Abstract

With mitigation of thermal effects in a generator cell based on a rotating off-centered lens, the effects of thermal blooming, self-defocusing, and thermal convection in the amplifier cell have experimentally proven to be the main factors limiting high-repetition-rate stimulated Brillouin scattering (SBS) pulse compression. To alleviate these effects, Galden HT270, which has a large viscosity coefficient, is used and compared experimentally. The operating repetition rate using HT270 was improved from 200 Hz to 1,000 Hz, comparable to the values in the literature. With a pump energy of 50 mJ at 1,000 Hz, the pump pulse was compressed down to 820 ps using HT270 with an energy efficiency of 52.2%. If the injection energy is further increased, the SBS energy efficiency can be increased beyond this value.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz

Viliam Kmetik, Henryk Fiedorowicz, Alexander A. Andreev, Klaus J. Witte, Hiroyuki Daido, Hisanori Fujita, Masahiro Nakatsuka, and Tatsuhiko Yamanaka
Appl. Opt. 37(30) 7085-7090 (1998)

High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM

Zhijun Kang, Zhongwei Fan, Yutao Huang, Hongbo Zhang, Wenqi Ge, Mingshan Li, Xiaochao Yan, and Guoxin Zhang
Opt. Express 26(6) 6560-6571 (2018)

Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime

Zhaohong Liu, Yulei Wang, Yirui Wang, Sensen Li, Zhenxu Bai, Dianyang Lin, Weiming He, and Zhiwei Lu
Opt. Express 26(5) 5701-5710 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
    [Crossref]
  2. M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
    [Crossref]
  3. R. G. Gottlieb, S. J. Sponaugle, and D. E. Gaylor, “Orbit determination accuracy requirements for collision avoidance,” in Proceedings of the 11th Annual AAS/AIAA Space Flight Mechanics Meeting (AAS, 2001), pp. 1105–1121.
  4. M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets,” ApJ 839(1), L2 (2017).
    [Crossref]
  5. Y. C. Chen, S. Li, K. K. Lee, and S. Zhou, “Self-stabilized single-longitudinal-mode operation in a self-Q-switched Cr, Nd: YAG laser,” Opt. Lett. 18(17), 1418–1419 (1993).
    [Crossref]
  6. M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
    [Crossref]
  7. C. Feng, X. Xu, and J. C. Diels, “High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids,” Opt. Express 25(11), 12421–12434 (2017).
    [Crossref]
  8. X. Liu, X. Yao, and Y. Dong, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121(2), 023905 (2018).
    [Crossref]
  9. X. Liu and M. Pang, “Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers,” Laser Photonics Rev. 13(9), 1800333 (2019).
    [Crossref]
  10. X. Liu and Y. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1(01), 1 (2019).
    [Crossref]
  11. Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
    [Crossref]
  12. C. Feng, X. Xu, and J. C. Diels, “Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm,” Opt. Lett. 39(12), 3367–3370 (2014).
    [Crossref]
  13. Y. Nizienko, A. Mamin, P. Nielsen, and B. Browin, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
    [Crossref]
  14. C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke, “Recent developments in LIDAR Thomson scattering measurements on JET,” Rev. Sci. Instrum. 66(1), 471–475 (1995).
    [Crossref]
  15. W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
    [Crossref]
  16. C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Elect. 30(8), 1907–1915 (1994).
    [Crossref]
  17. V. Kmetik, H. Fiedorowicz, A. A. Andreev, K. J. Witte, H. Daido, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Reliable stimulated Brillouin scattering compression of Nd: YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz,” Appl. Opt. 37(30), 7085–7090 (1998).
    [Crossref]
  18. A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 100820Q, 100820Q–8 (2017).
    [Crossref]
  19. N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Elect. 28(1), 330–341 (1992).
    [Crossref]
  20. A. A. Shilov, G. A. Pasmanik, O. V. Kulagin, and K. Deki, “High-peak-power diode-pumped Nd:YAG laser with a Brillouin phase-conjugation–pulse-compression mirror,” Opt. Lett. 26(20), 1565–1567 (2001).
    [Crossref]
  21. Z. Kang, H. Zhang, X. Yan, Y. Lang, Z. Bai, and Z. Fan, “200 Hz high repetition frequency SBS pulse width compression experiment,” Zhongguo Guangxue 11(5), 736–744 (2018).
    [Crossref]
  22. H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, “360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate,” Opt. Lett. 28(18), 1671–1673 (2003).
    [Crossref]
  23. S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
    [Crossref]
  24. K. Tsubakimoto, H. Yoshida, and N. Miyanaga, “High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror,” Opt. Express 24(12), 12557–12564 (2016).
    [Crossref]
  25. Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
    [Crossref]
  26. M. Nakatsuka, H. Yoshida, Y. Fujimoto, K. Fujioka, and H. Fujita, “Recent topics in engineering for solid-state peak-power lasers in repetitive operation,” J. Korean Phys. Soc. 43(4), 607–615 (2003).
  27. H. Wang, S. Cha, H. J. Kong, Y. Wang, and Z. Lu, “Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation,” Opt. Express 27(7), 9895–9905 (2019).
    [Crossref]
  28. H. J. Kong, S. Park, S. Cha, H. Ahn, H. Lee, J. Oh, B. J. Lee, S. Choi, and J. S. Kim, “Current status of the development of the Kumgang laser,” Opt. Mater. Express 4(12), 2551–2558 (2014).
    [Crossref]
  29. https://www.appliedthermalfluids.com/home/shop/galden-ht-110/

