Abstract

For photon-counting lidars, the classical theoretical rate of the noise photons reflected by the Earth’s surface is under the assumption that the Earth’s surface is a Lambert reflector, which is obviously not suitable for the water surface. In this paper, the specular reflection theorem is introduced to derive an analytical expression of noise photons arising from the water surface reflection. The verification uses the mean noise rate over water surface, calculated by the raw data photons measured by the Multiple Altimeter Beam Experiment Lidar (MABEL) near the East Coast in the North Carolina, USA. The measured result coincides well with the theoretical noise rate, as both of them equal to 8.4 kHz. In addition, the background noise model also indicates that the background noise rate over the land surface is one order of magnitude larger than that over the water surface, in certain conditions. Hence, a new method, based on the noise rates, is proposed for the Earth’s surface type classification and it performs well in distinguishing all water surfaces from land surfaces in the coastal area. For space-borne or airborne photon-counting lidars, this paper not only fills the gap of theoretical rate of noise photons from the water surface but also provides a fast and effective method to classify the Earth’s surface types. This method is also suitable for distinguishing ice and water in high-latitude sea-ice covered regions, which is the area of most interest of the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detecting the ocean surface from the raw data of the MABEL photon-counting lidar

Yue Ma, Rui Liu, Song Li, Wenhao Zhang, Fanlin Yang, and Dianpeng Su
Opt. Express 26(19) 24752-24762 (2018)

Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data

Sheng Nie, Cheng Wang, Xiaohuan Xi, Shezhou Luo, Guoyuan Li, Jinyan Tian, and Hongtao Wang
Opt. Express 26(10) A520-A540 (2018)

Theoretical surface type classifier based on a waveform model of a satellite laser altimeter and its performance in the north of Greenland

Song Li, Wenhao Zhang, Yue Ma, Xiao Hua Wang, Fanlin Yang, and Dianpeng Su
Appl. Opt. 57(10) 2482-2489 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express 23(19), 24962–24973 (2015).
    [Crossref]
  2. Y. Ma, S. Li, W. Zhang, Z. Zhang, R. Liu, and X. H. Wang, “Theoretical ranging performance model and range walk error correction for photon-counting lidars with multiple detectors,” Opt. Express 26(12), 15924–15934 (2018).
    [Crossref]
  3. T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
    [Crossref]
  4. L. A. Magruder and K. M. Brunt, “Performance Analysis of Airborne Photon- Counting Lidar Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 56(5), 2911–2918 (2018).
    [Crossref]
  5. K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission,” IEEE Geosci. Remote Sens. Lett. 11(5), 935–939 (2014).
    [Crossref]
  6. X. Wang, C. Glennie, and Z. Pan, “An Adaptive Ellipsoid Searching Filter for Airborne Single-Photon Lidar,” IEEE Geosci. Remote Sens. Lett. 14(8), 1258–1262 (2017).
    [Crossref]
  7. U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
    [Crossref]
  8. R. A. Barton-Grimley, J. P. Thayer, and M. Hayman, “Nonlinear target count rate estimation in single-photon lidar due to first photon bias,” Opt. Lett. 44(5), 1249–1252 (2019).
    [Crossref]
  9. Y. Ma, R. Liu, S. Li, W. Zhang, F. Yang, and D. Su, “Detecting the ocean surface from the raw data of the MABEL photon-counting lidar,” Opt. Express 26(19), 24752–24762 (2018).
    [Crossref]
  10. Y. Ma, W. Zhang, J. Sun, G. Li, X. Wang, S. Li, and N. Xu, “Photon-Counting Lidar: An Adaptive Signal Detection Method for Different Land Cover Types in Coastal Areas,” Remote Sens. 11(4), 471 (2019).
    [Crossref]
  11. R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
    [Crossref]
  12. R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
    [Crossref]
  13. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
    [Crossref]
  14. K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, and M. S. Moussavi, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
    [Crossref]
  15. J. J. Degnan, “Unified Approach to Photon-Counting Microlaser Rangers, Transponders, and Altimeters,” Surv. Geophys. 22(5/6), 431–447 (2001).
    [Crossref]
  16. R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(L22), S10 (2005).
    [Crossref]
  17. Y. Ma, S. Li, W. Zhang, Z. Zhang, H. Zhou, and M. Xin, “Waveform width of a satellite laser altimeter illuminating on the sea surface,” Appl. Opt. 56(22), 6130–6137 (2017).
    [Crossref]
  18. Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
    [Crossref]
  19. J. L. Bufton, F. E. Hoge, and R. N. Swift, “Airborne measurements of laser backscatter from the ocean surface,” Appl. Opt. 22(17), 2603–2618 (1983).
    [Crossref]
  20. B. M. Tsai and C. S. Gardner, “Remote sensing of sea state using laser altimeters,” Appl. Opt. 21(21), 3932–3940 (1982).
    [Crossref]
  21. R. Frouin, D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, “A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface,” J. Geophys. Res. 94(C7), 9731–9742 (1989).
    [Crossref]
  22. T. A. Herring and K. Quinn, Atmospheric delay correction to GLAS laser altimeter ranges. GLAS Algorithm Theoretical Basis Document Version 2.1 (Massachusetts Institute of Technology, USA, 2001).
  23. M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Coastal Res. 76(sp1), 44–55 (2016).
    [Crossref]
  24. MABEL lidar data, MABEL ICESat-2 simulation data, Version 9 (NASA Goddard Space Flight Center, USA, 2014).
  25. I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76(5), 577–589 (2004).
    [Crossref]

