Abstract

Although ultrafast rare-earth-doped fiber lasers mode-locked at near-infrared and $\sim$3 $\mu$m wavelengths have been well developed, it is relatively difficult to achieve ultrafast fiber laser emitting in the 2.1-2.7 $\mu$m spectral gap between $\sim$2 $\mu$m (Tm fiber) and $\sim$2.8 $\mu$m (Er or Ho fluoride fiber). In this paper, we report the generation of 2.1-2.7 $\mu$m tunable femtosecond Raman solitons from a compact fusion-spliced all-fiber system using a home-made 1.96 $\mu$m ultrafast pump source and a MIR-available germania-core fiber. At first, a Tm-doped double-clad fiber amplifier is used to not only boost up the power of 1957 nm femtosecond seed laser, but also to generate the first-order soliton self-frequency shift (SSFS). The first-order Raman solitons can be tuned from 2.036 to 2.152 $\mu$m, have a pulse duration of $\sim$480 fs and can reach a pulse energy of 1.07 nJ. The first-order Raman solitons are further injected into a 94 mol.$\%$ germania-core fiber to excite the second-order SSFS. The second-order solitons can be tuned to longer wavelengths, i.e. from 2.157 $\mu$m up to 2.690 $\mu$m. Our work could provide an effective way to develop compact, all-fiber ultrafast MIR laser sources with the continuous wavelength tuning of 2.1-2.7 $\mu$m.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
2166 nm all-fiber short-pulsed Raman laser based on germania-core fiber

Tuanjie Du, Yanhong Li, Hongjian Wang, Zhihao Chen, Valery M. Mashinsky, and Zhengqian Luo
Opt. Express 27(24) 34552-34558 (2019)

Generating tunable optical pulses over the ultrabroad range of 1.6–2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source

E.A. Anashkina, A.V. Andrianov, M.Yu. Koptev, V.M. Mashinsky, S.V. Muravyev, and A.V. Kim
Opt. Express 20(24) 27102-27107 (2012)

Enhanced tunable Raman soliton source between 1.9 and 2.36 μm in a Tm-doped fiber amplifier

