Abstract

The return spectrum of the oceanic high-spectral-resolution lidar (HSRL) is simulated with a semianalytic spectral Monte Carlo (MC) method. The results show that the spectrum is similar to the single scattering spectrum at the water surface but broadens with the depth due to multiple scattering. Therefore, if the non-spectral MC method that ignores the spectrum broadening is used, deviations will be introduced into the HSRL retrieval, e.g., the effective particulate 180° volume scattering function (backscatter) and lidar attenuation coefficient (attenuation). The simulation indicates that the backscatter and attenuation deviations are within 10% and 2%, respectively, when the HSRL discriminator is the iodine absorption cell, and are within 3% and 1%, respectively, when the discriminator is changed to the field-widened Michelson interferometer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase function effects on the retrieval of oceanic high-spectral-resolution lidar

Dong Liu, Yudi Zhou, Weibiao Chen, Qun Liu, Tianyu Huang, Wei Liu, Qikai Chen, Zhipeng Liu, Peituo Xu, Xiaoyu Cui, Xiaobin Wang, Chengfeng Le, and Chong Liu
Opt. Express 27(12) A654-A668 (2019)

Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution lidar

Yudi Zhou, Dong Liu, Peituo Xu, Chong Liu, Jian Bai, Liming Yang, Zhongtao Cheng, Peijun Tang, Yupeng Zhang, and Lin Su
Opt. Express 25(10) 11813-11826 (2017)

Design of the interferometric spectral discrimination filters for a three-wavelength high-spectral-resolution lidar

Jing Luo, Dong Liu, Yupeng Zhang, Zhongtao Cheng, Chong Liu, Jian Bai, Yibing Shen, Yongying Yang, Yudi Zhou, Peijun Tang, Qun Liu, Peituo Xu, Lin Su, Xiaoyu Zhang, and Liming Yang
Opt. Express 24(24) 27622-27636 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2013).
    [Crossref]
  2. D. A. Leonard and H. E. Sweeney, “Remote Sensing Of Ocean Physical Properties: A Comparison Of Raman And Brillouin Techniques,” in Orlando Technical Symposium (1988), 407–414.
  3. Y. Zhou, D. Liu, P. Xu, C. Liu, J. Bai, L. Yang, Z. Cheng, P. Tang, Y. Zhang, and L. Su, “Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution lidar,” Opt. Express 25(10), 11813–11826 (2017).
    [Crossref]
  4. C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
    [Crossref]
  5. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne High Spectral Resolution Lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
    [Crossref]
  6. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
    [Crossref]
  7. J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.
  8. J. A. Schulien, M. J. Behrenfeld, J. W. Hair, C. A. Hostetler, and M. S. Twardowski, “Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar,” Opt. Express 25(12), 13577–13587 (2017).
    [Crossref]
  9. C. Hostetler, M. Behrenfeld, Y. Hu, J. Hair, and J. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Ann. Rev. Mar. Sci. 10(1), 121–147 (2018).
    [Crossref]
  10. D. Liu, Y. Zhou, W. Chen, Q. Liu, T. Huang, W. Liu, Q. Chen, Z. Liu, P. Xu, X. Cui, X. Wang, C. Le, and C. Liu, “Phase function effects on the retrieval of oceanic high-spectral-resolution lidar,” Opt. Express 27(12), A654–A668 (2019).
    [Crossref]
  11. L. R. Bissonnette, “Lidar and Multiple Scattering,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 43–103.
  12. B. D. Joelson and G. W. Kattawar, “Multiple scattering effects on the remote sensing of the speed of sound in the ocean by Brillouin scattering,” Appl. Opt. 35(15), 2693–2701 (1996).
    [Crossref]
  13. F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, and J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions,” Appl. Opt. 37(21), 4744–4749 (1998).
    [Crossref]
  14. A. V. Malinka and E. P. Zege, “Retrieving seawater-backscattering profiles from coupling Raman and elastic lidar data,” Appl. Opt. 43(19), 3925–3930 (2004).
    [Crossref]
  15. C. L. O’Connor and J. P. Schlupf, “Brillouin scattering in water: the Landau—Placzek ratio,” J. Chem. Phys. 47(1), 31–38 (1967).
    [Crossref]
  16. I. L. Fabelinskii and H. B. Levine, “Molecular Scattering of Light,” Phys. Today 22(6), 77–79 (1969).
    [Crossref]
  17. J. Xu, X. Ren, W. Gong, R. Dai, and D. Liu, “Measurement of the bulk viscosity of liquid by Brillouin scattering,” Appl. Opt. 42(33), 6704–6709 (2003).
    [Crossref]
  18. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
    [Crossref]
  19. L. R. Poole, D. D. Venable, and J. W. Campbell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20(20), 3653–3656 (1981).
    [Crossref]
  20. J. G. Hirschberg, J. D. Byrne, A. W. Wouters, and G. C. Boynton, “Speed of sound and temperature in the ocean by Brillouin scattering,” Appl. Opt. 23(15), 2624–2628 (1984).
    [Crossref]
  21. W. Gao, Z. Lv, Y. Dong, and W. He, “A new approach to measure the ocean temperature using Brillouin lidar,” Chin. Opt. Lett. 4(7), 428–431 (2006).
  22. J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40(3), 406–414 (2001).
    [Crossref]
  23. T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Scripps Institution of Oceanography (1972).
  24. D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
    [Crossref]
  25. Z. Cheng, D. Liu, Y. Zhang, Y. Yang, Y. Zhou, J. Luo, J. Bai, Y. Shen, K. Wang, and C. Liu, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development,” Opt. Express 24(7), 7232–7245 (2016).
    [Crossref]
  26. J. N. Forkey, W. R. Lempert, and R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36(27), 6729–6738 (1997).
    [Crossref]
  27. Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).
    [Crossref]
  28. Z. Cheng, D. Liu, Y. Zhou, Y. Yang, J. Luo, Y. Zhang, Y. Shen, C. Liu, J. Bai, K. Wang, L. Su, and L. Yang, “Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning,” Opt. Lett. 41(17), 3916–3919 (2016).
    [Crossref]
  29. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
  30. Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
    [Crossref]