2019 (3)

X. Liu and M. Pang, “Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers,” Laser Photonics Rev. 13(9), 1800333 (2019).
[Crossref]

X. Liu and Y. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1(01), 1 (2019).
[Crossref]

H. Wang, S. Cha, H. J. Kong, Y. Wang, and Z. Lu, “Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation,” Opt. Express 27(7), 9895–9905 (2019).
[Crossref]

2018 (4)

Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
[Crossref]

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

X. Liu, X. Yao, and Y. Dong, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121(2), 023905 (2018).
[Crossref]

Z. Kang, H. Zhang, X. Yan, Y. Lang, Z. Bai, and Z. Fan, “200 Hz high repetition frequency SBS pulse width compression experiment,” Zhongguo Guangxue 11(5), 736–744 (2018).
[Crossref]

2017 (5)

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 100820Q, 100820Q–8 (2017).
[Crossref]

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets,” ApJ 839(1), L2 (2017).
[Crossref]

C. Feng, X. Xu, and J. C. Diels, “High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids,” Opt. Express 25(11), 12421–12434 (2017).
[Crossref]

2016 (3)

2014 (2)

2013 (1)

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

2003 (2)

M. Nakatsuka, H. Yoshida, Y. Fujimoto, K. Fujioka, and H. Fujita, “Recent topics in engineering for solid-state peak-power lasers in repetitive operation,” J. Korean Phys. Soc. 43(4), 607–615 (2003).

H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, “360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate,” Opt. Lett. 28(18), 1671–1673 (2003).
[Crossref]

2001 (1)

1998 (1)

1995 (1)

C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke, “Recent developments in LIDAR Thomson scattering measurements on JET,” Rev. Sci. Instrum. 66(1), 471–475 (1995).
[Crossref]

1994 (2)

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Elect. 30(8), 1907–1915 (1994).
[Crossref]

Y. Nizienko, A. Mamin, P. Nielsen, and B. Browin, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

1993 (1)

1992 (1)

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Elect. 28(1), 330–341 (1992).
[Crossref]

Ahn, H.

Andreev, A. A.

Andreev, N. F.

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Elect. 28(1), 330–341 (1992).
[Crossref]

Bai, Z.

Z. Kang, H. Zhang, X. Yan, Y. Lang, Z. Bai, and Z. Fan, “200 Hz high repetition frequency SBS pulse width compression experiment,” Zhongguo Guangxue 11(5), 736–744 (2018).
[Crossref]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Bao, W.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Bean, J.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets,” ApJ 839(1), L2 (2017).
[Crossref]

Brogi, M.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets,” ApJ 839(1), L2 (2017).
[Crossref]

Browin, B.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Browin, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

Brown, B. W.

C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke, “Recent developments in LIDAR Thomson scattering measurements on JET,” Rev. Sci. Instrum. 66(1), 471–475 (1995).
[Crossref]

Cao, H.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Cha, S.