Peng Wang, Hongxing Shi, Fangzhou Tan, and Pu Wang
Opt. Express 25(14) 16643-16651 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
    [Crossref]
  2. M. Y. Koptev, E. A. Anashkina, A. V. Andrianov, V. V. Dorofeev, A. F. Kosolapov, S. V. Muravyev, and A. V. Kim, “Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber,” Opt. Lett. 40(17), 4094–4097 (2015).
    [Crossref]
  3. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mu$μm,” J. Endourol. 19(1), 25–31 (2005).
    [Crossref]
  4. J. Luo, B. Sun, J. Ji, E. L. Tan, Y. Zhang, and X. Yu, “High-efficiency femtosecond Raman soliton generation with a tunable wavelength beyond 2 $\mu$μm,” Opt. Lett. 42(8), 1568–1571 (2017).
    [Crossref]
  5. Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy$^{3+}$3+: fluoride fiber laser beyond 3 $\mu$μm,” Opt. Lett. 44(2), 395–398 (2019).
    [Crossref]
  6. Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 $\mu$μm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
    [Crossref]
  7. S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
    [Crossref]
  8. X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
    [Crossref]
  9. D. Klimentov, N. Tolstik, V. V. Dvoyrin, R. Richter, and I. T. Sorokina, “Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 $\mu$μm,” J. Lightwave Technol. 34(21), 4847–4855 (2016).
    [Crossref]
  10. P. Wang, H. Shi, F. Tan, and P. Wang, “Enhanced tunable Raman soliton source between 1.9 and 2.36 $\mu$μm in a Tm-doped fiber amplifier,” Opt. Express 25(14), 16643–16651 (2017).
    [Crossref]
  11. J. Wang, S. Lin, X. Liang, M. Wang, P. Yan, G. Hu, T. Albrow-Owen, S. Ruan, Z. Sun, and T. Hasan, “High-energy and efficient Raman soliton generation tunable from 1.98 to 2.29 $\mu$μm in an all-silica-fiber thulium laser system,” Opt. Lett. 42(18), 3518–3521 (2017).
    [Crossref]
  12. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 $\mu$μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
    [Crossref]
  13. Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
    [Crossref]
  14. R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 $\mu$μm from a mid-infrared fiber laser,” Opt. Lett. 42(23), 4893–4896 (2017).
    [Crossref]
  15. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, “Femtosecond fiber lasers reach the mid-infrared,” Optica 2(7), 623–625 (2015).
    [Crossref]
  16. C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
    [Crossref]
  17. D. A. Chestnut and J. R. Taylor, “Soliton self-frequency shift in highly nonlinear fiber with extension by external Raman pumping,” Opt. Lett. 28(24), 2512–2514 (2003).
    [Crossref]
  18. T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
    [Crossref]
  19. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 $\mu$μm,” Opt. Express 23(24), 30592–30602 (2015).
    [Crossref]
  20. T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
    [Crossref]
  21. Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, and F. W. Wise, “Generation of intense 100 fs solitons tunable from 2 to 4.3 $\mu$μm in fluoride fiber,” Optica 3(9), 948–951 (2016).
    [Crossref]
  22. S. Duval, J. C. Gauthier, L. R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 $\mu$μm,” Opt. Lett. 41(22), 5294–5297 (2016).
    [Crossref]
  23. Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
    [Crossref]
  24. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
    [Crossref]
  25. V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 $\mu$μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
    [Crossref]
  26. M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
    [Crossref]
  27. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Generating femtosecond optical pulses tunable from 2 to 3 $\mu$μm with a silica-based all-fiber laser system,” Opt. Lett. 39(10), 2963–2966 (2014).
    [Crossref]
  28. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 $\mu$μm in GeO$_{2}$2-doped silica fibers with an Er: fiber laser source,” Opt. Express 20(24), 27102–27107 (2012).
    [Crossref]
  29. T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
    [Crossref]
  30. H. Delahaye, G. Granger, J.-T. Gomes, L. Lavout, D. Gaponov, N. Ducros, and S. Fevrier, “Generation of 35 kw peak power 80 fs pulses at 2.9 $\mu$μm from a fully fusion-spliced fiber laser,” Opt. Lett. 44(9), 2318–2321 (2019).
    [Crossref]
  31. Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
    [Crossref]
  32. S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
    [Crossref]
  33. L. Zhang, A. R. El-Damak, Y. Feng, and X. Gu, “Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion,” Opt. Express 21(10), 12014–12021 (2013).
    [Crossref]
  34. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
    [Crossref]
  35. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  36. V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinskii, V. A. Sidorov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in GeO$_{2}$2 glass,” Inorg. Mater. 38(7), 738–745 (2002).
    [Crossref]

2019 (4)

C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
[Crossref]

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
[Crossref]

Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy$^{3+}$3+: fluoride fiber laser beyond 3 $\mu$μm,” Opt. Lett. 44(2), 395–398 (2019).
[Crossref]

H. Delahaye, G. Granger, J.-T. Gomes, L. Lavout, D. Gaponov, N. Ducros, and S. Fevrier, “Generation of 35 kw peak power 80 fs pulses at 2.9 $\mu$μm from a fully fusion-spliced fiber laser,” Opt. Lett. 44(9), 2318–2321 (2019).
[Crossref]

2018 (2)

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 $\mu$μm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref]

2017 (5)

2016 (4)

2015 (4)

2014 (3)

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Generating femtosecond optical pulses tunable from 2 to 3 $\mu$μm with a silica-based all-fiber laser system,” Opt. Lett. 39(10), 2963–2966 (2014).
[Crossref]

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

2013 (3)

2012 (3)

2009 (1)

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

2007 (1)

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

2005 (2)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mu$μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

2003 (1)

2002 (1)

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinskii, V. A. Sidorov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in GeO$_{2}$2 glass,” Inorg. Mater. 38(7), 738–745 (2002).
[Crossref]

1992 (1)

S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Albrow-Owen, T.

Anashkina, E. A.

Andrianov, A. V.

Asano, K.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Bao, Q.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Bernier, M.

Bonaccorso, F.

Cable, A.

Cai, Z.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
[Crossref]

Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Chapman, B. H.

Charan, K.

Chen, D.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Cheng, T.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Chestnut, D. A.

Delahaye, H.

