Abstract

This paper proposes a distributed acoustic sensor (DAS) scheme, which is immune to the fading problem and can overcome the trade-off existing in traditional ϕ-OTDR between spatial resolution and sensing distance. An optical chirped pulse and non-matched filter method are used, and hence the spatial resolution is mainly determined by the bandwidth of the chirped pulse and non-matched ratio, rather than pulse duration. The Rayleigh interference pattern method is adopted here to quantitatively demodulate strain distribution along the whole sensing fiber, so there is no fading problem, which is a serious problem in the Rayleigh phase method. In proof-of-concept experiments, a DAS with 2-m spatial resolution and 10-km distance range is demonstrated. The response bandwidth of strain is 5 kHz, only limited by the fiber length. A -scale strain signal is detected at the far end of fiber with a high SNR of 35 dB.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution

Dian Chen, Qingwen Liu, and Zuyuan He
Opt. Express 26(13) 16138-16146 (2018)

Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR

Dian Chen, Qingwen Liu, and Zuyuan He
Opt. Express 25(7) 8315-8325 (2017)

High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses

Jingdong Zhang, Tao Zhu, Huan Zhou, Shihong Huang, Min Liu, and Wei Huang
Opt. Express 24(24) 27482-27493 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
    [Crossref] [PubMed]
  2. M. M. Molenaar, D. Hill, P. Webster, E. Fidan, and B. Birch, “First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics,” SPE Drill. & Complet. 27, 32–38 (2013).
    [Crossref]
  3. J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
    [Crossref]
  4. F. Peng, N. Duan, Y.-J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26, 2055–2057 (2014).
    [Crossref]
  5. Y. Dong, X. Chen, E. Liu, C. Fu, H. Zhang, and Z. Lu, “Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer,” Appl. Opt. 55, 7810–7815 (2016).
    [Crossref] [PubMed]
  6. X. Mei, F. Pang, H. Liu, G. Yu, Y. Shao, T. Qian, C. Mou, L. Lv, and T. Wang, “Fast coarse-fine locating method for phi-otdr,” Opt. Express 26, 2659–2667 (2018).
    [Crossref] [PubMed]
  7. Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent phi-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24, 853–858 (2016).
    [Crossref] [PubMed]
  8. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Light. Technol. 27, 1142–1146 (2009).
    [Crossref]
  9. S. Liehr, S. Münzenberger, and K. Krebber, “Wavelength-scanning coherent otdr for dynamic high strain resolution sensing,” Opt. Express 26, 10573 (2018).
    [Crossref] [PubMed]
  10. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
    [Crossref] [PubMed]
  11. M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Statistical analysis of SNR in chirped-pulse ϕ OTDR,” in 26th International Conference on Optical Fiber Sensors, (Optical Society of America, 2018), p. WF16.
    [Crossref]
  12. M. R. Fernandez-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Light. Technol. 36, 5690–5696 (2018).
    [Crossref]
  13. H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Opt. Lett. 41, 5648–5651 (2016).
    [Crossref] [PubMed]
  14. Q. Liu, L. Liu, X. Fan, J. Du, L. Ma, and Z. He, “A novel optical fiber reflectometry technique with high spatial resolution and long distance,” in Asia Communications and Photonics Conference 2014, (Optical Society of America, 2014), p. AW3I.2.
    [Crossref]
  15. S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Opt. Express 23, 33301–33309 (2015).
    [Crossref]
  16. Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23, 25988–25995 (2015).
    [Crossref] [PubMed]
  17. D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio,” J. Light. Technol. 35, 2037–2043 (2017).
    [Crossref]
  18. D. Chen, Q. Liu, and Z. He, “Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR,” Opt. Express 25, 8315–8325 (2017).
    [Crossref] [PubMed]
  19. D. Chen, Q. Liu, and Z. He, “High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution,” Opt. Express 26, 16138–16146 (2018).
    [Crossref] [PubMed]
  20. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in rayleigh backscattering measurement for optical fibers and components,” J. Light. Technol. 10, 982–987 (1992).
    [Crossref]
  21. M. R. Fernandez-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Light. Technol. 36, 979–985 (2018).
    [Crossref]
  22. J. Chen, Q. Liu, X. Fan, and Z. He, “Ultrahigh resolution optical fiber strain sensor using dual pound–drever–hall feedback loops,” Opt. Lett. 41, 1066–1069 (2016).
    [Crossref] [PubMed]
  23. J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J. 6, 1–8 (2014).
    [Crossref]

