Abstract

Control of electroosmotic flows in a two-layer microfluidic device with crossed channels is used to counteract Brownian diffusion in aqueous solution for three-dimensional trapping of a single nanoparticle or molecule within the probe volume of a confocal fluorescence microscope. A field programmable gate array sorts and counts photons into four channels synchronous with laser pulses in four beams focused to waists slightly offset from the center of the confocal volume and uses the counts to update voltages between the four fluidic inlets every 13.5 µs. Trapping is demonstrated for 40 nm nanoparticles for up to 240 s, 20 nm nanoparticles for up to 25 s, and single molecules of streptavidin-Alexa 647 for up to 1.2 s.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rapid and efficient detection of single chromophore molecules in aqueous solution

Li-Qiang Li and Lloyd M. Davis
Appl. Opt. 34(18) 3208-3217 (1995)

Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer

Adam E. Cohen and W. E. Moerner
Opt. Express 16(10) 6941-6956 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. Rigler and M. Eigen, “Sorting single molecules: Application to diagnostics and evolutionary biotechnology,” Proc. Natl. Acad. Sci. U. S. A. 91(13), 5740–5747 (1994).
    [Crossref]
  2. D. P. Fromm and W. E. Moerner, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
    [Crossref]
  3. P. D. Dahlberg, H. Liu, N. C. M. Magdaong, R. E. Blankenship, A. H. Squires, and W. E. Moerner, “Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein,” Nat. Commun. 10(1), 1–12 (2019).
    [Crossref]
  4. A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in solution,” Appl. Phys. Lett. 86(9), 093109 (2005).
    [Crossref]
  5. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref]
  6. Y. Pang and R. Gordon, “Optical Trapping of a Single Protein,” Nano Lett. 12(1), 402–406 (2012).
    [Crossref]
  7. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  8. A. H. Squires, A. E. Cohen, and W. E. Moerner, “Anti-Brownian Traps,” in Encyclopedia of Biophysics, G. Roberts and A. Watts, eds., (European Biophysical Societies, 2018).
  9. A. E. Cohen and A. P. Fields, “The Cat That Caught the Canary: What To Do with Single-Molecule Trapping,” ACS Nano 5(7), 5296–5299 (2011).
    [Crossref]
  10. L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
    [Crossref]
  11. J. F. Lesoine, P. A. Venkataraman, P. C. Maloney, M. E. Dumont, and L. Novotny, “Nanochannel-Based Single Molecule Recycling,” Nano Lett. 12(6), 3273–3278 (2012).
    [Crossref]
  12. H. Cang, C. S. Xu, and H. Yang, “Progress in single-molecule tracking spectroscopy,” Chem. Phys. Lett. 457(4-6), 285–291 (2008).
    [Crossref]
  13. J. A. Germann and L. M. Davis, “Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope,” Opt. Express 22(5), 5641–5650 (2014).
    [Crossref]
  14. C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
    [Crossref]
  15. J. K. King, B. K. Canfield, and L. M. Davis, “Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in Solution,” Appl. Phys. Lett. 103(4), 043102 (2013).
    [Crossref]
  16. L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
    [Crossref]
  17. Z. Cummins, R. Probst, and B. Shapiro, “Electrokinetic tweezing: three-dimensional manipulation of microparticles by real-time imaging and flow control,” Lab Chip 13(20), 4040–4046 (2013).
    [Crossref]
  18. M. Kayci and A. Radenovic, “Single florescent nanodiamond in a three dimensional ABEL trap,” Sci. Rep. 5(1), 16669–5 (2015).
    [Crossref]
  19. M. Kayci, H. C. Chang, and A. Radenovic, “Electron Spin Resonance of Nitrogen-Vacancy Defects Embedded in Single Nanodiamonds in an ABEL Trap,” Nano Lett. 14(9), 5335–5341 (2014).
    [Crossref]
  20. B. K. Canfield and L. M. Davis, “Evaluation of Bessel beam machining for scalable fabrication of conductive channels through diamond,” Proc. SPIE 10092, 100921U (2017).
    [Crossref]
  21. A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, “Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow,” J. Colloid Interface Sci. 261(2), 402–410 (2003).
    [Crossref]
  22. H. Qiang and E. Elson, “Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy,” Appl. Opt. 30(10), 1185–1195 (1991).
    [Crossref]
  23. H. Wilson, R. S. Windeler, and Q. Wang, “Tetherless, precise and extended observation of single-molecule FRET in an Anti-Brownian trap,” Proc. SPIE 10884, 9 (2019).
    [Crossref]

