Abstract

We report on a high conversion efficiency tunable laser at 426 nm by adopting an external frequency-doubling cavity pumped by a diode laser. For the frequency-doubling process at 426 nm, the major challenge of increasing the conversion efficiency is mode-match degradation originating from the severely thermal effect. Here, we find that the center of the equivalently thermal lens is not at the center of the nonlinear crystal. We minimize the variation of beam parameters of the Gaussian beam in the external cavity by optimizing the center of the thermal lens to beam waist. As a result, the mode-match degradation is reduced as the incident power is increased. Finally, a 405 mW blue light is obtained with the conversion efficiency of 81%.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency blue-light generation with a ring cavity with periodically poled KTP

Fabrizio Villa, Antonino Chiummo, Elisabeth Giacobino, and Alberto Bramati
J. Opt. Soc. Am. B 24(3) 576-580 (2007)

Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO4

Xue Deng, Jing Zhang, Yuchi Zhang, Gang Li, and Tiancai Zhang
Opt. Express 21(22) 25907-25911 (2013)

Generation of 130  mW of 397.5  nm tunable laser via ring-cavity-enhanced frequency doubling

Yashuai Han, Xin Wen, Jiandong Bai, Baodong Yang, Yanhua Wang, Jun He, and Junmin Wang
J. Opt. Soc. Am. B 31(8) 1942-1947 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
    [Crossref]
  2. S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the $D_{2}$D2 cesium line,” Opt. Express 17(5), 3777 (2009).
    [Crossref]
  3. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
    [Crossref]
  4. W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations,” Opt. Lett. 42(21), 4553 (2017).
    [Crossref]
  5. S. P. Shi, Y. J. Wang, W. H. Yang, Y. H. Zheng, and K. C. Peng, “Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption,” Opt. Lett. 43(21), 5411 (2018).
    [Crossref]
  6. W. H. Yang, X. L. Jin, X. D. Yu, Y. H. Zheng, and K. C. Peng, “Dependence of measured audio-band squeezing level on local oscillator intensity noise,” Opt. Express 25(20), 24262 (2017).
    [Crossref]
  7. X. C. Sun, Y. J. Wang, L. Tian, S. P. Shi, Y. H. Zheng, and K. C. Peng, “Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise,” Opt. Lett. 44(7), 1789 (2019).
    [Crossref]
  8. T. Eberle, V. Handchen, and R. Schnabel, “Stable control of 10 dB two-mode squeezed vacuum states of light,” Opt. Express 21(9), 11546 (2013).
    [Crossref]
  9. S. Ast, M. Ast, M. Mehmet, and R. Schnabel, “Gaussian entanglement distribution with gigahertz bandwidth,” Opt. Lett. 41(21), 5094 (2016).
    [Crossref]
  10. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref]
  11. Y. H. Liu, J. L. Yan, L. X. Ma, Z. H. Yan, and X. J. Jia, “Continuous-variable entanglement distillation between remote quantum nodes,” Phys. Rev. A 98(5), 052308 (2018).
    [Crossref]
  12. Z. H. Yan and X. J. Jia, “Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control,” Quantum Sci. Technol. 2(2), 024003 (2017).
    [Crossref]
  13. Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
    [Crossref]
  14. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
    [Crossref]
  15. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
    [Crossref]
  16. H. Y. Hao, L. Tian, H. X. Yuan, S. J. Li, and H. Wang, “The Experimental Investigation of 795 nm Correlation Photons caused by Spontaneous Parametric Down-Conversion,” Acta Sinica Quantum Opt. 20, 177–182 (2014).