2019 (2)

Y. Ma, W. Zhang, J. Sun, G. Li, X. Wang, S. Li, and N. Xu, “Photon-Counting Lidar: An Adaptive Signal Detection Method for Different Land Cover Types in Coastal Areas,” Remote Sens. 11(4), 471 (2019).
[Crossref]

R. A. Barton-Grimley, J. P. Thayer, and M. Hayman, “Nonlinear target count rate estimation in single-photon lidar due to first photon bias,” Opt. Lett. 44(5), 1249–1252 (2019).
[Crossref]

2018 (3)

2017 (3)

X. Wang, C. Glennie, and Z. Pan, “An Adaptive Ellipsoid Searching Filter for Airborne Single-Photon Lidar,” IEEE Geosci. Remote Sens. Lett. 14(8), 1258–1262 (2017).
[Crossref]

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Y. Ma, S. Li, W. Zhang, Z. Zhang, H. Zhou, and M. Xin, “Waveform width of a satellite laser altimeter illuminating on the sea surface,” Appl. Opt. 56(22), 6130–6137 (2017).
[Crossref]

2016 (3)

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, and M. S. Moussavi, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Coastal Res. 76(sp1), 44–55 (2016).
[Crossref]

2015 (1)

2014 (3)

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission,” IEEE Geosci. Remote Sens. Lett. 11(5), 935–939 (2014).
[Crossref]

U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

2008 (1)

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

2005 (1)

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(L22), S10 (2005).
[Crossref]

2004 (1)

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76(5), 577–589 (2004).
[Crossref]

2002 (1)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
[Crossref]

2001 (1)

J. J. Degnan, “Unified Approach to Photon-Counting Microlaser Rangers, Transponders, and Altimeters,” Surv. Geophys. 22(5/6), 431–447 (2001).
[Crossref]

1989 (1)

R. Frouin, D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, “A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface,” J. Geophys. Res. 94(C7), 9731–9742 (1989).
[Crossref]

1983 (1)

1982 (1)

Abdalati, W.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Amundson, J. M.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, and M. S. Moussavi, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

Andreas, A.

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76(5), 577–589 (2004).
[Crossref]

Baker, K. S.

R. Frouin, D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, “A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface,” J. Geophys. Res. 94(C7), 9731–9742 (1989).
[Crossref]

Barton-Grimley, R. A.

Brenner, A.

U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Brunt, K.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Coastal Res. 76(sp1), 44–55 (2016).
[Crossref]

Brunt, K. M.

L. A. Magruder and K. M. Brunt, “Performance Analysis of Airborne Photon- Counting Lidar Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 56(5), 2911–2918 (2018).
[Crossref]

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, and M. S. Moussavi, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission,” IEEE Geosci. Remote Sens. Lett. 11(5), 935–939 (2014).
[Crossref]

Bufton, J. L.

Cisewski, M.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Contini, D.

Cook, W. B.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Coastal Res. 76(sp1), 44–55 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Csatho, B.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Cunningham, G. F.

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Degnan, J. J.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
[Crossref]

J. J. Degnan, “Unified Approach to Photon-Counting Microlaser Rangers, Transponders, and Altimeters,” Surv. Geophys. 22(5/6), 431–447 (2001).
[Crossref]

Farrell, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Field, C.