2019 (2)

P. D. Dahlberg, H. Liu, N. C. M. Magdaong, R. E. Blankenship, A. H. Squires, and W. E. Moerner, “Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein,” Nat. Commun. 10(1), 1–12 (2019).
[Crossref]

H. Wilson, R. S. Windeler, and Q. Wang, “Tetherless, precise and extended observation of single-molecule FRET in an Anti-Brownian trap,” Proc. SPIE 10884, 9 (2019).
[Crossref]

2017 (1)

B. K. Canfield and L. M. Davis, “Evaluation of Bessel beam machining for scalable fabrication of conductive channels through diamond,” Proc. SPIE 10092, 100921U (2017).
[Crossref]

2015 (1)

M. Kayci and A. Radenovic, “Single florescent nanodiamond in a three dimensional ABEL trap,” Sci. Rep. 5(1), 16669–5 (2015).
[Crossref]

2014 (2)

M. Kayci, H. C. Chang, and A. Radenovic, “Electron Spin Resonance of Nitrogen-Vacancy Defects Embedded in Single Nanodiamonds in an ABEL Trap,” Nano Lett. 14(9), 5335–5341 (2014).
[Crossref]

J. A. Germann and L. M. Davis, “Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope,” Opt. Express 22(5), 5641–5650 (2014).
[Crossref]

2013 (2)

J. K. King, B. K. Canfield, and L. M. Davis, “Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in Solution,” Appl. Phys. Lett. 103(4), 043102 (2013).
[Crossref]

Z. Cummins, R. Probst, and B. Shapiro, “Electrokinetic tweezing: three-dimensional manipulation of microparticles by real-time imaging and flow control,” Lab Chip 13(20), 4040–4046 (2013).
[Crossref]

2012 (2)

J. F. Lesoine, P. A. Venkataraman, P. C. Maloney, M. E. Dumont, and L. Novotny, “Nanochannel-Based Single Molecule Recycling,” Nano Lett. 12(6), 3273–3278 (2012).
[Crossref]

Y. Pang and R. Gordon, “Optical Trapping of a Single Protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref]

2011 (1)

A. E. Cohen and A. P. Fields, “The Cat That Caught the Canary: What To Do with Single-Molecule Trapping,” ACS Nano 5(7), 5296–5299 (2011).
[Crossref]

2010 (1)

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

2009 (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

2008 (3)

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

H. Cang, C. S. Xu, and H. Yang, “Progress in single-molecule tracking spectroscopy,” Chem. Phys. Lett. 457(4-6), 285–291 (2008).
[Crossref]

2005 (1)

A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in solution,” Appl. Phys. Lett. 86(9), 093109 (2005).
[Crossref]

2003 (2)

D. P. Fromm and W. E. Moerner, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[Crossref]

A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, “Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow,” J. Colloid Interface Sci. 261(2), 402–410 (2003).
[Crossref]

1994 (1)

R. Rigler and M. Eigen, “Sorting single molecules: Application to diagnostics and evolutionary biotechnology,” Proc. Natl. Acad. Sci. U. S. A. 91(13), 5740–5747 (1994).
[Crossref]

1991 (1)

Berglund, A. J.

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

Blankenship, R. E.

P. D. Dahlberg, H. Liu, N. C. M. Magdaong, R. E. Blankenship, A. H. Squires, and W. E. Moerner, “Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein,” Nat. Commun. 10(1), 1–12 (2019).
[Crossref]

Bomar, B.

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

Bomar, B. W.

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Canfield, B. K.

B. K. Canfield and L. M. Davis, “Evaluation of Bessel beam machining for scalable fabrication of conductive channels through diamond,” Proc. SPIE 10092, 100921U (2017).
[Crossref]

J. K. King, B. K. Canfield, and L. M. Davis, “Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in Solution,” Appl. Phys. Lett. 103(4), 043102 (2013).
[Crossref]

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Cang, H.