2019 (3)

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

D. Liu, Y. Zhou, W. Chen, Q. Liu, T. Huang, W. Liu, Q. Chen, Z. Liu, P. Xu, X. Cui, X. Wang, C. Le, and C. Liu, “Phase function effects on the retrieval of oceanic high-spectral-resolution lidar,” Opt. Express 27(12), A654–A668 (2019).
[Crossref]

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

2018 (1)

C. Hostetler, M. Behrenfeld, Y. Hu, J. Hair, and J. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Ann. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

2017 (3)

2016 (2)

2013 (1)

J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2013).
[Crossref]

2012 (1)

2008 (2)

2006 (1)

2004 (1)

2003 (1)

2001 (1)

J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40(3), 406–414 (2001).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

1984 (1)

1981 (1)

1969 (1)

I. L. Fabelinskii and H. B. Levine, “Molecular Scattering of Light,” Phys. Today 22(6), 77–79 (1969).
[Crossref]

1967 (1)

C. L. O’Connor and J. P. Schlupf, “Brillouin scattering in water: the Landau—Placzek ratio,” J. Chem. Phys. 47(1), 31–38 (1967).
[Crossref]

Ahmad, Z.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Angelini, F.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Babin, M.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Bai, J.

Behrenfeld, M.

C. Hostetler, M. Behrenfeld, Y. Hu, J. Hair, and J. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Ann. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Behrenfeld, M. J.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

J. A. Schulien, M. J. Behrenfeld, J. W. Hair, C. A. Hostetler, and M. S. Twardowski, “Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar,” Opt. Express 25(12), 13577–13587 (2017).
[Crossref]

Berkoff, T.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Bissonnette, L. R.

L. R. Bissonnette, “Lidar and Multiple Scattering,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 43–103.

Boss, E.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Boynton, G. C.

Butler, C.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Byrne, J. D.

Cairns, B.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Campbell, J. W.

Che, H.

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

Chen, Q.

Chen, W.