  17. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
    [Crossref]
  18. J. Hald, J. L. S. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
    [Crossref]
  19. Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, and H. J. Kimble, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
    [Crossref]
  20. H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, “Deterministic quantum teleportation between distant atomic objects,” Nat. Phys. 9(7), 400–404 (2013).
    [Crossref]
  21. Y. Zhang, J. H. Liu, J. Z. Wu, R. Ma, D. Wang, and J. X. Zhang, “Single-frequency tunable 447.3 nm laser by frequency doubling of tapered amplified diode laser at cesium $D_{1}$D1 line,” Opt. Express 24(17), 19769–19775 (2016).
    [Crossref]
  22. X. Wen, Y. S. Han, J. D. Bai, J. He, Y. H. Wang, B. D. Yang, and J. Wang, “Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22(26), 32293 (2014).
    [Crossref]
  23. F. Villa, A. Chiummo, E. Giacobino, and A. Bramati, “High-efficiency blue-light generation with a ring cavity with periodically poled KTP,” J. Opt. Soc. Am. B 24(3), 576 (2007).
    [Crossref]
  24. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO$_{3}$3 in an external cavity,” Opt. Lett. 16(18), 1400 (1991).
    [Crossref]
  25. S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860 nm with periodically poled KTiOPO$_{4}$4,” Appl. Phys. Lett. 89(6), 061116 (2006).
    [Crossref]
  26. X. Deng, J. Zhang, Y. C. Zhang, G. Li, and T. C. Zhang, “Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO$_{4}$4,” Opt. Express 21(22), 25907 (2013).
    [Crossref]
  27. J. F. Tian, C. Yang, J. Xue, Y. C. Zhang, G. Li, and T. C. Zhang, “High-efficiency blue light generation at 426 nm in low pump regime,” J. Opt. 18(5), 055506 (2016).
    [Crossref]
  28. R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
    [Crossref]
  29. J. H. Lundeman, O. B. Jensen, P. E. Andersen, S. Andersson-Engels, B. Sumpf, G. Erbert, and P. M. Petersen, “High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser,” Opt. Express 16(4), 2486 (2008).
    [Crossref]
  30. F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227(4-6), 389–403 (2003).
    [Crossref]
  31. L. L. Tan, J. C. Mauro, S. H. Xu, Z. M. Yang, and M. Y. Peng, “Unusual thermal response of tellurium near-infrared luminescence in phosphate laser glass,” Opt. Lett. 43(19), 4823 (2018).
    [Crossref]
  32. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant Optical Second Harmonic Generation and Mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
    [Crossref]
  33. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  34. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
    [Crossref]
  35. N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
    [Crossref]
  36. W. H. Yang, Y. J. Wang, Y. H. Zheng, and H. D. Lu, “Comparative study of the frequency-doubling performance on ring and linear cavity at short wavelength region,” Opt. Express 23(15), 19624 (2015).
    [Crossref]
  37. Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41(14), 3331 (2016).
    [Crossref]
  38. C. Y. Chen, S. P. Shi, and Y. H. Zheng, “Low-noise, transformer-coupled resonant photodetector for squeezed state generation,” Rev. Sci. Instrum. 88(10), 103101 (2017).
    [Crossref]
  39. S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO$_{4}$4 and periodically poled KTiOPO$_{4}$4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
    [Crossref]