H. Cang, C. S. Xu, and H. Yang, “Progress in single-molecule tracking spectroscopy,” Chem. Phys. Lett. 457(4-6), 285–291 (2008).
[Crossref]

Chang, H. C.

M. Kayci, H. C. Chang, and A. Radenovic, “Electron Spin Resonance of Nitrogen-Vacancy Defects Embedded in Single Nanodiamonds in an ABEL Trap,” Nano Lett. 14(9), 5335–5341 (2014).
[Crossref]

Cohen, A. E.

A. E. Cohen and A. P. Fields, “The Cat That Caught the Canary: What To Do with Single-Molecule Trapping,” ACS Nano 5(7), 5296–5299 (2011).
[Crossref]

A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in solution,” Appl. Phys. Lett. 86(9), 093109 (2005).
[Crossref]

A. H. Squires, A. E. Cohen, and W. E. Moerner, “Anti-Brownian Traps,” in Encyclopedia of Biophysics, G. Roberts and A. Watts, eds., (European Biophysical Societies, 2018).

Cummins, Z.

Z. Cummins, R. Probst, and B. Shapiro, “Electrokinetic tweezing: three-dimensional manipulation of microparticles by real-time imaging and flow control,” Lab Chip 13(20), 4040–4046 (2013).
[Crossref]

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

Dahlberg, P. D.

P. D. Dahlberg, H. Liu, N. C. M. Magdaong, R. E. Blankenship, A. H. Squires, and W. E. Moerner, “Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein,” Nat. Commun. 10(1), 1–12 (2019).
[Crossref]

Daniel, C.

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Davis, L. M.

B. K. Canfield and L. M. Davis, “Evaluation of Bessel beam machining for scalable fabrication of conductive channels through diamond,” Proc. SPIE 10092, 100921U (2017).
[Crossref]

J. A. Germann and L. M. Davis, “Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope,” Opt. Express 22(5), 5641–5650 (2014).
[Crossref]

J. K. King, B. K. Canfield, and L. M. Davis, “Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in Solution,” Appl. Phys. Lett. 103(4), 043102 (2013).
[Crossref]

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Dumont, M. E.

J. F. Lesoine, P. A. Venkataraman, P. C. Maloney, M. E. Dumont, and L. Novotny, “Nanochannel-Based Single Molecule Recycling,” Nano Lett. 12(6), 3273–3278 (2012).
[Crossref]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Eigen, M.

R. Rigler and M. Eigen, “Sorting single molecules: Application to diagnostics and evolutionary biotechnology,” Proc. Natl. Acad. Sci. U. S. A. 91(13), 5740–5747 (1994).
[Crossref]

Elson, E.

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref]

A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, “Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow,” J. Colloid Interface Sci. 261(2), 402–410 (2003).
[Crossref]

Fields, A. P.

A. E. Cohen and A. P. Fields, “The Cat That Caught the Canary: What To Do with Single-Molecule Trapping,” ACS Nano 5(7), 5296–5299 (2011).
[Crossref]

Fromm, D. P.

D. P. Fromm and W. E. Moerner, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[Crossref]

Germann, J.

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

Germann, J. A.

Gordon, R.

Y. Pang and R. Gordon, “Optical Trapping of a Single Protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Hofmeister, W. H.

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

Juan, M. L.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Kayci, M.

M. Kayci and A. Radenovic, “Single florescent nanodiamond in a three dimensional ABEL trap,” Sci. Rep. 5(1), 16669–5 (2015).
[Crossref]

M. Kayci, H. C. Chang, and A. Radenovic, “Electron Spin Resonance of Nitrogen-Vacancy Defects Embedded in Single Nanodiamonds in an ABEL Trap,” Nano Lett. 14(9), 5335–5341 (2014).
[Crossref]

King, J. K.

J. K. King, B. K. Canfield, and L. M. Davis, “Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in Solution,” Appl. Phys. Lett. 103(4), 043102 (2013).
[Crossref]

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref]

Kumar, R.

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

Lescano, I.

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

Lescano-Mendoza, I. P.

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Lesoine, J. F.

J. F. Lesoine, P. A. Venkataraman, P. C. Maloney, M. E. Dumont, and L. Novotny, “Nanochannel-Based Single Molecule Recycling,” Nano Lett. 12(6), 3273–3278 (2012).
[Crossref]

Li, D. Q.