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

D. Liu, Y. Zhou, W. Chen, Q. Liu, T. Huang, W. Liu, Q. Chen, Z. Liu, P. Xu, X. Cui, X. Wang, C. Le, and C. Liu, “Phase function effects on the retrieval of oceanic high-spectral-resolution lidar,” Opt. Express 27(12), A654–A668 (2019).
[Crossref]

Cheng, Z.

Chowdhary, J.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Churnside, J.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Churnside, J. H.

J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2013).
[Crossref]

J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40(3), 406–414 (2001).
[Crossref]

Collins, J.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Cook, A.

D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Cook, A. L.

Cui, X.

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

D. Liu, Y. Zhou, W. Chen, Q. Liu, T. Huang, W. Liu, Q. Chen, Z. Liu, P. Xu, X. Cui, X. Wang, C. Le, and C. Liu, “Phase function effects on the retrieval of oceanic high-spectral-resolution lidar,” Opt. Express 27(12), A654–A668 (2019).
[Crossref]

Dai, R.

Dong, Y.

Ehret, G.

Esselborn, M.

Fabelinskii, I. L.

I. L. Fabelinskii and H. B. Levine, “Molecular Scattering of Light,” Phys. Today 22(6), 77–79 (1969).
[Crossref]

Ferrare, R. A.

Fix, A.

Forkey, J. N.

Gao, W.

Gong, W.

Hair, J.

C. Hostetler, M. Behrenfeld, Y. Hu, J. Hair, and J. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Ann. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Hair, J. W.

Han, B.

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

Hare, R.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Harper, D.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Harper, D. B.

He, W.

Hirschberg, J. G.

Hoge, F. E.

Hostetler, C.

C. Hostetler, M. Behrenfeld, Y. Hu, J. Hair, and J. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Ann. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Hostetler, C. A.

Hovis, F. E.

Hu, Y.

C. Hostetler, M. Behrenfeld, Y. Hu, J. Hair, and J. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Ann. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

Huang, T.

Ibrahim, A.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Izquierdo, L. R.

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Jamet, C.

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

Joelson, B. D.

Kana, T. M.

Kattawar, G. W.

Le, C.

Lempert, W. R.

Leonard, D. A.

D. A. Leonard and H. E. Sweeney, “Remote Sensing Of Ocean Physical Properties: A Comparison Of Raman And Brillouin Techniques,” in Orlando Technical Symposium (1988), 407–414.

Levine, H. B.

I. L. Fabelinskii and H. B. Levine, “Molecular Scattering of Light,” Phys. Today 22(6), 77–79 (1969).
[Crossref]

Liu, C.

Liu, D.

D. Liu, Y. Zhou, W. Chen, Q. Liu, T. Huang, W. Liu, Q. Chen, Z. Liu, P. Xu, X. Cui, X. Wang, C. Le, and C. Liu, “Phase function effects on the retrieval of oceanic high-spectral-resolution lidar,” Opt. Express 27(12), A654–A668 (2019).
[Crossref]

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

Y. Zhang, D. Liu, X. Shen, J. Bai, Q. Liu, Z. Cheng, P. Tang, and L. Yang, “Design of iodine absorption cell for high-spectral-resolution lidar,” Opt. Express 25(14), 15913–15926 (2017).
[Crossref]

Y. Zhou, D. Liu, P. Xu, C. Liu, J. Bai, L. Yang, Z. Cheng, P. Tang, Y. Zhang, and L. Su, “Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution lidar,” Opt. Express 25(10), 11813–11826 (2017).
[Crossref]

Z. Cheng, D. Liu, Y. Zhou, Y. Yang, J. Luo, Y. Zhang, Y. Shen, C. Liu, J. Bai, K. Wang, L. Su, and L. Yang, “Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning,” Opt. Lett. 41(17), 3916–3919 (2016).
[Crossref]

Z. Cheng, D. Liu, Y. Zhang, Y. Yang, Y. Zhou, J. Luo, J. Bai, Y. Shen, K. Wang, and C. Liu, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development,” Opt. Express 24(7), 7232–7245 (2016).
[Crossref]

D. Liu, C. Hostetler, I. Miller, A. Cook, and J. Hair, “System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar,” Opt. Express 20(2), 1406–1420 (2012).
[Crossref]

J. Xu, X. Ren, W. Gong, R. Dai, and D. Liu, “Measurement of the bulk viscosity of liquid by Brillouin scattering,” Appl. Opt. 42(33), 6704–6709 (2003).
[Crossref]

Liu, Q.