2019 (1)

2018 (3)

2017 (5)

Z. H. Yan and X. J. Jia, “Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control,” Quantum Sci. Technol. 2(2), 024003 (2017).
[Crossref]

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

W. H. Yang, X. L. Jin, X. D. Yu, Y. H. Zheng, and K. C. Peng, “Dependence of measured audio-band squeezing level on local oscillator intensity noise,” Opt. Express 25(20), 24262 (2017).
[Crossref]

W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations,” Opt. Lett. 42(21), 4553 (2017).
[Crossref]

C. Y. Chen, S. P. Shi, and Y. H. Zheng, “Low-noise, transformer-coupled resonant photodetector for squeezed state generation,” Rev. Sci. Instrum. 88(10), 103101 (2017).
[Crossref]

2016 (5)

2015 (1)

2014 (2)

X. Wen, Y. S. Han, J. D. Bai, J. He, Y. H. Wang, B. D. Yang, and J. Wang, “Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22(26), 32293 (2014).
[Crossref]

H. Y. Hao, L. Tian, H. X. Yuan, S. J. Li, and H. Wang, “The Experimental Investigation of 795 nm Correlation Photons caused by Spontaneous Parametric Down-Conversion,” Acta Sinica Quantum Opt. 20, 177–182 (2014).

2013 (3)

2012 (1)

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

2011 (1)

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

2010 (2)

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (1)

2006 (1)

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860 nm with periodically poled KTiOPO$_{4}$4,” Appl. Phys. Lett. 89(6), 061116 (2006).
[Crossref]

2005 (1)

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

2004 (1)

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO$_{4}$4 and periodically poled KTiOPO$_{4}$4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

2003 (1)

F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227(4-6), 389–403 (2003).
[Crossref]

1999 (1)

J. Hald, J. L. S. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

1998 (1)

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, and H. J. Kimble, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

1997 (1)

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

1991 (1)

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

1966 (1)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant Optical Second Harmonic Generation and Mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

Andersen, P. E.

Andersson-Engels, S.

Ashkin, A.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant Optical Second Harmonic Generation and Mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

Ast, M.

Ast, S.

Bai, J. D.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant Optical Second Harmonic Generation and Mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

Bramati, A.

Buchler, B. C.

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Burks, S.

Byer, R. L.

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Chen, C. Y.

C. Y. Chen, S. P. Shi, and Y. H. Zheng, “Low-noise, transformer-coupled resonant photodetector for squeezed state generation,” Rev. Sci. Instrum. 88(10), 103101 (2017).
[Crossref]

Chiummo, A.

Chua, S. S. Y.

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

Deng, R. J.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

Deng, X.

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant Optical Second Harmonic Generation and Mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

Eberle, T.

Erbert, G.

Fejer, M. M.

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Fernholz, T.

H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, “Deterministic quantum teleportation between distant atomic objects,” Nat. Phys. 9(7), 400–404 (2013).
[Crossref]

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Furusawa, A.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860 nm with periodically poled KTiOPO$_{4}$4,” Appl. Phys. Lett. 89(6), 061116 (2006).
[Crossref]

Giacobino, E.

Gustafson, E. K.

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Hald, J.

J. Hald, J. L. S. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Hammerer, K.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Han, Y. S.

Handchen, V.

Hao, H. Y.

H. Y. Hao, L. Tian, H. X. Yuan, S. J. Li, and H. Wang, “The Experimental Investigation of 795 nm Correlation Photons caused by Spontaneous Parametric Down-Conversion,” Acta Sinica Quantum Opt. 20, 177–182 (2014).

He, J.

Hood, C. J.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, and H. J. Kimble, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Jensen, K.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

Jensen, O. B.

Jia, X.

Jia, X. J.

Y. H. Liu, J. L. Yan, L. X. Ma, Z. H. Yan, and X. J. Jia, “Continuous-variable entanglement distillation between remote quantum nodes,” Phys. Rev. A 98(5), 052308 (2018).
[Crossref]

Z. H. Yan and X. J. Jia, “Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control,” Quantum Sci. Technol. 2(2), 024003 (2017).
[Crossref]

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

Jin, X. L.

Kannari, F.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860 nm with periodically poled KTiOPO$_{4}$4,” Appl. Phys. Lett. 89(6), 061116 (2006).
[Crossref]

Khalaidovski, A.

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, and H. J. Kimble, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO$_{3}$3 in an external cavity,” Opt. Lett. 16(18), 1400 (1991).
[Crossref]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Krauter, H.

H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, “Deterministic quantum teleportation between distant atomic objects,” Nat. Phys. 9(7), 400–404 (2013).
[Crossref]

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

Lam, P. K.

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Langford, N. K.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Laurat, J.

Laurell, F.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO$_{4}$4 and periodically poled KTiOPO$_{4}$4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Le Targat, R.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

Lee, K. C.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Lemonde, P.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

Li, G.

J. F. Tian, C. Yang, J. Xue, Y. C. Zhang, G. Li, and T. C. Zhang, “High-efficiency blue light generation at 426 nm in low pump regime,” J. Opt. 18(5), 055506 (2016).
[Crossref]

X. Deng, J. Zhang, Y. C. Zhang, G. Li, and T. C. Zhang, “Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO$_{4}$4,” Opt. Express 21(22), 25907 (2013).
[Crossref]

Li, S. J.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

H. Y. Hao, L. Tian, H. X. Yuan, S. J. Li, and H. Wang, “The Experimental Investigation of 795 nm Correlation Photons caused by Spontaneous Parametric Down-Conversion,” Acta Sinica Quantum Opt. 20, 177–182 (2014).