A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, “Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow,” J. Colloid Interface Sci. 261(2), 402–410 (2003).
[Crossref]

Li, X.

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref]

Liu, H.

P. D. Dahlberg, H. Liu, N. C. M. Magdaong, R. E. Blankenship, A. H. Squires, and W. E. Moerner, “Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein,” Nat. Commun. 10(1), 1–12 (2019).
[Crossref]

Magdaong, N. C. M.

P. D. Dahlberg, H. Liu, N. C. M. Magdaong, R. E. Blankenship, A. H. Squires, and W. E. Moerner, “Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein,” Nat. Commun. 10(1), 1–12 (2019).
[Crossref]

Maloney, P. C.

J. F. Lesoine, P. A. Venkataraman, P. C. Maloney, M. E. Dumont, and L. Novotny, “Nanochannel-Based Single Molecule Recycling,” Nano Lett. 12(6), 3273–3278 (2012).
[Crossref]

Markov, D. A.

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Moerner, W. E.

P. D. Dahlberg, H. Liu, N. C. M. Magdaong, R. E. Blankenship, A. H. Squires, and W. E. Moerner, “Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein,” Nat. Commun. 10(1), 1–12 (2019).
[Crossref]

A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in solution,” Appl. Phys. Lett. 86(9), 093109 (2005).
[Crossref]

D. P. Fromm and W. E. Moerner, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[Crossref]

A. H. Squires, A. E. Cohen, and W. E. Moerner, “Anti-Brownian Traps,” in Encyclopedia of Biophysics, G. Roberts and A. Watts, eds., (European Biophysical Societies, 2018).

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref]

Novotny, L.

J. F. Lesoine, P. A. Venkataraman, P. C. Maloney, M. E. Dumont, and L. Novotny, “Nanochannel-Based Single Molecule Recycling,” Nano Lett. 12(6), 3273–3278 (2012).
[Crossref]

Pang, Y.

Y. Pang and R. Gordon, “Optical Trapping of a Single Protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Probst, R.

Z. Cummins, R. Probst, and B. Shapiro, “Electrokinetic tweezing: three-dimensional manipulation of microparticles by real-time imaging and flow control,” Lab Chip 13(20), 4040–4046 (2013).
[Crossref]

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

Qiang, H.

Quidant, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Radenovic, A.

M. Kayci and A. Radenovic, “Single florescent nanodiamond in a three dimensional ABEL trap,” Sci. Rep. 5(1), 16669–5 (2015).
[Crossref]

M. Kayci, H. C. Chang, and A. Radenovic, “Electron Spin Resonance of Nitrogen-Vacancy Defects Embedded in Single Nanodiamonds in an ABEL Trap,” Nano Lett. 14(9), 5335–5341 (2014).
[Crossref]

Raghavan, S. R.

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

Ren, L. Q.

A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, “Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow,” J. Colloid Interface Sci. 261(2), 402–410 (2003).
[Crossref]

Rigler, R.

R. Rigler and M. Eigen, “Sorting single molecules: Application to diagnostics and evolutionary biotechnology,” Proc. Natl. Acad. Sci. U. S. A. 91(13), 5740–5747 (1994).
[Crossref]

Robinson, W. N.

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Ropp, C.

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

Samson, P. C.

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref]

Shapiro, B.

Z. Cummins, R. Probst, and B. Shapiro, “Electrokinetic tweezing: three-dimensional manipulation of microparticles by real-time imaging and flow control,” Lab Chip 13(20), 4040–4046 (2013).
[Crossref]

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

Shen, G.

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Shen, P.

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

Sikorski, Z.

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Squires, A. H.

P. D. Dahlberg, H. Liu, N. C. M. Magdaong, R. E. Blankenship, A. H. Squires, and W. E. Moerner, “Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein,” Nat. Commun. 10(1), 1–12 (2019).
[Crossref]

A. H. Squires, A. E. Cohen, and W. E. Moerner, “Anti-Brownian Traps,” in Encyclopedia of Biophysics, G. Roberts and A. Watts, eds., (European Biophysical Societies, 2018).

Sze, A.

A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, “Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow,” J. Colloid Interface Sci. 261(2), 402–410 (2003).
[Crossref]

Terekhov, A.

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

Venkataraman, P. A.

