig. 6.
Fig. 6. Comparison between the results computed with the method described in Appendix B (solid curves, which are just the results shown in Fig. 3a) and the results computed with the quasi-normal mode (QNM) method given by [28] (dashed curves).

Tables (1)

Tables Icon

Table 1. Fitting results for the lumped nanocircuit elements.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

P t o t = ω 3 2 ε 0 c 2 Im { μ G t o t ( r 0 , r 0 ; ω ) μ } ,
G t o t ( r 0 , r 0 ; ω ) = G 0 ( r 0 , r 0 ; ω ) + G 1 ( r 0 , r 0 ; ω ) + G p m ( r 0 , r 0 ; ω )
P t o t = ω 3 2 ε 0 c 2 | u | 2 Im { G 0 x x ( r 0 , r 0 ; ω ) + G 1 x x ( r 0 , r 0 ; ω ) + G p m x x ( r 0 , r 0 ; ω ) }
γ tot γ 0 = 1 + 6 π c ω Im { G 1 x x ( r 0 , r 0 ; ω ) } + 6 π c ω Im { G pm x x ( r 0 , r 0 ; ω ) } ,
Z = i ω L + ( i ω C ) 1 + R + ω 2 R rad ,
U = | u | ω 2 ε 0 c 2 1 S V G 0 x x ( r , r 0 ) d V
E 1 ( r 0 ) = V ω 2 ε 0 c 2 G 0 ( r 0 , r ) μ m a l ( r ) d V
E 1 ( r 0 ) I i ω ω 2 ε 0 c 2 1 S V G 0 x x ( r 0 , r ) d V .
E 1 ( r 0 ) i ω 3 ε 0 2 c 4 | μ | 1 Z [ 1 S V G 0 x x ( r , r 0 ) d V ] 2
G 1 x x ( r 0 , r 0 ; ω ) i ω ε 0 c 2 1 Z [ G int S ] 2 .
Im { G 1 x x ( r 0 , r 0 ; ω ) } ω ε 0 c 2 Re { 1 Z } [ Re { G int } S ] 2 .
γ 1 γ 0 6 π ε 0 c Re { 1 Z } [ Re { G int } S ] 2 .
E in  = 2 ε ( ω ) + 1 ω 2 ε 0 c 2 G 0 ( r , r 0 , ω ) μ ,
E out  = ω 2 ε 0 c 2 G 0 ( r , r 0 , ω ) ( μ + μ image  )
Im { G pm x x ( r 0 , r 0 ; ω ) }  =  Im { ε ( ω ) 1 ε ( ω ) + 1 G 0 x x ( r 0 , r 0 + 2 d n x ; ω ) } .
Im { G pm x x ( r 0 , r 0 ; ω ) } = k 16 π 1 k 3 d 3 Im { ε ( ω ) 1 ε ( ω ) + 1 } .
γ pm γ 0 = 3 8 1 k 3 d 3 Im { ε ( ω ) 1 ε ( ω ) + 1 } .
σ abs ( ω ) = P abs ( ω ) 1 2 ε 0 E 0 2 c = l 2 ε 0 c R ( 1 ω C ω L ) 2 + ( R + ω 2 R rad ) 2
σ rad ( ω ) = P rad ( ω ) 1 2 ε 0 E 0 2 c = l 2 ε 0 c ω 2 R rad ( 1 ω C ω L ) 2 + ( R + ω 2 R rad ) 2 .
γ 1 ( r i ) / γ 1 ( r i ) γ 0 γ 0 = 3 4 π 2 λ 0 3 Re [ Q 1 V 1 ( r i ) ] ,
V 1 ( r i ) = [ E 1 ( r ) ε 0 [ ω ε ( r ) ] ω E 1 ( r ) H 1 ( r ) μ 0 ( ω μ ( r ) ) ω H 1 ( r ) ] d 3 r 2 ε 0 [ E 1 ( r i ) u ] 2 ,
γ 1 ( r i ) / γ 1 ( r i ) γ 0 γ 0 = B | G 1 x x ( r i , r 0 ) | 2 cos [ 2 φ ( r i , r 0 ) ϕ ] ,
ϕ = arctan [ γ 1 ( r 2 ) / γ 1 ( r 2 ) γ 0 γ 0 | G 1 x x ( r 1 , r 0 ) | 2 cos [ 2 φ ( r 1 , r 0 ) ] γ 1 ( r 1 ) / γ 1 ( r 1 ) γ 0 γ 0 | G 1 x x ( r 2 , r 0 ) | 2 cos [ 2 φ ( r 2 , r 0 ) ] γ 1 ( r 1 ) / γ 1 ( r 1 ) γ 0 γ 0 | G 1 x x ( r 2 , r 0 ) | 2 sin [ 2 φ ( r 2 , r 0 ) ] γ 1 ( r 2 ) / γ 1 ( r 2 ) γ 0 γ 0 | G 1 x x ( r 1 , r 0 ) | 2 sin [ 2 φ ( r 1 , r 0 ) ] ]
B = γ 1 ( r 1 ) / γ 1 ( r 1 ) γ 0 γ 0 | G 1 x x ( r 1 , r 0 ) | 2 cos [ 2 φ ( r 1 , r 0 ) ϕ ] .

Metrics