Deng, D.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Dianov, E. M.

Dorofeev, V. V.

Du, T.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
[Crossref]

Ducros, N.

Duval, S.

Dvoyrin, V. V.

D. Klimentov, N. Tolstik, V. V. Dvoyrin, R. Richter, and I. T. Sorokina, “Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 $\mu$μm,” J. Lightwave Technol. 34(21), 4847–4855 (2016).
[Crossref]

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

El-Damak, A. R.

Fendel, P.

Feng, Y.

Ferrari, A. C.

Fevrier, S.

Flahaut, E.

Fortin, V.

Foy, P.

Fried, N. M.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mu$μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

Fuerbach, A.

Galzerano, G.

Gaponov, D.

Gardner, D.

Gauthier, J. C.

Genest, J.

Gomes, J.-T.

Granger, G.

Gu, X.

Guina, M.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Gur’yanov, A. N.

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinskii, V. A. Sidorov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in GeO$_{2}$2 glass,” Inorg. Mater. 38(7), 738–745 (2002).
[Crossref]

Hai, T.

Hakulinen, T.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Hasan, T.

He, X.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Hu, G.

Hu, T.

Hudson, D. D.

Jackson, S. D.

Jenkins, D.

Ji, J.

Jia, Z.

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Jiang, Z.

Jobin, F.

Kamynin, V. A.

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 $\mu$μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

Kang, Z.

C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
[Crossref]

Kanou, Y.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Kelleher, E. J. R.

Kelly, S.

S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
[Crossref]

Khopin, V. F.

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinskii, V. A. Sidorov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in GeO$_{2}$2 glass,” Inorg. Mater. 38(7), 738–745 (2002).
[Crossref]

Kim, A. V.

Kivistö, S.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Klimentov, D.

Koptev, M. Y.

Kosolapov, A. F.

Kurkov, A. S.

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 $\mu$μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

Laporta, P.

Lavout, L.

Li, J.

Li, L.

Li, N.

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Li, Y.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
[Crossref]

Li, Z.

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Liang, X.

Liao, M.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Lin, S.

Liu, D.

Liu, Y.

C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 $\mu$μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref]

Loh, K.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Luo, A.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Luo, J.

Luo, Z.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
[Crossref]

Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Lyu, Y.

C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
[Crossref]

Ma, J.

Mashinskii, V. M.

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinskii, V. A. Sidorov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in GeO$_{2}$2 glass,” Inorg. Mater. 38(7), 738–745 (2002).
[Crossref]

Mashinsky, V. M.

Matsumoto, M.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Medvedkov, O. I.

Milana, S.

Misumi, T.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Muravyev, S. V.

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mu$μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

Ohishi, Y.

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Okhotnikov, O. G.

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Olivier, M.

Pafchek, R.

Paradis, P.

Piché, M.

Plotnichenko, V. G.

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinskii, V. A. Sidorov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in GeO$_{2}$2 glass,” Inorg. Mater. 38(7), 738–745 (2002).
[Crossref]

Popa, D.

Popov, S. V.

Qian, L.

Qian, Q.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Qin, G.

C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
[Crossref]

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Qin, W.

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Qin, Z.

Richter, R.

Robichaud, L. R.

Ruan, Q.

Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Ruan, S.

Runcorn, T. H.

Saad, M.

Salem, R.

Shen, D.

Shi, H.

C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
[Crossref]

P. Wang, H. Shi, F. Tan, and P. Wang, “Enhanced tunable Raman soliton source between 1.9 and 2.36 $\mu$μm in a Tm-doped fiber amplifier,” Opt. Express 25(14), 16643–16651 (2017).
[Crossref]

Sidorov, V. A.

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinskii, V. A. Sidorov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in GeO$_{2}$2 glass,” Inorg. Mater. 38(7), 738–745 (2002).
[Crossref]

Sokolov, V. O.

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinskii, V. A. Sidorov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in GeO$_{2}$2 glass,” Inorg. Mater. 38(7), 738–745 (2002).
[Crossref]

Sorokin, E.

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

Sorokina, I. T.

D. Klimentov, N. Tolstik, V. V. Dvoyrin, R. Richter, and I. T. Sorokina, “Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 $\mu$μm,” J. Lightwave Technol. 34(21), 4847–4855 (2016).
[Crossref]

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

Sun, B.