Chen, W.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Chen, Y.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Chen, Y. C.

Cheng, S. X.

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

Choi, S.

Chu, H.

A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 100820Q, 100820Q–8 (2017).
[Crossref]

Chu, S. T.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Churn, K. S.

Courde, C.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Cui, C.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Cui, Y.

X. Liu and Y. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1(01), 1 (2019).
[Crossref]

Dai, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Daido, H.

Dane, C. B.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Elect. 30(8), 1907–1915 (1994).
[Crossref]

Degnan, J.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Deki, K.

Désert, J. M.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets,” ApJ 839(1), L2 (2017).
[Crossref]

Diels, J. C.

Dong, Y.

X. Liu, X. Yao, and Y. Dong, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121(2), 023905 (2018).
[Crossref]

Dunn, P.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Fajemirokun, H.

C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke, “Recent developments in LIDAR Thomson scattering measurements on JET,” Rev. Sci. Instrum. 66(1), 471–475 (1995).
[Crossref]

Fan, Z.

Z. Kang, H. Zhang, X. Yan, Y. Lang, Z. Bai, and Z. Fan, “200 Hz high repetition frequency SBS pulse width compression experiment,” Zhongguo Guangxue 11(5), 736–744 (2018).
[Crossref]

Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
[Crossref]

Fei, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Feng, C.

Fiedorowicz, H.

Fujimoto, Y.

M. Nakatsuka, H. Yoshida, Y. Fujimoto, K. Fujioka, and H. Fujita, “Recent topics in engineering for solid-state peak-power lasers in repetitive operation,” J. Korean Phys. Soc. 43(4), 607–615 (2003).

Fujioka, K.

M. Nakatsuka, H. Yoshida, Y. Fujimoto, K. Fujioka, and H. Fujita, “Recent topics in engineering for solid-state peak-power lasers in repetitive operation,” J. Korean Phys. Soc. 43(4), 607–615 (2003).

Fujita, H.

M. Nakatsuka, H. Yoshida, Y. Fujimoto, K. Fujioka, and H. Fujita, “Recent topics in engineering for solid-state peak-power lasers in repetitive operation,” J. Korean Phys. Soc. 43(4), 607–615 (2003).

V. Kmetik, H. Fiedorowicz, A. A. Andreev, K. J. Witte, H. Daido, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Reliable stimulated Brillouin scattering compression of Nd: YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz,” Appl. Opt. 37(30), 7085–7090 (1998).
[Crossref]

Gaylor, D. E.

R. G. Gottlieb, S. J. Sponaugle, and D. E. Gaylor, “Orbit determination accuracy requirements for collision avoidance,” in Proceedings of the 11th Annual AAS/AIAA Space Flight Mechanics Meeting (AAS, 2001), pp. 1105–1121.

Ge, W.

Gong, W.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Gottlieb, R. G.

R. G. Gottlieb, S. J. Sponaugle, and D. E. Gaylor, “Orbit determination accuracy requirements for collision avoidance,” in Proceedings of the 11th Annual AAS/AIAA Space Flight Mechanics Meeting (AAS, 2001), pp. 1105–1121.

Gowers, C. W.

C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke, “Recent developments in LIDAR Thomson scattering measurements on JET,” Rev. Sci. Instrum. 66(1), 471–475 (1995).
[Crossref]

Hackel, L. A.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Elect. 30(8), 1907–1915 (1994).
[Crossref]

Han, S.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Hansson, T.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Hasi, W. L. J.

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

He, T.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

He, W.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

He, W. M.

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

Huang, G.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Huang, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Huang, Y.

Jin, W.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Kageyama, N.

Kan, H.

Kang, Z.

Z. Kang, H. Zhang, X. Yan, Y. Lang, Z. Bai, and Z. Fan, “200 Hz high repetition frequency SBS pulse width compression experiment,” Zhongguo Guangxue 11(5), 736–744 (2018).
[Crossref]

Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
[Crossref]

Khazanov, E. A.

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Elect. 28(1), 330–341 (1992).
[Crossref]

Kim, J. S.

Kirchner, G.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Kiriyama, H.

Kmetik, V.

Kong, H. J.

Kues, M.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Kulagin, O. V.

Kunimori, H.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Lang, Y.