U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Flittner, D.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Fricker, H.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Frouin, R.

R. Frouin, D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, “A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface,” J. Geophys. Res. 94(C7), 9731–9742 (1989).
[Crossref]

Gardner, A.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Gardner, C. S.

Gautier, C.

R. Frouin, D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, “A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface,” J. Geophys. Res. 94(C7), 9731–9742 (1989).
[Crossref]

Gibson, G.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Glennie, C.

X. Wang, C. Glennie, and Z. Pan, “An Adaptive Ellipsoid Searching Filter for Airborne Single-Photon Lidar,” IEEE Geosci. Remote Sens. Lett. 14(8), 1258–1262 (2017).
[Crossref]

Hancock, D. W.

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Harding, D.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Hayman, M.

Herring, T. A.

T. A. Herring and K. Quinn, Atmospheric delay correction to GLAS laser altimeter ranges. GLAS Algorithm Theoretical Basis Document Version 2.1 (Massachusetts Institute of Technology, USA, 2001).

Herzfeld, U. C.

U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Hoffmann, J.

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

Hoge, F. E.

Hostetler, C.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Hu, Y.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Jasinski, M.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Jasinski, M. F.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Coastal Res. 76(sp1), 44–55 (2016).
[Crossref]

Kavanaugh, J. L.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, and M. S. Moussavi, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

Kwok, R.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Lancaster, R. S.

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(L22), S10 (2005).
[Crossref]

Li, G.

Y. Ma, W. Zhang, J. Sun, G. Li, X. Wang, S. Li, and N. Xu, “Photon-Counting Lidar: An Adaptive Signal Detection Method for Different Land Cover Types in Coastal Areas,” Remote Sens. 11(4), 471 (2019).
[Crossref]

Li, S.

Lin, B.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Lingner, D. W.

R. Frouin, D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, “A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface,” J. Geophys. Res. 94(C7), 9731–9742 (1989).
[Crossref]

Liu, R.

Lubin, D.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Lussana, R.

Luthcke, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Ma, Y.

Magruder, L.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Magruder, L. A.

L. A. Magruder and K. M. Brunt, “Performance Analysis of Airborne Photon- Counting Lidar Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 56(5), 2911–2918 (2018).
[Crossref]

Markus, T.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission,” IEEE Geosci. Remote Sens. Lett. 11(5), 935–939 (2014).
[Crossref]

Martino, A.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

McDonald, B. W.

U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Mora, A. D.

Morison, J.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

Moussavi, M. S.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, and M. S. Moussavi, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

Nelson, R.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Neuenschwander, A.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Neumann, T.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Neumann, T. A.

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, and M. S. Moussavi, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission,” IEEE Geosci. Remote Sens. Lett. 11(5), 935–939 (2014).
[Crossref]

Omar, A.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Ondrusek, M.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Coastal Res. 76(sp1), 44–55 (2016).
[Crossref]

Palm, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Palm, S. P.

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(L22), S10 (2005).
[Crossref]

Pan, Z.

X. Wang, C. Glennie, and Z. Pan, “An Adaptive Ellipsoid Searching Filter for Airborne Single-Photon Lidar,” IEEE Geosci. Remote Sens. Lett. 14(8), 1258–1262 (2017).
[Crossref]

Pelon, J.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Popescu, S.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Quinn, K.

T. A. Herring and K. Quinn, Atmospheric delay correction to GLAS laser altimeter ranges. GLAS Algorithm Theoretical Basis Document Version 2.1 (Massachusetts Institute of Technology, USA, 2001).

Reda, I.

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76(5), 577–589 (2004).
[Crossref]

Santa-Maria, M.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Schutz, B. E.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Shum, C.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Smith, B.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Smith, R. C.

R. Frouin, D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, “A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface,” J. Geophys. Res. 94(C7), 9731–9742 (1989).
[Crossref]

Spinhirne, J. D.

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(L22), S10 (2005).
[Crossref]

Stamnes, K.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Stengel, E.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Coastal Res. 76(sp1), 44–55 (2016).
[Crossref]

Stoll, J. D.

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Coastal Res. 76(sp1), 44–55 (2016).
[Crossref]

Su, D.

Sun, J.

Y. Ma, W. Zhang, J. Sun, G. Li, X. Wang, S. Li, and N. Xu, “Photon-Counting Lidar: An Adaptive Signal Detection Method for Different Land Cover Types in Coastal Areas,” Remote Sens. 11(4), 471 (2019).
[Crossref]

Sun, W.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Swift, R. N.

