Abstract

On-chip optical tweezers based on evanescent fields overcome the diffraction limit of the free-space optical tweezers and can be a promising technique for developing lab-on-a-chip devices. While such trapping allows for low-cost and precise manipulation, it suffers from unavoidable contact with the device surface, which eliminates one of the major advantages of the optical trapping. Here, we use a 1D photonic crystal cavity to trap nanoparticles and propose a novel method to control and manipulate the particle distance from the cavity utilizing a self-induced back-action (SIBA) mechanism and electrical-double-layer (EDL) force. It is numerically shown that a 200 nm radius silica particle can be trapped near the cavity with a potential well deeper than 178kBT by 1 mW of input power without any contact with the surface and easily moved vertically with nanometer precision by wavelength detuning.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical trapping, relocation, and manipulation of nanoparticles using SOI ring resonators

Mahdi Sahafi and Amir Habibzadeh-Sharif
J. Opt. Soc. Am. B 36(8) 2178-2183 (2019)

Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles

Pin-Tso Lin, Tsan-Wen Lu, and Po-Tsung Lee
Opt. Express 22(6) 6791-6800 (2014)

Optical vortex trap for resonant confinement of metal nanoparticles

Maria Dienerowitz, Michael Mazilu, Peter J. Reece, Thomas F. Krauss, and Kishan Dholakia
Opt. Express 16(7) 4991-4999 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
    [Crossref]
  2. M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
    [Crossref] [PubMed]
  3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [Crossref]
  4. I. Heller, T. P. Hoekstra, G. A. King, E. J. Peterman, and G. J. Wuite, “Optical tweezers analysis of DNA-protein complexes,” Chem. Rev. 114(6), 3087–3119 (2014).
    [Crossref] [PubMed]
  5. Y. Pang, H. Song, J. H. Kim, X. Hou, and W. Cheng, “Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution,” Nat. Nanotechnol. 9(8), 624–630 (2014).
    [Crossref] [PubMed]
  6. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  7. M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photonics Rev. 9(3), 309–329 (2015).
    [Crossref]
  8. M. Sahafi and A. Habibzadeh-Sharif, “Robust increase of the optical forces in waveguide-based optical tweezers using V-groove structure,” J. Opt. Soc. Am. B 35(8), 1905–1909 (2018).
    [Crossref]
  9. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
    [Crossref] [PubMed]
  10. M. Sahafi and A. Habibzadeh-Sharif, “All-optical trapping, relocation and manipulation of nanoparticles using SOI ring-resonators,” J. Opt. Soc. Am. B 36(8), 2178–2183 (2019).
    [Crossref]
  11. P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles,” Opt. Express 22(6), 6791–6800 (2014).
    [Crossref] [PubMed]
  12. M. Sahafi and A. Habibzadeh-Sharif, “Localized Optical Trapping of Nano-Particles Using Ring-Resonators,” in 2019 27th Iranian Conference on Electrical Engineering (ICEE) (IEEE, 2019), pp. 169–172.
    [Crossref]
  13. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
    [Crossref] [PubMed]
  14. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
    [Crossref] [PubMed]
  15. L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
    [Crossref]
  16. C. Ti, G. M. Thomas, Y. Ren, R. Zhang, Q. Wen, and Y. Liu, “Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment,” Biomed. Opt. Express 6(7), 2325–2336 (2015).
    [Crossref] [PubMed]
  17. B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
    [Crossref] [PubMed]
  18. C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
    [Crossref]
  19. A. H. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
    [Crossref] [PubMed]
  20. M. Tonin, F. Mor, N. Descharmes, U. Dharanipathy, L. Forró, S. Jeney, and R. Houdré, “Integrated Resonant Trapping in Hollow Photonic Crystals Cavities for Lab-On-Chip Manipulation,” in Optical Trapping Applications (Optical Society of America, 2015), paper OtT1D. 2.
  21. P. C. Hiemenz and P. C. Hiemenz, Principles of Colloid and Surface Chemistry (M. Dekker New York, 1986).
  22. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 2011).
  23. R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications (Academic Press, 2013).
  24. M. Barisik, S. Atalay, A. Beskok, and S. Qian, “Size dependent surface charge properties of silica nanoparticles,” J. Phys. Chem. C 118(4), 1836–1842 (2014).
    [Crossref]
  25. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2014).