Liu, W.

Liu, Z.

Luo, J.

Lv, Z.

Mack, T. L.

Malinka, A.

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

Malinka, A. V.

Miles, R. B.

Miller, I.

Mobley, C. D.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

O’Connor, C. L.

C. L. O’Connor and J. P. Schlupf, “Brillouin scattering in water: the Landau—Placzek ratio,” J. Chem. Phys. 47(1), 31–38 (1967).
[Crossref]

Petzold, T. J.

T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Scripps Institution of Oceanography (1972).

Poole, L. R.

Ren, X.

Schlupf, J. P.

C. L. O’Connor and J. P. Schlupf, “Brillouin scattering in water: the Landau—Placzek ratio,” J. Chem. Phys. 47(1), 31–38 (1967).
[Crossref]

Schulien, J.

C. Hostetler, M. Behrenfeld, Y. Hu, J. Hair, and J. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Ann. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Schulien, J. A.

Shen, X.

Shen, Y.

Song, Q.

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

Su, L.

Sweeney, H. E.

D. A. Leonard and H. E. Sweeney, “Remote Sensing Of Ocean Physical Properties: A Comparison Of Raman And Brillouin Techniques,” in Orlando Technical Symposium (1988), 407–414.

Swift, R. N.

Tang, P.

Tatarskii, V. V.

J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40(3), 406–414 (2001).
[Crossref]

Tesche, M.

Twardowski, M. S.

Venable, D. D.

Wang, K.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Wang, X.

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

D. Liu, Y. Zhou, W. Chen, Q. Liu, T. Huang, W. Liu, Q. Chen, Z. Liu, P. Xu, X. Cui, X. Wang, C. Le, and C. Liu, “Phase function effects on the retrieval of oceanic high-spectral-resolution lidar,” Opt. Express 27(12), A654–A668 (2019).
[Crossref]

Welch, W.

Wilson, J. J.

J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40(3), 406–414 (2001).
[Crossref]

Wirth, M.

Wouters, A. W.

Wright, C. W.

Xu, J.

Xu, P.

Yang, L.

Yang, Y.

Yungel, J. K.

Zege, E. P.

Zhang, Y.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Zhou, Y.

Zhu, X.

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

Zhuo, W.

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

Ann. Rev. Mar. Sci. (1)

C. Hostetler, M. Behrenfeld, Y. Hu, J. Hair, and J. Schulien, “Spaceborne Lidar in the Study of Marine Systems,” Ann. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Appl. Opt. (9)

J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne High Spectral Resolution Lidar for profiling aerosol optical properties,” Appl. Opt. 47(36), 6734–6752 (2008).
[Crossref]

M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47(3), 346–358 (2008).
[Crossref]

B. D. Joelson and G. W. Kattawar, “Multiple scattering effects on the remote sensing of the speed of sound in the ocean by Brillouin scattering,” Appl. Opt. 35(15), 2693–2701 (1996).
[Crossref]

F. E. Hoge, C. W. Wright, T. M. Kana, R. N. Swift, and J. K. Yungel, “Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions,” Appl. Opt. 37(21), 4744–4749 (1998).
[Crossref]

A. V. Malinka and E. P. Zege, “Retrieving seawater-backscattering profiles from coupling Raman and elastic lidar data,” Appl. Opt. 43(19), 3925–3930 (2004).
[Crossref]

L. R. Poole, D. D. Venable, and J. W. Campbell, “Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems,” Appl. Opt. 20(20), 3653–3656 (1981).
[Crossref]

J. G. Hirschberg, J. D. Byrne, A. W. Wouters, and G. C. Boynton, “Speed of sound and temperature in the ocean by Brillouin scattering,” Appl. Opt. 23(15), 2624–2628 (1984).
[Crossref]