2018 (7)

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

M. R. Fernandez-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Light. Technol. 36, 5690–5696 (2018).
[Crossref]

M. R. Fernandez-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Light. Technol. 36, 979–985 (2018).
[Crossref]

X. Mei, F. Pang, H. Liu, G. Yu, Y. Shao, T. Qian, C. Mou, L. Lv, and T. Wang, “Fast coarse-fine locating method for phi-otdr,” Opt. Express 26, 2659–2667 (2018).
[Crossref] [PubMed]

S. Liehr, S. Münzenberger, and K. Krebber, “Wavelength-scanning coherent otdr for dynamic high strain resolution sensing,” Opt. Express 26, 10573 (2018).
[Crossref] [PubMed]

D. Chen, Q. Liu, and Z. He, “High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution,” Opt. Express 26, 16138–16146 (2018).
[Crossref] [PubMed]

2017 (2)

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio,” J. Light. Technol. 35, 2037–2043 (2017).
[Crossref]

D. Chen, Q. Liu, and Z. He, “Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR,” Opt. Express 25, 8315–8325 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (2)

2014 (2)

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

F. Peng, N. Duan, Y.-J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26, 2055–2057 (2014).
[Crossref]

2013 (1)

M. M. Molenaar, D. Hill, P. Webster, E. Fidan, and B. Birch, “First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics,” SPE Drill. & Complet. 27, 32–38 (2013).
[Crossref]

2009 (1)

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Light. Technol. 27, 1142–1146 (2009).
[Crossref]

1992 (1)

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in rayleigh backscattering measurement for optical fibers and components,” J. Light. Technol. 10, 982–987 (1992).
[Crossref]

Aghayev, R.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Ahlen, C. H.

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

Bao, X.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Birch, B.

M. M. Molenaar, D. Hill, P. Webster, E. Fidan, and B. Birch, “First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics,” SPE Drill. & Complet. 27, 32–38 (2013).
[Crossref]

Blanck, H.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Chen, D.

Chen, J.

Chen, L.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Chen, X.

Clarke, A.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Costa, L.

M. R. Fernandez-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Light. Technol. 36, 5690–5696 (2018).
[Crossref]

M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Statistical analysis of SNR in chirped-pulse ϕ OTDR,” in 26th International Conference on Optical Fiber Sensors, (Optical Society of America, 2018), p. WF16.
[Crossref]

De Pauw, G.

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

De Smet, F.

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

Dong, Y.

Du, J.

Q. Liu, L. Liu, X. Fan, J. Du, L. Ma, and Z. He, “A novel optical fiber reflectometry technique with high spatial resolution and long distance,” in Asia Communications and Photonics Conference 2014, (Optical Society of America, 2014), p. AW3I.2.
[Crossref]

Duan, N.

F. Peng, N. Duan, Y.-J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26, 2055–2057 (2014).
[Crossref]

Eyal, A.

Fan, M.

Fan, X.

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio,” J. Light. Technol. 35, 2037–2043 (2017).
[Crossref]

J. Chen, Q. Liu, X. Fan, and Z. He, “Ultrahigh resolution optical fiber strain sensor using dual pound–drever–hall feedback loops,” Opt. Lett. 41, 1066–1069 (2016).
[Crossref] [PubMed]

Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23, 25988–25995 (2015).
[Crossref] [PubMed]

S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Opt. Express 23, 33301–33309 (2015).
[Crossref]

Q. Liu, L. Liu, X. Fan, J. Du, L. Ma, and Z. He, “A novel optical fiber reflectometry technique with high spatial resolution and long distance,” in Asia Communications and Photonics Conference 2014, (Optical Society of America, 2014), p. AW3I.2.
[Crossref]

Fernandez-Ruiz, M. R.