2019 (1)

2018 (1)

2015 (4)

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photonics Rev. 9(3), 309–329 (2015).
[Crossref]

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

C. Ti, G. M. Thomas, Y. Ren, R. Zhang, Q. Wen, and Y. Liu, “Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment,” Biomed. Opt. Express 6(7), 2325–2336 (2015).
[Crossref] [PubMed]

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

2014 (5)

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles,” Opt. Express 22(6), 6791–6800 (2014).
[Crossref] [PubMed]

I. Heller, T. P. Hoekstra, G. A. King, E. J. Peterman, and G. J. Wuite, “Optical tweezers analysis of DNA-protein complexes,” Chem. Rev. 114(6), 3087–3119 (2014).
[Crossref] [PubMed]

Y. Pang, H. Song, J. H. Kim, X. Hou, and W. Cheng, “Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution,” Nat. Nanotechnol. 9(8), 624–630 (2014).
[Crossref] [PubMed]

M. Barisik, S. Atalay, A. Beskok, and S. Qian, “Size dependent surface charge properties of silica nanoparticles,” J. Phys. Chem. C 118(4), 1836–1842 (2014).
[Crossref]

2013 (3)

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[Crossref] [PubMed]

2011 (2)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
[Crossref]

2010 (1)

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

2008 (1)

A. H. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Ahluwalia, B. S.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

Armenise, M.

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

Atalay, S.

M. Barisik, S. Atalay, A. Beskok, and S. Qian, “Size dependent surface charge properties of silica nanoparticles,” J. Phys. Chem. C 118(4), 1836–1842 (2014).
[Crossref]

Barisik, M.

M. Barisik, S. Atalay, A. Beskok, and S. Qian, “Size dependent surface charge properties of silica nanoparticles,” J. Phys. Chem. C 118(4), 1836–1842 (2014).
[Crossref]

Beskok, A.

M. Barisik, S. Atalay, A. Beskok, and S. Qian, “Size dependent surface charge properties of silica nanoparticles,” J. Phys. Chem. C 118(4), 1836–1842 (2014).
[Crossref]

Chang, D. E.

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Cheng, W.

Y. Pang, H. Song, J. H. Kim, X. Hou, and W. Cheng, “Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution,” Nat. Nanotechnol. 9(8), 624–630 (2014).
[Crossref] [PubMed]

Ciminelli, C.

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Conteduca, D.

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

Crozier, K.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Daly, M.

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photonics Rev. 9(3), 309–329 (2015).
[Crossref]

Dell’Olio, F.

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

Descharmes, N.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[Crossref] [PubMed]

Dharanipathy, U. P.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[Crossref] [PubMed]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Diao, Z.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[Crossref] [PubMed]

Erickson, D.

A. H. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Habibzadeh-Sharif, A.

Heller, I.

I. Heller, T. P. Hoekstra, G. A. King, E. J. Peterman, and G. J. Wuite, “Optical tweezers analysis of DNA-protein complexes,” Chem. Rev. 114(6), 3087–3119 (2014).
[Crossref] [PubMed]

Hellesø, O. G.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

Hoekstra, T. P.

I. Heller, T. P. Hoekstra, G. A. King, E. J. Peterman, and G. J. Wuite, “Optical tweezers analysis of DNA-protein complexes,” Chem. Rev. 114(6), 3087–3119 (2014).
[Crossref] [PubMed]

Hou, X.

Y. Pang, H. Song, J. H. Kim, X. Hou, and W. Cheng, “Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution,” Nat. Nanotechnol. 9(8), 624–630 (2014).
[Crossref] [PubMed]

Houdré, R.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[Crossref] [PubMed]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

Huser, T. R.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

Kim, J. H.

Y. Pang, H. Song, J. H. Kim, X. Hou, and W. Cheng, “Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution,” Nat. Nanotechnol. 9(8), 624–630 (2014).
[Crossref] [PubMed]

King, G. A.

I. Heller, T. P. Hoekstra, G. A. King, E. J. Peterman, and G. J. Wuite, “Optical tweezers analysis of DNA-protein complexes,” Chem. Rev. 114(6), 3087–3119 (2014).
[Crossref] [PubMed]

Lee, P.-T.

Li, Y.-M.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Lin, P.-T.

Lin, S.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Liu, Y.

Lu, T.-W.

McCourt, P.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

Neumeier, L.

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Nic Chormaic, S.

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photonics Rev. 9(3), 309–329 (2015).
[Crossref]

Oteiza, A.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

Pang, Y.

Y. Pang, H. Song, J. H. Kim, X. Hou, and W. Cheng, “Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution,” Nat. Nanotechnol. 9(8), 624–630 (2014).
[Crossref] [PubMed]

Peterman, E. J.

I. Heller, T. P. Hoekstra, G. A. King, E. J. Peterman, and G. J. Wuite, “Optical tweezers analysis of DNA-protein complexes,” Chem. Rev. 114(6), 3087–3119 (2014).
[Crossref] [PubMed]

Qian, S.

M. Barisik, S. Atalay, A. Beskok, and S. Qian, “Size dependent surface charge properties of silica nanoparticles,” J. Phys. Chem. C 118(4), 1836–1842 (2014).
[Crossref]

Quidant, R.

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Ren, Y.

Sáenz, J. J.

J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
[Crossref]

Sahafi, M.

Schonbrun, E.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Sergides, M.

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photonics Rev. 9(3), 309–329 (2015).
[Crossref]

Song, H.

Y. Pang, H. Song, J. H. Kim, X. Hou, and W. Cheng, “Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution,” Nat. Nanotechnol. 9(8), 624–630 (2014).
[Crossref] [PubMed]

Thomas, G. M.