Z. Kang, H. Zhang, X. Yan, Y. Lang, Z. Bai, and Z. Fan, “200 Hz high repetition frequency SBS pulse width compression experiment,” Zhongguo Guangxue 11(5), 736–744 (2018).
[Crossref]

Lee, B. J.

Lee, H.

Lee, K. K.

Li, M.

Li, S.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Y. C. Chen, S. Li, K. K. Lee, and S. Zhou, “Self-stabilized single-longitudinal-mode operation in a self-Q-switched Cr, Nd: YAG laser,” Opt. Lett. 18(17), 1418–1419 (1993).
[Crossref]

Li, X.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Lin, D. Y.

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

Line, M.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets,” ApJ 839(1), L2 (2017).
[Crossref]

Little, B. E.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Liu, R.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Liu, X.

X. Liu and Y. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1(01), 1 (2019).
[Crossref]

X. Liu and M. Pang, “Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers,” Laser Photonics Rev. 13(9), 1800333 (2019).
[Crossref]

X. Liu, X. Yao, and Y. Dong, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121(2), 023905 (2018).
[Crossref]

Liu, Z.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Lu, Z.

H. Wang, S. Cha, H. J. Kong, Y. Wang, and Z. Lu, “Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation,” Opt. Express 27(7), 9895–9905 (2019).
[Crossref]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Lu, Z. W.

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

Lv, Y.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Mamin, A.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Browin, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

Miyajima, H.

Miyanaga, N.

Moore, C.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Morandotti, R.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Moss, D. J.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Nagai, T.

Nakatsuka, M.

Neuman, W. A.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Elect. 30(8), 1907–1915 (1994).
[Crossref]

Nielsen, P.

C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke, “Recent developments in LIDAR Thomson scattering measurements on JET,” Rev. Sci. Instrum. 66(1), 471–475 (1995).
[Crossref]

Y. Nizienko, A. Mamin, P. Nielsen, and B. Browin, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

Nizienko, Y.

C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke, “Recent developments in LIDAR Thomson scattering measurements on JET,” Rev. Sci. Instrum. 66(1), 471–475 (1995).
[Crossref]

Y. Nizienko, A. Mamin, P. Nielsen, and B. Browin, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

Oh, J.

Pang, M.

X. Liu and M. Pang, “Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers,” Laser Photonics Rev. 13(9), 1800333 (2019).
[Crossref]

Park, S.

Pasmanik, G. A.

A. A. Shilov, G. A. Pasmanik, O. V. Kulagin, and K. Deki, “High-peak-power diode-pumped Nd:YAG laser with a Brillouin phase-conjugation–pulse-compression mirror,” Opt. Lett. 26(20), 1565–1567 (2001).
[Crossref]

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Elect. 28(1), 330–341 (1992).
[Crossref]

Procházka, I.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Qiao, Z.

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

Reimer, C.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Roztocki, P.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Sadovnikov, M.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Schreiber, U.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Schunke, B.

C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke, “Recent developments in LIDAR Thomson scattering measurements on JET,” Rev. Sci. Instrum. 66(1), 471–475 (1995).
[Crossref]

Schwarz, H.

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets,” ApJ 839(1), L2 (2017).
[Crossref]

Shargorodskiy, V.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Shi, Z.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Shilov, A. A.

Sponaugle, S. J.

R. G. Gottlieb, S. J. Sponaugle, and D. E. Gaylor, “Orbit determination accuracy requirements for collision avoidance,” in Proceedings of the 11th Annual AAS/AIAA Space Flight Mechanics Meeting (AAS, 2001), pp. 1105–1121.

Su, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Tarasov, A. A.

A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 100820Q, 100820Q–8 (2017).
[Crossref]

Tsubakimoto, K.

Vktorov, E. A.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Wang, H.

H. Wang, S. Cha, H. J. Kong, Y. Wang, and Z. Lu, “Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation,” Opt. Express 27(7), 9895–9905 (2019).
[Crossref]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Wang, X. Y.

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

Wang, Y.

H. Wang, S. Cha, H. J. Kong, Y. Wang, and Z. Lu, “Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation,” Opt. Express 27(7), 9895–9905 (2019).
[Crossref]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Wetzel, B.

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Wilkinson, M.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Witte, K. J.