J. Xu, X. Ren, W. Gong, R. Dai, and D. Liu, “Measurement of the bulk viscosity of liquid by Brillouin scattering,” Appl. Opt. 42(33), 6704–6709 (2003).
[Crossref]

J. N. Forkey, W. R. Lempert, and R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36(27), 6729–6738 (1997).
[Crossref]

Chin. Opt. Lett. (1)

Comput. Meth. Prog. Bio. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[Crossref]

Front. Mar. Sci. (1)

C. Jamet, A. Ibrahim, Z. Ahmad, F. Angelini, M. Babin, M. J. Behrenfeld, E. Boss, B. Cairns, J. Churnside, and J. Chowdhary, “Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry,” Front. Mar. Sci. 6, 251 (2019).
[Crossref]

J. Chem. Phys. (1)

C. L. O’Connor and J. P. Schlupf, “Brillouin scattering in water: the Landau—Placzek ratio,” J. Chem. Phys. 47(1), 31–38 (1967).
[Crossref]

Opt. Eng. (2)

J. H. Churnside, J. J. Wilson, and V. V. Tatarskii, “Airborne lidar for fisheries applications,” Opt. Eng. 40(3), 406–414 (2001).
[Crossref]

J. H. Churnside, “Review of profiling oceanographic lidar,” Opt. Eng. 53(5), 051405 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Today (1)

I. L. Fabelinskii and H. B. Levine, “Molecular Scattering of Light,” Phys. Today 22(6), 77–79 (1969).
[Crossref]

Remote Sens. (1)

Y. Zhou, W. Chen, X. Cui, A. Malinka, Q. Liu, B. Han, X. Wang, W. Zhuo, H. Che, Q. Song, X. Zhu, and D. Liu, “Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results,” Remote Sens. 11(16), 1870 (2019).
[Crossref]

Other (5)

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).

T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Scripps Institution of Oceanography (1972).

L. R. Bissonnette, “Lidar and Multiple Scattering,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 43–103.

J. Hair, C. Hostetler, Y. Hu, M. Behrenfeld, C. Butler, D. Harper, R. Hare, T. Berkoff, A. Cook, and J. Collins, “Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar,” in EPJ Web of Conferences (2016), 22001.

D. A. Leonard and H. E. Sweeney, “Remote Sensing Of Ocean Physical Properties: A Comparison Of Raman And Brillouin Techniques,” in Orlando Technical Symposium (1988), 407–414.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of oceanic HSRL: (a) structure diagram of oceanic HSRL and the signal spectra for the (b) combined channel and (c) molecular channel. The red lines are the return spectra that leave the beam splitter and the cyan shadings are the return spectra that are collected by the detectors.
Fig. 2.
Fig. 2. An example of return spectra with multiple molecular scattering: the scattering angles are 180, 5, 15, 25 degrees for 1st-4th molecular scattering.
Fig. 3.
Fig. 3. Spectral characteristics of discriminators and signals: the iodine cell 1104 line transmittance (black dashed line), the FWMI transmittance (black solid line), single scattering spectra at 180° before discriminator (red line), after the FWMI (blue shading) and after the iodine cell (yellow shading).
Fig. 4.
Fig. 4. Characteristics of the phase functions: (a) phase functions; (b) relative deviations of phase functions from their 180° values.
Fig. 5.
Fig. 5. The return spectra in the combined channel Bc: (a) pseudo-color map of log10(Bc); (b)-(e) are Bc at depths of 2, 8, 14 and 20 m, where blue lines are simulated signals and orange lines are single scattering signals at 180° for reference.
Fig. 6.
Fig. 6. The HSRL return spectra that experience molecular scattering, e.g., Smf, Smb and Smfmb: (a)-(d) are signals at depths of 2, 8, 14 and 20 m, respectively.
Fig. 7.
Fig. 7. The HSRL returns in the combined and molecular channels with the discriminators of (a) the FWMI and (b) the iodine cell.
Fig. 8.
Fig. 8. The backscatter and attenuation deviations δ1 and δ2 of the non-spectral method compared with the spectral method for different FOVs: (a) and (b) are δ1 and δ2 with the FWMI, respectively; (c) and (d) are δ1 and δ2 with the iodine cell, respectively.
Fig. 9.
Fig. 9. The same as Fig.  8, but for different water types, e.g., type I: a = 0.1 m−1, b = 0.1 m−1, type II: a = 0.15 m−1, b = 0.15 m−1, and type III: a = 0.179 m−1, b = 0.219 m−1.