Thayer, J. P.

Tosi, A.

Trepte, C.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Tsai, B. M.

Vaughan, M.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Villa, F.

Wallin, B. F.

U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

Walsh, K. M.

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission,” IEEE Geosci. Remote Sens. Lett. 11(5), 935–939 (2014).
[Crossref]

Wang, X.

Y. Ma, W. Zhang, J. Sun, G. Li, X. Wang, S. Li, and N. Xu, “Photon-Counting Lidar: An Adaptive Signal Detection Method for Different Land Cover Types in Coastal Areas,” Remote Sens. 11(4), 471 (2019).
[Crossref]

X. Wang, C. Glennie, and Z. Pan, “An Adaptive Ellipsoid Searching Filter for Airborne Single-Photon Lidar,” IEEE Geosci. Remote Sens. Lett. 14(8), 1258–1262 (2017).
[Crossref]

Wang, X. H.

Weimer, C.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Winker, D.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Wu, D.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Xin, M.

Xu, N.

Y. Ma, W. Zhang, J. Sun, G. Li, X. Wang, S. Li, and N. Xu, “Photon-Counting Lidar: An Adaptive Signal Detection Method for Different Land Cover Types in Coastal Areas,” Remote Sens. 11(4), 471 (2019).
[Crossref]

Yang, F.

Yang, P.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Yang, Y.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Zappa, F.

Zhang, W.

Zhang, Z.

Zhou, H.

Zwally, J.

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

Appl. Opt. (3)

Atmos. Chem. Phys. (1)

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, D. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8(13), 3593–3601 (2008).
[Crossref]

Cryosphere (1)

K. M. Brunt, T. A. Neumann, J. M. Amundson, J. L. Kavanaugh, and M. S. Moussavi, “MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development,” Cryosphere 10(4), 1707–1719 (2016).
[Crossref]

Geophys. Res. Lett. (1)

R. S. Lancaster, J. D. Spinhirne, and S. P. Palm, “Laser pulse reflectance of the ocean surface from the GLAS satellite lidar,” Geophys. Res. Lett. 32(L22), S10 (2005).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (2)

K. M. Brunt, T. A. Neumann, K. M. Walsh, and T. Markus, “Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission,” IEEE Geosci. Remote Sens. Lett. 11(5), 935–939 (2014).
[Crossref]

X. Wang, C. Glennie, and Z. Pan, “An Adaptive Ellipsoid Searching Filter for Airborne Single-Photon Lidar,” IEEE Geosci. Remote Sens. Lett. 14(8), 1258–1262 (2017).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

U. C. Herzfeld, B. W. McDonald, B. F. Wallin, T. A. Neumann, T. Markus, A. Brenner, and C. Field, “Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 52(4), 2109–2125 (2014).
[Crossref]

L. A. Magruder and K. M. Brunt, “Performance Analysis of Airborne Photon- Counting Lidar Data in Preparation for the ICESat-2 Mission,” IEEE Trans. Geosci. Remote Sens. 56(5), 2911–2918 (2018).
[Crossref]

J. Atmospheric Ocean. Technol. (1)

R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham, “Profiling Sea Ice with a Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Atmospheric Ocean. Technol. 31(5), 1151–1168 (2014).
[Crossref]

J. Coastal Res. (1)

M. F. Jasinski, J. D. Stoll, W. B. Cook, M. Ondrusek, E. Stengel, and K. Brunt, “Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL),” J. Coastal Res. 76(sp1), 44–55 (2016).
[Crossref]

J. Geodyn. (1)

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
[Crossref]

J. Geophys. Res. (1)

R. Frouin, D. W. Lingner, C. Gautier, K. S. Baker, and R. C. Smith, “A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface,” J. Geophys. Res. 94(C7), 9731–9742 (1989).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Remote Sens. (1)

Y. Ma, W. Zhang, J. Sun, G. Li, X. Wang, S. Li, and N. Xu, “Photon-Counting Lidar: An Adaptive Signal Detection Method for Different Land Cover Types in Coastal Areas,” Remote Sens. 11(4), 471 (2019).
[Crossref]

Remote Sens. Environ. (2)