Sun, Z.

Suzuki, T.

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

Tan, E. L.

Tan, F.

Tang, D.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Tang, Y.

Taylor, J. R.

Tolstik, N.

D. Klimentov, N. Tolstik, V. V. Dvoyrin, R. Richter, and I. T. Sorokina, “Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 $\mu$μm,” J. Lightwave Technol. 34(21), 4847–4855 (2016).
[Crossref]

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

Vallée, R.

Wan, X.

Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Wang, F.

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Wang, J.

Wang, K.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
[Crossref]

Wang, M.

Wang, P.

Wang, T.

Wang, Y.

Wang, Z.

Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Wei, C.

C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
[Crossref]

Wen, S.

Wise, F. W.

Woodward, R. I.

Wright, L. G.

Xie, G.

Xu, B.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
[Crossref]

Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Xu, C.

Xu, H.

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
[Crossref]

Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Xu, S.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Xu, W.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yan, P.

Yang, Q.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yang, R.

Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Yang, T.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yang, Z.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Yao, C.

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Yu, X.

Yuan, P.

Yuan, X.

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Zhang, H.

C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhang, L.

Zhang, M.

Zhang, Y.

Zhao, C.

Zhao, L.

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 $\mu$μm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

AIP Adv. (1)

Z. Li, N. Li, C. Yao, F. Wang, Z. Jia, F. Wang, G. Qin, Y. Ohishi, and W. Qin, “Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 $\mu$μm in an all-solid fluorotellurite fiber,” AIP Adv. 8(11), 115001 (2018).
[Crossref]

Appl. Phys. Express (1)

X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, and Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013).
[Crossref]

Appl. Phys. Lett. (2)

T. Cheng, Y. Kanou, K. Asano, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe$_2$2-As$_2$2S$_5$5 microstructured optical fiber,” Appl. Phys. Lett. 104(12), 121911 (2014).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Electron. Lett. (1)

S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–808 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Du, Y. Li, K. Wang, Z. Cai, H. Xu, B. Xu, V. M. Mashinsky, and Z. Luo, “2.01-2.42 $\mu$μm All-fiber femtosecond Raman soliton generation in a heavily germanium doped fiber,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1400207 (2019).
[Crossref]

C. Wei, Y. Lyu, H. Shi, Z. Kang, H. Zhang, G. Qin, and Y. Liu, “Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 $\mu$μm based on carbon nanotube,” IEEE J. Sel. Top. Quantum Electron. 25(4), 1100206 (2019).
[Crossref]

I. T. Sorokina, V. V. Dvoyrin, N. Tolstik, and E. Sorokin, “Mid-IR ultrashort pulsed fiber-based lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903412 (2014).
[Crossref]

IEEE Photonics J. (1)

Q. Ruan, Z. Luo, X. Wan, R. Yang, Z. Wang, B. Xu, Z. Cai, and H. Xu, “1.61-1.85 $\mu$μm Tunable all-fiber Raman soliton source using a phosphor-doped fiber pumped by 1.56 $\mu$μm dissipative solitons,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Kivistö, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm-Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Inorg. Mater. (1)

V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinskii, V. A. Sidorov, A. N. Gur’yanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in GeO$_{2}$2 glass,” Inorg. Mater. 38(7), 738–745 (2002).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 $\mu$μm,” J. Endourol. 19(1), 25–31 (2005).
[Crossref]

J. Lightwave Technol. (2)

Laser Phys. Lett. (1)

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 $\mu$μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

Opt. Express (6)

P. Wang, H. Shi, F. Tan, and P. Wang, “Enhanced tunable Raman soliton source between 1.9 and 2.36 $\mu$μm in a Tm-doped fiber amplifier,” Opt. Express 25(14), 16643–16651 (2017).
[Crossref]

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 $\mu$μm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref]

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 $\mu$μm in GeO$_{2}$2-doped silica fibers with an Er: fiber laser source,” Opt. Express 20(24), 27102–27107 (2012).
[Crossref]

L. Zhang, A. R. El-Damak, Y. Feng, and X. Gu, “Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion,” Opt. Express 21(10), 12014–12021 (2013).
[Crossref]