M. R. Fernandez-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Light. Technol. 36, 5690–5696 (2018).
[Crossref]

M. R. Fernandez-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Light. Technol. 36, 979–985 (2018).
[Crossref]

Fernández-Ruiz, M. R.

M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Statistical analysis of SNR in chirped-pulse ϕ OTDR,” in 26th International Conference on Optical Fiber Sensors, (Optical Society of America, 2018), p. WF16.
[Crossref]

Fidan, E.

M. M. Molenaar, D. Hill, P. Webster, E. Fidan, and B. Birch, “First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics,” SPE Drill. & Complet. 27, 32–38 (2013).
[Crossref]

Fu, C.

Gabai, H.

Garcia-Ruiz, A.

M. R. Fernandez-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Light. Technol. 36, 979–985 (2018).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

Gonzalez-Herraez, M.

M. R. Fernandez-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Light. Technol. 36, 979–985 (2018).
[Crossref]

M. R. Fernandez-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Light. Technol. 36, 5690–5696 (2018).
[Crossref]

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Statistical analysis of SNR in chirped-pulse ϕ OTDR,” in 26th International Conference on Optical Fiber Sensors, (Optical Society of America, 2018), p. WF16.
[Crossref]

Guillen, P. C.

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

He, Z.

Henninges, J.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Hersir, G. P.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Hill, D.

M. M. Molenaar, D. Hill, P. Webster, E. Fidan, and B. Birch, “First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics,” SPE Drill. & Complet. 27, 32–38 (2013).
[Crossref]

Hogari, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Light. Technol. 27, 1142–1146 (2009).
[Crossref]

Horiguchi, T.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in rayleigh backscattering measurement for optical fibers and components,” J. Light. Technol. 10, 982–987 (1992).
[Crossref]

Imahama, M.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Light. Technol. 27, 1142–1146 (2009).
[Crossref]

Jousset, P.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Koyamada, Y.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Light. Technol. 27, 1142–1146 (2009).
[Crossref]

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in rayleigh backscattering measurement for optical fibers and components,” J. Light. Technol. 10, 982–987 (1992).
[Crossref]

Krawczyk, C. M.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Krebber, K.

Kubota, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Light. Technol. 27, 1142–1146 (2009).
[Crossref]

Li, J.

F. Peng, N. Duan, Y.-J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26, 2055–2057 (2014).
[Crossref]

Li, W.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Liehr, S.

Liu, E.

Liu, H.

Liu, L.

Q. Liu, L. Liu, X. Fan, J. Du, L. Ma, and Z. He, “A novel optical fiber reflectometry technique with high spatial resolution and long distance,” in Asia Communications and Photonics Conference 2014, (Optical Society of America, 2014), p. AW3I.2.
[Crossref]

Liu, Q.

Lu, P.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Lu, Z.

Lv, L.

Ma, L.

Q. Liu, L. Liu, X. Fan, J. Du, L. Ma, and Z. He, “A novel optical fiber reflectometry technique with high spatial resolution and long distance,” in Asia Communications and Photonics Conference 2014, (Optical Society of America, 2014), p. AW3I.2.
[Crossref]

Macias-Guarasa, J.

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

Martin-Lopez, S.

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

M. R. Fernandez-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Light. Technol. 36, 5690–5696 (2018).
[Crossref]

M. R. Fernandez-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Light. Technol. 36, 979–985 (2018).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Statistical analysis of SNR in chirped-pulse ϕ OTDR,” in 26th International Conference on Optical Fiber Sensors, (Optical Society of America, 2018), p. WF16.
[Crossref]

Martins, H. F.