Tables (1)

Tables Icon

Table 1. FWMI specifications used for the transmittance calculation

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

{ B c ( z ) = S p ( z ) + S m ( z ) B m ( z ) = T p S p ( z ) + T m S m ( z ) ,
{ S p ( z ) = 1 ( n H + z ) 2 β p π ( z ) exp [ 2 0 z α ( ξ ) d ξ ] S m ( z ) = 1 ( n H + z ) 2 β m π ( z ) exp [ 2 0 z α ( ξ ) d ξ ] ,
{ T m = + [ I B ( υ ) I L ( υ ) ] F ( υ ) d υ + [ I B ( υ ) I L ( υ ) ] d υ T p = + I L ( υ ) F ( υ ) d υ + I L ( υ ) d υ ,
{ I B ( υ ) = 1 π Δ υ B π 1 1 + [ 2 ( υ ± υ B π ) / 2 ( υ ± υ B π ) Δ υ B π Δ υ B π ] 2 I L ( υ ) = 1 Δ υ L π exp ( υ 2 Δ υ L 2 ) ,
β p π ( z ) = β m π [ T p T m T p B m ( z ) / B m ( z ) B c ( z ) B c ( z ) 1 ]
α ( z ) = 1 2 d d z ln [ B c ( z ) ( n H + z ) 2 β p π ( z ) + β m π ( z ) ] .
I B , 1 ( υ ) = 1 π Δ υ B , 1 1 1 + [ 2 ( υ ± υ B , 1 ) / 2 ( υ ± υ B , 1 ) Δ υ B , 1 Δ υ B , 1 ] 2 ,
{ υ B ( θ ) = υ B π s i n ( θ / θ 2 2 ) Δ υ B ( θ ) = Δ υ B π [ s i n ( θ / θ 2 2 ) ] 2 .
I B , 2 ( υ ) = I B , 1 ( υ ) 1 π Δ υ B , 2 1 1 + [ 2 ( υ ± υ B , 2 ) / 2 ( υ ± υ B , 2 ) Δ υ B , 2 Δ υ B , 2 ] 2 = 1 2 1 π ( Δ υ B , 1 + Δ υ B , 2 ) 1 1 + [ 2 ( υ ± υ B , 1 ± υ B , 2 ) / 2 ( υ ± υ B , 1 ± υ B , 2 ) ( Δ υ B , 1 + Δ υ B , 2 ) ( Δ υ B , 1 + Δ υ B , 2 ) ] 2 .
I B , n ( υ ) = I B , n 1 ( υ ) 1 π Δ υ B , n 1 1 + [ 2 ( υ ± υ B , n ) / 2 ( υ ± υ B , n ) Δ υ B , n Δ υ B , n ] 2 = 1 2 n 1 1 π i = 1 n Δ υ B , i 1 1 + [ 2 ( υ ± υ B , 1 ± υ B , 2 ± ± υ B , n ) / 2 ( υ ± υ B , 1 ± υ B , 2 ± ± υ B , n ) i = 1 n Δ υ B , i i = 1 n Δ υ B , i ] 2 .
{ B c = + I ( υ ) I L ( υ ) d υ B m = + [ I ( υ ) I L ( υ ) ] F ( υ ) d υ .
{ B c = S o p + S m b + S m f + S m f m b B m = T p ( S o p + S m f ) + T m ( S m b + S m f m b ) .
β ~ m ( θ ) = 0.06225 ( 1 + 0.835 cos 2 θ ) ,
Δ = β ~ ( θ ) β ~ ( π ) β ~ ( π ) × 100 % .
{ δ 1 = β p , N S π β p , S π β p , S π × 100 % δ 2 = α N S α S α S × 100 % ,

Metrics