J. F. Lesoine, P. A. Venkataraman, P. C. Maloney, M. E. Dumont, and L. Novotny, “Nanochannel-Based Single Molecule Recycling,” Nano Lett. 12(6), 3273–3278 (2012).
[Crossref]

Waks, E.

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

Wang, Q.

H. Wilson, R. S. Windeler, and Q. Wang, “Tetherless, precise and extended observation of single-molecule FRET in an Anti-Brownian trap,” Proc. SPIE 10884, 9 (2019).
[Crossref]

White, Y. V.

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

Wikswo, J. P.

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

Wilson, H.

H. Wilson, R. S. Windeler, and Q. Wang, “Tetherless, precise and extended observation of single-molecule FRET in an Anti-Brownian trap,” Proc. SPIE 10884, 9 (2019).
[Crossref]

Windeler, R. S.

H. Wilson, R. S. Windeler, and Q. Wang, “Tetherless, precise and extended observation of single-molecule FRET in an Anti-Brownian trap,” Proc. SPIE 10884, 9 (2019).
[Crossref]

Xu, C. S.

H. Cang, C. S. Xu, and H. Yang, “Progress in single-molecule tracking spectroscopy,” Chem. Phys. Lett. 457(4-6), 285–291 (2008).
[Crossref]

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref]

Yang, H.

H. Cang, C. S. Xu, and H. Yang, “Progress in single-molecule tracking spectroscopy,” Chem. Phys. Lett. 457(4-6), 285–291 (2008).
[Crossref]

ACS Nano (1)

A. E. Cohen and A. P. Fields, “The Cat That Caught the Canary: What To Do with Single-Molecule Trapping,” ACS Nano 5(7), 5296–5299 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in solution,” Appl. Phys. Lett. 86(9), 093109 (2005).
[Crossref]

J. K. King, B. K. Canfield, and L. M. Davis, “Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in Solution,” Appl. Phys. Lett. 103(4), 043102 (2013).
[Crossref]

Chem. Phys. Lett. (1)

H. Cang, C. S. Xu, and H. Yang, “Progress in single-molecule tracking spectroscopy,” Chem. Phys. Lett. 457(4-6), 285–291 (2008).
[Crossref]

J. Colloid Interface Sci. (1)

A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, “Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow,” J. Colloid Interface Sci. 261(2), 402–410 (2003).
[Crossref]

Lab Chip (1)

Z. Cummins, R. Probst, and B. Shapiro, “Electrokinetic tweezing: three-dimensional manipulation of microparticles by real-time imaging and flow control,” Lab Chip 13(20), 4040–4046 (2013).
[Crossref]

Nano Lett. (4)

C. Ropp, R. Probst, Z. Cummins, R. Kumar, A. J. Berglund, S. R. Raghavan, E. Waks, and B. Shapiro, “Manipulating Quantum Dots to Nanometer Precision by Control of Flow,” Nano Lett. 10(7), 2525–2530 (2010).
[Crossref]

J. F. Lesoine, P. A. Venkataraman, P. C. Maloney, M. E. Dumont, and L. Novotny, “Nanochannel-Based Single Molecule Recycling,” Nano Lett. 12(6), 3273–3278 (2012).
[Crossref]

Y. Pang and R. Gordon, “Optical Trapping of a Single Protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref]

M. Kayci, H. C. Chang, and A. Radenovic, “Electron Spin Resonance of Nitrogen-Vacancy Defects Embedded in Single Nanodiamonds in an ABEL Trap,” Nano Lett. 14(9), 5335–5341 (2014).
[Crossref]

Nat. Commun. (1)

P. D. Dahlberg, H. Liu, N. C. M. Magdaong, R. E. Blankenship, A. H. Squires, and W. E. Moerner, “Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein,” Nat. Commun. 10(1), 1–12 (2019).
[Crossref]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Nature (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref]

Opt. Express (1)

Proc. Natl. Acad. Sci. U. S. A. (1)

R. Rigler and M. Eigen, “Sorting single molecules: Application to diagnostics and evolutionary biotechnology,” Proc. Natl. Acad. Sci. U. S. A. 91(13), 5740–5747 (1994).
[Crossref]

Proc. SPIE (4)