T. Markus, T. Neumann, A. Martino, W. Abdalati, K. Brunt, B. Csatho, S. Farrell, H. Fricker, A. Gardner, D. Harding, M. Jasinski, R. Kwok, L. Magruder, D. Lubin, S. Luthcke, J. Morison, R. Nelson, A. Neuenschwander, S. Palm, S. Popescu, C. Shum, B. E. Schutz, B. Smith, Y. Yang, and J. Zwally, “The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation,” Remote Sens. Environ. 190, 260–273 (2017).
[Crossref]

R. Kwok, G. F. Cunningham, J. Hoffmann, and T. Markus, “Testing the ice-water discrimination and freeboard retrieval algorithms for the ICESat-2 mission,” Remote Sens. Environ. 183, 13–25 (2016).
[Crossref]

Sol. Energy (1)

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy 76(5), 577–589 (2004).
[Crossref]

Surv. Geophys. (1)

J. J. Degnan, “Unified Approach to Photon-Counting Microlaser Rangers, Transponders, and Altimeters,” Surv. Geophys. 22(5/6), 431–447 (2001).
[Crossref]

Other (2)

MABEL lidar data, MABEL ICESat-2 simulation data, Version 9 (NASA Goddard Space Flight Center, USA, 2014).

T. A. Herring and K. Quinn, Atmospheric delay correction to GLAS laser altimeter ranges. GLAS Algorithm Theoretical Basis Document Version 2.1 (Massachusetts Institute of Technology, USA, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Geometry of the solar irradiance that is reflected by the land surface and received by a photon-counting lidar.
Fig. 2.
Fig. 2. Schematic of the geometric constraints for the sunlight to be reflected into the receiver FOV by a sloping water surface. The origin of the coordinate coincides with the center of the receiver FOV, and the Z-axis points to the zenith direction. On the water surface, a polar coordinate is used with the distance ρ between the FOV center and a given point on water surface and the azimuth angle θ.
Fig. 3.
Fig. 3. Solar-induced background noise rates from different sources. (a) Curves of background noise from the atmosphere fA versus the solar zenith angle θs when the atmospheric transmittance Ta equals to 0.7, 0.8, and 0.9. (b) Curves of background noise from the land surface fL versus the solar zenith angle θs when the land surface reflectivity βL equals to 0.3, 0.5, and 0.7. The slope of the land surface is set as 5 degrees and the azimuth angle is 0 degree. (c) Curves of background noise from the water surface fw versus the solar zenith angle θs when the wind speed above water surface w equals to 5, 10, and 15 m/s.
Fig. 4.
Fig. 4. Ratio of noise rate P1 (using solid blue curve) and the ratio of noise rate P2 (using dashed red curve) vary with solar zenith angles with the atmospheric transmittance Ta of 0.8, the land surface reflectivity βL of 0.5, the wind speed of w = 8m/s, the land slope σL of 5 degrees, and the azimuth angle φ of 0 degree.
Fig. 5.
Fig. 5. Contour maps of the ratio P and the line colors represent different values of P. (a) The ratio P versus the combination of the solar zenith angle θs and the atmospheric transmittance Ta. The abscissa and vertical ordinate value correspond to the solar zenith angle θs and the atmospheric transmittance Ta, respectively. (b) The ratio P versus with the combination of the solar zenith angle θs and the land surface reflectivity βL. The vertical ordinate value corresponds to the land surface reflectivity βL.
Fig. 6.
Fig. 6. Flow chat of the land-water classification method based on the theoretical background noise models.
Fig. 7.
Fig. 7. (a) MABEL trajectory (using a red solid curve) on high-resolution satellite image on 21/09/2012 near the east coast of North Carolina, USA. The location of the Oregon Inlet Marina Station at [35° 47.7’ N, 75° 32.9’ W] is marked by an orange filled circle. The MABEL flight trajectory was first over the Atlantic Ocean; then flew over the banks that separate the Croatan Sound from the Atlantic Ocean; entered into the Croatan Sound that has many islands and shoals; crossed the vegetation covered land (was once over a slim lake in the middle of this route); entered into the East Lake; and finally was over another vegetation covered land. (b) Green points correspond to raw data photons captured by the MABEL and the vertical red dashed curves correspond to the classified boundary between the water and land surface. It should be noted that the latitude and longitude coordinates of all data photons are transformed into the along-track distance. The origin of the along-track distance is set as the beginning of the MABEL trajectory (the east end of the red curve in Fig. 7(a) in the map).
Fig. 8.
Fig. 8. (a) The theoretical noise rate fnW over the water surface with different wind speeds w (using blue solid curve) versus the theoretical background noise above the lands fnL with different reflectivity βL (using dashed red curve). The atmospheric transmittance Ta equals to 0.9. (b) The contour map of ratio P varies with different land and vegetation reflectivity βL and atmospheric transmittances Ta.
Fig. 9.
Fig. 9. (a) High-resolution image of the enlarged along-track segment between 3 km and 11 km in Fig. 7(b). In this enlarged segment, the MABEL had flown over land surface for six times (that are marked by the white numbers). (b) Distribution of the MABEL raw data photon of the enlarged along-track segment between 3 km and 11 km in Fig. 7(b). The proposed classifier has successfully detected the land surfaces for six times (that are marked by the blue numbers) and agrees well with the land cover captured by the high-resolution image in Fig. 9(a).