M. R. Fernandez-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Light. Technol. 36, 5690–5696 (2018).
[Crossref]

M. R. Fernandez-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Light. Technol. 36, 979–985 (2018).
[Crossref]

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Statistical analysis of SNR in chirped-pulse ϕ OTDR,” in 26th International Conference on Optical Fiber Sensors, (Optical Society of America, 2018), p. WF16.
[Crossref]

Mei, X.

Molenaar, M. M.

M. M. Molenaar, D. Hill, P. Webster, E. Fidan, and B. Birch, “First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics,” SPE Drill. & Complet. 27, 32–38 (2013).
[Crossref]

Mou, C.

Münzenberger, S.

Pang, F.

Pastor-Graells, J.

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

M. R. Fernandez-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Light. Technol. 36, 979–985 (2018).
[Crossref]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

Peng, F.

Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent phi-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24, 853–858 (2016).
[Crossref] [PubMed]

F. Peng, N. Duan, Y.-J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26, 2055–2057 (2014).
[Crossref]

Postvoll, W.

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

Qian, T.

Qian, X.

Rao, J.

Rao, Y.

Rao, Y.-J.

F. Peng, N. Duan, Y.-J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26, 2055–2057 (2014).
[Crossref]

Reinsch, T.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Ryberg, T.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Shao, Y.

Shimizu, K.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in rayleigh backscattering measurement for optical fibers and components,” J. Light. Technol. 10, 982–987 (1992).
[Crossref]

Song, J.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Sun, W.

Tejedor, J.

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

Wang, S.

Wang, T.

Wang, Z.

Weber, M.

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Webster, P.

M. M. Molenaar, D. Hill, P. Webster, E. Fidan, and B. Birch, “First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics,” SPE Drill. & Complet. 27, 32–38 (2013).
[Crossref]

Xu, Y.

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

Xue, N.

Yu, G.

Zhang, H.

Zhang, L.

Appl. Opt. (1)

IEEE Photon. J. (1)

J. Song, W. Li, P. Lu, Y. Xu, L. Chen, and X. Bao, “Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry,” IEEE Photon. J. 6, 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Peng, N. Duan, Y.-J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26, 2055–2057 (2014).
[Crossref]

J. Light. Technol. (6)

J. Tejedor, J. Macias-Guarasa, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, P. C. Guillen, G. De Pauw, F. De Smet, W. Postvoll, C. H. Ahlen, and M. Gonzalez-Herraez, “Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: Architectural issues and blind field test results,” J. Light. Technol. 36, 1052–1062 (2018).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent otdr,” J. Light. Technol. 27, 1142–1146 (2009).
[Crossref]

M. R. Fernandez-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Light. Technol. 36, 5690–5696 (2018).
[Crossref]

D. Chen, Q. Liu, X. Fan, and Z. He, “Distributed fiber-optic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio,” J. Light. Technol. 35, 2037–2043 (2017).
[Crossref]

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in rayleigh backscattering measurement for optical fibers and components,” J. Light. Technol. 10, 982–987 (1992).
[Crossref]

M. R. Fernandez-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Light. Technol. 36, 979–985 (2018).
[Crossref]

Nat. Commun. (1)

P. Jousset, T. Reinsch, T. Ryberg, H. Blanck, A. Clarke, R. Aghayev, G. P. Hersir, J. Henninges, M. Weber, and C. M. Krawczyk, “Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features,” Nat. Commun. 9, 2509 (2018).
[Crossref] [PubMed]

Opt. Express (8)

S. Liehr, S. Münzenberger, and K. Krebber, “Wavelength-scanning coherent otdr for dynamic high strain resolution sensing,” Opt. Express 26, 10573 (2018).
[Crossref] [PubMed]

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express 24, 13121–13133 (2016).
[Crossref] [PubMed]

D. Chen, Q. Liu, and Z. He, “Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR,” Opt. Express 25, 8315–8325 (2017).
[Crossref] [PubMed]