Xu, X.

Yamakawa, K.

Yamanaka, T.

Yan, X.

Z. Kang, H. Zhang, X. Yan, Y. Lang, Z. Bai, and Z. Fan, “200 Hz high repetition frequency SBS pulse width compression experiment,” Zhongguo Guangxue 11(5), 736–744 (2018).
[Crossref]

Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
[Crossref]

Yang, J.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Yao, X.

X. Liu, X. Yao, and Y. Dong, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121(2), 023905 (2018).
[Crossref]

Yoshida, H.

Yuan, H.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Zhang, G.

Zhang, H.

Z. Kang, Z. Fan, Y. Huang, H. Zhang, W. Ge, M. Li, X. Yan, and G. Zhang, “High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM,” Opt. Express 26(6), 6560–6571 (2018).
[Crossref]

Z. Kang, H. Zhang, X. Yan, Y. Lang, Z. Bai, and Z. Fan, “200 Hz high repetition frequency SBS pulse width compression experiment,” Zhongguo Guangxue 11(5), 736–744 (2018).
[Crossref]

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Zhang, X.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Zhao, C.

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Zheng, Z. X.

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

Zhong, Z. M.

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

Zhongping, Z.

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

Zhou, S.

Zhu, X.

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Adv. Photon. (1)

X. Liu and Y. Cui, “Revealing the behavior of soliton buildup in a mode-locked laser,” Adv. Photon. 1(01), 1 (2019).
[Crossref]

ApJ (1)

M. Brogi, M. Line, J. Bean, J. M. Désert, and H. Schwarz, “A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets,” ApJ 839(1), L2 (2017).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Elect. (2)

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Elect. 30(8), 1907–1915 (1994).
[Crossref]

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Elect. 28(1), 330–341 (1992).
[Crossref]

J. Geodesy (1)

M. Wilkinson, U. Schreiber, I. Procházka, C. Moore, J. Degnan, G. Kirchner, Z. Zhongping, P. Dunn, V. Shargorodskiy, M. Sadovnikov, C. Courde, and H. Kunimori, “The next generation of satellite laser ranging systems,” J. Geodesy 24, 1–21 (2018).
[Crossref]

J. Korean Phys. Soc. (1)

M. Nakatsuka, H. Yoshida, Y. Fujimoto, K. Fujioka, and H. Fujita, “Recent topics in engineering for solid-state peak-power lasers in repetitive operation,” J. Korean Phys. Soc. 43(4), 607–615 (2003).

J. Mod. Opt. (1)

Y. Wang, Z. Liu, H. Yuan, Z. Bai, H. Wang, X. Zhu, R. Liu, S. Li, Y. Chen, Y. Wang, C. Cui, H. Zhang, W. He, and Z. Lu, “A promotion of stability for temporal compression based on SBS in an interferometric scheme,” J. Mod. Opt. 63(17), 1734–1740 (2016).
[Crossref]

Laser Photonics Rev. (1)

X. Liu and M. Pang, “Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers,” Laser Photonics Rev. 13(9), 1800333 (2019).
[Crossref]

Nat. Photonics (1)

M. Kues, C. Reimer, B. Wetzel, P. Roztocki, B. E. Little, S. T. Chu, T. Hansson, E. A. Vktorov, D. J. Moss, and R. Morandotti, “Passively mode-locked laser with an ultra-narrow spectral width,” Nat. Photonics 11(3), 159–162 (2017).
[Crossref]

Opt. Commun. (1)

W. L. J. Hasi, Z. Qiao, S. X. Cheng, X. Y. Wang, Z. M. Zhong, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770,” Opt. Commun. 311, 375–379 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

X. Liu, X. Yao, and Y. Dong, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121(2), 023905 (2018).
[Crossref]

Proc. SPIE (2)

A. A. Tarasov and H. Chu, “Subnanosecond Nd: YAG laser with multipass cell for SBS pulse compression,” Proc. SPIE 100820Q, 100820Q–8 (2017).
[Crossref]

W. Jin, S. Han, J. Fei, Z. Shi, W. Chen, W. Bao, J. Yang, W. Gong, J. Su, Y. Lv, H. Cao, G. Huang, X. Li, J. Huang, C. Zhao, T. He, J. Dai, and X. Zhang, “Overview of the Chinese lidar satellite development,” Proc. SPIE 10605, 244 (2017).
[Crossref]