M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 $\mu$μm,” Opt. Express 23(24), 30592–30602 (2015).
[Crossref]

Opt. Lett. (12)

Z. Qin, G. Xie, C. Zhao, S. Wen, P. Yuan, and L. Qian, “Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41(1), 56–59 (2016).
[Crossref]

M. Y. Koptev, E. A. Anashkina, A. V. Andrianov, V. V. Dorofeev, A. F. Kosolapov, S. V. Muravyev, and A. V. Kim, “Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber,” Opt. Lett. 40(17), 4094–4097 (2015).
[Crossref]

T. Hu, S. D. Jackson, and D. D. Hudson, “Ultrafast pulses from a mid-infrared fiber laser,” Opt. Lett. 40(18), 4226–4228 (2015).
[Crossref]

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, S. V. Muravyev, and A. V. Kim, “Generating femtosecond optical pulses tunable from 2 to 3 $\mu$μm with a silica-based all-fiber laser system,” Opt. Lett. 39(10), 2963–2966 (2014).
[Crossref]

Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy$^{3+}$3+: fluoride fiber laser beyond 3 $\mu$μm,” Opt. Lett. 44(2), 395–398 (2019).
[Crossref]

H. Delahaye, G. Granger, J.-T. Gomes, L. Lavout, D. Gaponov, N. Ducros, and S. Fevrier, “Generation of 35 kw peak power 80 fs pulses at 2.9 $\mu$μm from a fully fusion-spliced fiber laser,” Opt. Lett. 44(9), 2318–2321 (2019).
[Crossref]

J. Wang, S. Lin, X. Liang, M. Wang, P. Yan, G. Hu, T. Albrow-Owen, S. Ruan, Z. Sun, and T. Hasan, “High-energy and efficient Raman soliton generation tunable from 1.98 to 2.29 $\mu$μm in an all-silica-fiber thulium laser system,” Opt. Lett. 42(18), 3518–3521 (2017).
[Crossref]

R. I. Woodward, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Generation of 70-fs pulses at 2.86 $\mu$μm from a mid-infrared fiber laser,” Opt. Lett. 42(23), 4893–4896 (2017).
[Crossref]

J. Luo, B. Sun, J. Ji, E. L. Tan, Y. Zhang, and X. Yu, “High-efficiency femtosecond Raman soliton generation with a tunable wavelength beyond 2 $\mu$μm,” Opt. Lett. 42(8), 1568–1571 (2017).
[Crossref]

S. Duval, J. C. Gauthier, L. R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, “Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 $\mu$μm,” Opt. Lett. 41(22), 5294–5297 (2016).
[Crossref]

J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 $\mu$μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
[Crossref]

D. A. Chestnut and J. R. Taylor, “Soliton self-frequency shift in highly nonlinear fiber with extension by external Raman pumping,” Opt. Lett. 28(24), 2512–2514 (2003).
[Crossref]

Optica (2)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) The schematic of the experimental setup. (b) The material dispersion curve of 94 mol.$\%$ GeO$_{2}$ glass and the total dispersion curve of the 94 mol.$\%$ germania-core fiber, ZDW: zero-dispersion wavelength. (c) The loss spectrum of the 94 mol.$\%$ germania-core fiber.
Fig. 2.
Fig. 2. 1957 nm sub-picosecond seed laser. (a) Optical spectrum. (b) Typical oscilloscope traces. Inset: the measured autocorrelation trace.
Fig. 3.
Fig. 3. (a) The spectral evolution of the first-stage Raman solitons as the 793 nm pump power increased. (b) Typical oscilloscope traces at the pump power of 1.57 W. (c) Corresponding pulse duration. (d) The RF spectrum with a span of 3 GHz. (e) The average output power and pulse energy as a function of the 793 nm pump power for the first-stage Roman solitons.
Fig. 4.
Fig. 4. The spectral evolution of the second-stage cascaded Raman solitons with (a) a 0.5 m-long HDGF and (b) a 2 m-long HDGF. (c) The typical oscilloscope traces of optical pulses at the pump power of 33.5 mW with and without the mirror filter. (d) The total average output power and the second-order Raman soliton power as a function of the pump power.

Metrics