Ti, C.

Tonin, M.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[Crossref] [PubMed]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

Wang, Z.-Q.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Wei, X.-B.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Wen, Q.

Wilkinson, J. S.

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

Wuite, G. J.

I. Heller, T. P. Hoekstra, G. A. King, E. J. Peterman, and G. J. Wuite, “Optical tweezers analysis of DNA-protein complexes,” Chem. Rev. 114(6), 3087–3119 (2014).
[Crossref] [PubMed]

Yang, A. H.

A. H. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Zhang, R.

Zhong, M.-C.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Zhou, J.-H.

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Analyst (Lond.) (1)

B. S. Ahluwalia, P. McCourt, A. Oteiza, J. S. Wilkinson, T. R. Huser, and O. G. Hellesø, “Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage,” Analyst (Lond.) 140(1), 223–229 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Chem. Rev. (1)

I. Heller, T. P. Hoekstra, G. A. King, E. J. Peterman, and G. J. Wuite, “Optical tweezers analysis of DNA-protein complexes,” Chem. Rev. 114(6), 3087–3119 (2014).
[Crossref] [PubMed]

IEEE Photonics J. (1)

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

M. Barisik, S. Atalay, A. Beskok, and S. Qian, “Size dependent surface charge properties of silica nanoparticles,” J. Phys. Chem. C 118(4), 1836–1842 (2014).
[Crossref]

Lab Chip (1)

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals,” Lab Chip 13(16), 3268–3274 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. Daly, M. Sergides, and S. Nic Chormaic, “Optical trapping and manipulation of micrometer and submicrometer particles,” Laser Photonics Rev. 9(3), 309–329 (2015).
[Crossref]

Nano Lett. (1)

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

A. H. Yang and D. Erickson, “Stability analysis of optofluidic transport on solid-core waveguiding structures,” Nanotechnology 19(4), 045704 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers,” Nat. Commun. 4(1), 1768 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Y. Pang, H. Song, J. H. Kim, X. Hou, and W. Cheng, “Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution,” Nat. Nanotechnol. 9(8), 624–630 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

J. J. Sáenz, “Optical forces: laser tractor beams,” Nat. Photonics 5(9), 514–515 (2011).
[Crossref]

New J. Phys. (1)

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17(12), 123008 (2015).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[Crossref] [PubMed]

Other (7)

M. Sahafi and A. Habibzadeh-Sharif, “Localized Optical Trapping of Nano-Particles Using Ring-Resonators,” in 2019 27th Iranian Conference on Electrical Engineering (ICEE) (IEEE, 2019), pp. 169–172.
[Crossref]

M. Tonin, F. Mor, N. Descharmes, U. Dharanipathy, L. Forró, S. Jeney, and R. Houdré, “Integrated Resonant Trapping in Hollow Photonic Crystals Cavities for Lab-On-Chip Manipulation,” in Optical Trapping Applications (Optical Society of America, 2015), paper OtT1D. 2.

P. C. Hiemenz and P. C. Hiemenz, Principles of Colloid and Surface Chemistry (M. Dekker New York, 1986).

J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 2011).

R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications (Academic Press, 2013).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of the 1D photonic crystal trapping system. (b) Cross-section view and (c) top view of the structure. Geometry parameters are: w = 500 nm, h = 220 nm, l = 80 nm, r1 = 100 nm, r2 = 130 nm, r3 = 160 nm, r4 = 160 nm, r5 = 160 nm, Λ1 = 360 nm, Λ2 = 400 nm, Λ3 = 440, Λ4 = 440 nm and Λ5 = 440 nm.
Fig. 2
Fig. 2 Distribution of |E|2, (a) at top surface and (b) in lateral cross section of the cavity.
Fig. 3
Fig. 3 Transmission spectra of the photonic crystal cavity for different particle distances. The trapping sample is a 200 nm radius silica particle.
Fig. 4
Fig. 4 Optical trapping force exerted on the 200 nm radius silica particle in the z direction versus d for different wavelengths. The input power is 1 mW.
Fig. 5
Fig. 5 Interparticle forces exerted on the 200 nm radius silica particle immersed in the solution over the cavity in the z direction versus d. The ionic strength of the solution is 150 μM and the Debye length is 25 nm.
Fig. 6
Fig. 6 Total exerted force on the 200 nm silica particle over the cavity for different wavelengths in the z direction versus d. The input power is 1 mW.
Fig. 7
Fig. 7 Total potential of the particle for different wavelengths. The input power is 1 mW.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F Op = S T M ndS
F DLVO = F vdW + F EDL
F vdW = 2γA r 3 3 ( 2r+d ) 2 d 2
F EDL =γκrZexp(κd)
Z=64π ε 0 ε r ( k B T e ) 2 tan h 2 ( e ψ 0 4 k B T )
ψ 0 = 2 k B T e arcsinh( σ 8 ε 0 ε r k B TC )

Metrics