Rev. Sci. Instrum. (2)

Y. Nizienko, A. Mamin, P. Nielsen, and B. Browin, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

C. W. Gowers, B. W. Brown, H. Fajemirokun, P. Nielsen, Y. Nizienko, and B. Schunke, “Recent developments in LIDAR Thomson scattering measurements on JET,” Rev. Sci. Instrum. 66(1), 471–475 (1995).
[Crossref]

Zhongguo Guangxue (1)

Z. Kang, H. Zhang, X. Yan, Y. Lang, Z. Bai, and Z. Fan, “200 Hz high repetition frequency SBS pulse width compression experiment,” Zhongguo Guangxue 11(5), 736–744 (2018).
[Crossref]

Other (2)

https://www.appliedthermalfluids.com/home/shop/galden-ht-110/

R. G. Gottlieb, S. J. Sponaugle, and D. E. Gaylor, “Orbit determination accuracy requirements for collision avoidance,” in Proceedings of the 11th Annual AAS/AIAA Space Flight Mechanics Meeting (AAS, 2001), pp. 1105–1121.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic of experimental setup for two-cell SBS compressor. QWP, quarter wave plate; HWP, half wave plate; L1∼3 and L5∼6, lens.
Fig. 2.
Fig. 2. Experimentally detected (a) output power, (b) output energy, (c) pulse width, and (d) energy efficiency with and without rotating off-centered lens at different input energies using HT110.
Fig. 3.
Fig. 3. Intensity profiles of backward SBS at input energy of (a1-a6) 20 mJ and (b1-b6) 40 mJ using rotating off-centered lens with repetition rates from 100 Hz to 600 Hz. The height and the width of each image are 11.3 mm and 11.3 mm, respectively.
Fig. 4.
Fig. 4. Experimental setup (a) transmitting beam pattern of amplifier cell (b) Mach–Zehnder interference at 1 kHz.
Fig. 5.
Fig. 5. Beam profiles of setup A: (a1)–(a5) and setup B: (b1)–(b5) with different input energies of amplifier cell for HT110 at 1,000 Hz. The height and the width of each image are 11.3 mm and 11.3 mm, respectively.
Fig. 6.
Fig. 6. (a) The maximum temperature vs repetition rate in the generator cell and amplifier cell at input energy of 50 mJ, and (b) kinematic viscosity vs temperature of HT270 and HT110.
Fig. 7.
Fig. 7. Beam profiles of setup A: (a1)–(a5) and setup B: (b1)–(b5) with different input energies for the medium of HT270 at 1,000 Hz. The height and the width of each image are 8 mm and 8 mm, respectively.
Fig. 8.
Fig. 8. The peak-to-valley of the transmitted beam phase using setup A for the two media of HT110 and HT270 at a repetition rate of 1,000 Hz.
Fig. 9.
Fig. 9. Measured (a1,b1,c1) output energy, (a2,b2,c2) energy efficiency, and (a3,b3,c3) pulse width with different repetition rates of (a1-a3) 100 Hz, (b1-b3) 500 Hz, and (c1-c3) 1,000 Hz for HT110 and HT270, respectively.
Fig. 10.
Fig. 10. Measured (a) energy efficiency and (b) pulse width of HT270 with and without rotating off-centered lens at 1 kHz.
Fig. 11.
Fig. 11. Experimentally measured (a) reflected energy, (b) energy efficiency, (c) pulse width, and (d) pulse waveforms of HT270 with different focal lens L4 at 1,000 Hz.
Fig. 12.
Fig. 12. Reflected beam profiles with different focal lenses of (a1-a6) 2 m–15 cm, (b1-b6) 2 m–10 cm, and (c1–16) 2 m–7.5 cm with input power of 50 W at 1,000 Hz for HT270. The height and the width of each image are 11.3 mm and 11.3 mm, respectively.
Fig. 13.
Fig. 13. Experimentally detected SBS (a) reflected power, (b) output energy, (c) pulse width, and (d) energy efficiency at different input energies for HT270.

Tables (1)

Tables Icon

Table 1. Parameters of SBS medium used in simulations and experiments [29]

Metrics