L. M. Davis, B. K. Canfield, X. Li, W. H. Hofmeister, G. Shen, I. P. Lescano-Mendoza, B. W. Bomar, J. P. Wikswo, D. A. Markov, P. C. Samson, C. Daniel, Z. Sikorski, and W. N. Robinson, “Electrokinetic delivery of single fluorescent biomolecules in fluidic nanochannels,” Proc. SPIE 7035, 70350A (2008).
[Crossref]

L. M. Davis, Z. Sikorski, W. N. Robinson, P. Shen, X. Li, B. K. Canfield, I. Lescano, B. Bomar, W. H. Hofmeister, J. Germann, J. K. King, Y. V. White, and A. Terekhov, “Maximum-likelihood position sensing and actively controlled electrokinetic transport for single-molecule trapping,” Proc. SPIE 6862, 68620P (2008).
[Crossref]

B. K. Canfield and L. M. Davis, “Evaluation of Bessel beam machining for scalable fabrication of conductive channels through diamond,” Proc. SPIE 10092, 100921U (2017).
[Crossref]

H. Wilson, R. S. Windeler, and Q. Wang, “Tetherless, precise and extended observation of single-molecule FRET in an Anti-Brownian trap,” Proc. SPIE 10884, 9 (2019).
[Crossref]

Rev. Sci. Instrum. (1)

D. P. Fromm and W. E. Moerner, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[Crossref]

Sci. Rep. (1)

M. Kayci and A. Radenovic, “Single florescent nanodiamond in a three dimensional ABEL trap,” Sci. Rep. 5(1), 16669–5 (2015).
[Crossref]

Other (1)

A. H. Squires, A. E. Cohen, and W. E. Moerner, “Anti-Brownian Traps,” in Encyclopedia of Biophysics, G. Roberts and A. Watts, eds., (European Biophysical Societies, 2018).

Supplementary Material (3)

NameDescription
» Visualization 1       Three-dimensional electrokinetic trapping of 40 nm fluorescent nanoparticle in water
» Visualization 2       Three-dimensional electrokinetic trapping of 20 nm fluorescent nanoparticle in water
» Visualization 3       Three-dimensional electrokinetic trapping of single molecule of streptavidin-Alexa 647 in water

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Photograph of the center of the device, showing two 25 µm thick PDMS layers with crossed channels. (b) Photograph of assembled device, with 70 mm square aluminum baseplate screwed to the microscope’s 3D piezo stage. (c) Schematic giving channel dimensions: a = 100–110 µm, b = 500 µm, c = 1 mm, d = 5 mm. (d) Fabrication steps: 1. PDMS is spin coated 25 µm thick onto two 180 µm thick glass coverslips; 2. On each, a single channel is formed by removing the PDMS by dithered fs laser ablation under water; 3. In one, four fluid access through-holes are laser-machined using an annular path; 4. For both, uneven PDMS around edges is scraped off using a razor; 5. The PDMS is activated though oxygen-air plasma treatment, then the two coverslips are aligned and bonded together to form the cross channel device. The ‘*’ symbols in the side views indicate an expanded-scale detail of the channel region.
Fig. 2.
Fig. 2. Optical configuration.
Fig. 3.
Fig. 3. Images of 2, 2, and 4 reflected beams with coverslip positioned to Z = 1.6, −1.6, and 0 µm. The clearly visible camera pixels in the images are 16 µm square in size. The 3-pixel long scale bar is for image space. Object space is smaller by the optical magnification (83.3).
Fig. 4.
Fig. 4. Scaled sketches of the microfluidic device, laser beams, and fluorescence collection region.
Fig. 5.
Fig. 5. Frames from: (a) Visualization 1 (40 nm nanoparticle) with camera defocused; (b) Visualization 1 at t = 253.125 s; (c) Visualization 1, as the particle escapes, at t = 253.561 s; (d) Visualization 2 (20 nm nanoparticle); (e) Visualization 3 (streptavidin-Alexa 647). (The scale bar is for image space and applies to all images and the magnification is 83.3.)
Fig. 6.
Fig. 6. Photon counts summed over 20 cycles of 13.5 µs for each channel and in total during trapping of a single molecule of streptavidin-Alexa 647.

Tables (1)

Tables Icon

Table 1. A. Comparison of counts to determine octant or boundary location of particle. B. Voltage settings for each octant or boundary.

Metrics