D. Chen, Q. Liu, and Z. He, “High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution,” Opt. Express 26, 16138–16146 (2018).
[Crossref] [PubMed]

S. Wang, X. Fan, Q. Liu, and Z. He, “Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR,” Opt. Express 23, 33301–33309 (2015).
[Crossref]

Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23, 25988–25995 (2015).
[Crossref] [PubMed]

X. Mei, F. Pang, H. Liu, G. Yu, Y. Shao, T. Qian, C. Mou, L. Lv, and T. Wang, “Fast coarse-fine locating method for phi-otdr,” Opt. Express 26, 2659–2667 (2018).
[Crossref] [PubMed]

Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent phi-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24, 853–858 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

SPE Drill. & Complet. (1)

M. M. Molenaar, D. Hill, P. Webster, E. Fidan, and B. Birch, “First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics,” SPE Drill. & Complet. 27, 32–38 (2013).
[Crossref]

Other (2)

M. R. Fernández-Ruiz, H. F. Martins, L. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Statistical analysis of SNR in chirped-pulse ϕ OTDR,” in 26th International Conference on Optical Fiber Sensors, (Optical Society of America, 2018), p. WF16.
[Crossref]

Q. Liu, L. Liu, X. Fan, J. Du, L. Ma, and Z. He, “A novel optical fiber reflectometry technique with high spatial resolution and long distance,” in Asia Communications and Photonics Conference 2014, (Optical Society of America, 2014), p. AW3I.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic setup of direct-detection OTDR. AWG: arbitrary waveform generator; ADC: analog-to-digital converter; PD: photodetector; FS: frequency shifter; FUT: Fiber under test; PZT: cylinder piezoelectric transducer; SG: signal generator.
Fig. 2
Fig. 2 Schematic setup of TGD-OFDR. BPD: balanced photodetector.
Fig. 3
Fig. 3 (a)(c)(e) |R(t)| and (b)(d)(f) short time Fourier transform (STFT) of R(t). (a)(b) are under the condition that the duration of h(t) is 4 μs; (c)(d) are under the condition that the duration of h(t) is 4.02 μs; (e)(f) are under the condition that the duration of h(t) is 4.04 μs.
Fig. 4
Fig. 4 Relationship curves between Γ and Λ. (a) B is 1 GHz and τp is 4 μs; (b) B is 1 GHz and τp is 2 μs; (c) B is 0.5 GHz and τp is 8 μs.
Fig. 5
Fig. 5 Experimental setup. FL: fiber laser; FBG: fiber Bragg grating; IM: intensity modulator; DC: direct current source; EDFA: Erbium-doped fiber amplifier; PM: polarization-maintaining.
Fig. 6
Fig. 6 Rayleigh intensity traces (a) without strain and (b) with strain.
Fig. 7
Fig. 7 (a) Strain distribution. (b) Standard deviation (SD) of strain distribution.
Fig. 8
Fig. 8 (a) Reconstructed waveform at 9940 m and (b) its power spectrum density (PSD); (a) Reconstructed waveform at 9947 m and (b) its power spectrum density (PSD); (c) Reconstructed waveform of frequency-chirped dynamic strain and (d) its STFT.
Fig. 9
Fig. 9 (a) Probability density function (PDF) and (b) cumulative distribution function (CDF) of strain resolution along 10-km FUT.
Fig. 10
Fig. 10 (a) Probability density function (PDF) and (b) cumulative distribution function (CDF) of strain resolution along 1-km FUT. (c) The relationship between effective strain resolution and pulse duration, and x-axis is on a logarithmic scale.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ f f c 0.78 × Δ ε ,
κ Δ z c 1 f c 0.78 × Δ ε ,
Z = c T 2 ,
Z = c 2 B ,
Γ = | T T T | = | κ κ κ | ,
Λ = Z Z Z ,
Λ = K Γ = ( 3 4 B T ) Γ ,
Z = Z ( 1 + Λ ) = c 2 B + 3 8 c T Γ .

Metrics