Tables (3)

Tables Icon

Table 1. Instrument parameters of the MABEL.

Tables Icon

Table 2. Parameters of the location, date, and time when MABEL flew over the experimental area.

Tables Icon

Table 3. Comparison between the theoretical and statistical noise rate.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f L = N λ 0 ( Δ λ ) π ( z θ r ) 2 η A r h ν π z 2 β L T a 1 + sec θ s cos ψ = N λ 0 ( Δ λ ) θ r 2 η A r h ν β L T a 1 + sec θ s cos ψ
f A = N λ 0 ( Δ λ ) θ r 2 η A r h ν 1 T a 1 + sec θ s 4 ( 1 + sec θ s )
cos ψ = c o s σ L c o s θ s + sin σ L sin θ s cos φ ,
{ ( π 2 θ sr ) + 2 ω + ( π 2 θ s ) = π ω + ( π 2 θ s ) + σ W = π 2
{ s 2 = 0.146 w , ( w < 7 m / s ) s 2 = 0.003 + 0.00512 w , ( 7 w < 13.3 m / s ) s 2 = 0.138 log 10 w 0.084 , ( w 13.3 m / s )
β W ( ρ ) = δ [ 1 + arctan 2 ( ρ z ) ] 2 4 π s 2 exp ( tan 2 σ W s 2 ) = δ [ 1 + arctan 2 ( ρ z ) ] 2 4 π s 2 exp [ ( θ s ρ z ) 2 4 s 2 ]
f W = N λ 0 ( Δ λ ) η A r z 2 h ν T a 1 + sec θ s 0 2 π 0 z θ r β W ( ρ ) ρ d ρ d θ = N λ 0 ( Δ λ ) η A r δ 4 π s 2 z 2 h ν T a 1 + sec θ s 0 2 π 0 z θ r ( 1 + arctan 2 ( ρ z ) ) 2 exp [ ( θ s ρ z ) 2 4 s 2 ] ρ d ρ d θ N λ 0 ( Δ λ ) η A r δ 2 s h ν T a 1 + sec θ s { 2 s { exp ( θ s 2 4 s 2 ) exp [ ( θ r θ s ) 2 4 s 2 ] } + π θ s [ e r f ( θ s 2 s ) + e r f ( θ r θ s 2 s ) ] } ,
P 1 = f L f W = 2 s θ r 2 β L cos ψ δ { 2 s { exp ( θ s 2 4 s 2 ) exp [ ( θ r θ s z ) 2 4 s 2 ] } + π θ s [ erf ( θ s 2 s ) + erf ( θ r θ s 2 s ) ] } .
P 2 = f A f W = s θ r 2 ( 1 T a 1  +  sec θ s ) 2 δ T a 1  +  sec θ s ( 1  +  sec θ s ) { 2 s { exp ( θ s 2 4 s 2 ) exp [ ( θ r θ s z ) 2 4 s 2 ] } + π θ s [ erf ( θ s 2 s ) + erf ( θ r θ s 2 s ) ] } .
P = f nL f nW = f L + f A f W  +  f A = 2 s θ r 2 [ β L T a 1  +  sec θ s cos ψ + 1 T a 1  +  sec θ s 4 ( T a 1  +  sec θ s ) ] δ T a 1  +  sec θ s { 2 s { exp ( θ s 2 4 s 2 ) exp [ ( θ r θ s z ) 2 4 s 2 ] } + π θ s [ erf ( θ s 2 s ) + erf ( θ r θ s 2 s ) ] } + 1 T a 1  +  sec θ s 4 ( T a 1  +  sec θ s ) .

Metrics