Li, Z. X.

Liu, J. H.

Liu, Y. H.

Y. H. Liu, J. L. Yan, L. X. Ma, Z. H. Yan, and X. J. Jia, “Continuous-variable entanglement distillation between remote quantum nodes,” Phys. Rev. A 98(5), 052308 (2018).
[Crossref]

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Lowry, C. M. M.

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Lu, H. D.

Lundeman, J. H.

Ma, L. X.

Y. H. Liu, J. L. Yan, L. X. Ma, Z. H. Yan, and X. J. Jia, “Continuous-variable entanglement distillation between remote quantum nodes,” Phys. Rev. A 98(5), 052308 (2018).
[Crossref]

Ma, R.

Ma, W. G.

Mauro, J. C.

McClelland, D. E.

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Mehmet, M.

S. Ast, M. Ast, M. Mehmet, and R. Schnabel, “Gaussian entanglement distribution with gigahertz bandwidth,” Opt. Lett. 41(21), 5094 (2016).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

Muschik, C. A.

H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, “Deterministic quantum teleportation between distant atomic objects,” Nat. Phys. 9(7), 400–404 (2013).
[Crossref]

Nielsen, B. M.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

Nunn, J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Ortalo, J.

Owari, M.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

Pasiskevicius, V.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO$_{4}$4 and periodically poled KTiOPO$_{4}$4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Peng, K. C.

Peng, M. Y.

Petersen, J. M.

H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, “Deterministic quantum teleportation between distant atomic objects,” Nat. Phys. 9(7), 400–404 (2013).
[Crossref]

Petersen, P. M.

Ph. Georgiades, N.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, and H. J. Kimble, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

Plenio, M. B.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

Polzik, E. S.

H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, “Deterministic quantum teleportation between distant atomic objects,” Nat. Phys. 9(7), 400–404 (2013).
[Crossref]

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

J. Hald, J. L. S. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO$_{3}$3 in an external cavity,” Opt. Lett. 16(18), 1400 (1991).
[Crossref]

Reim, K. F.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Riis, E.

F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227(4-6), 389–403 (2003).
[Crossref]

Salart, D.

H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, “Deterministic quantum teleportation between distant atomic objects,” Nat. Phys. 9(7), 400–404 (2013).
[Crossref]

Sasaki, M.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860 nm with periodically poled KTiOPO$_{4}$4,” Appl. Phys. Lett. 89(6), 061116 (2006).
[Crossref]

Schnabel, R.

S. Ast, M. Ast, M. Mehmet, and R. Schnabel, “Gaussian entanglement distribution with gigahertz bandwidth,” Opt. Lett. 41(21), 5094 (2016).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

T. Eberle, V. Handchen, and R. Schnabel, “Stable control of 10 dB two-mode squeezed vacuum states of light,” Opt. Express 21(9), 11546 (2013).
[Crossref]

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Schori, C.

J. Hald, J. L. S. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Serafini, A.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

Shaddock, D. A.

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Shen, H.

H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, “Deterministic quantum teleportation between distant atomic objects,” Nat. Phys. 9(7), 400–404 (2013).
[Crossref]

Shi, S. P.

Sørensen, A. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Sørensen, J. L. S.

J. Hald, J. L. S. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Stefszky, M. S.

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Sumpf, B.

Sun, X. C.

Sussman, B. J.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Suzuki, S.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860 nm with periodically poled KTiOPO$_{4}$4,” Appl. Phys. Lett. 89(6), 061116 (2006).
[Crossref]

Tan, L. L.

Tian, J. F.

J. F. Tian, C. Yang, J. Xue, Y. C. Zhang, G. Li, and T. C. Zhang, “High-efficiency blue light generation at 426 nm in low pump regime,” J. Opt. 18(5), 055506 (2016).
[Crossref]

Tian, L.

X. C. Sun, Y. J. Wang, L. Tian, S. P. Shi, Y. H. Zheng, and K. C. Peng, “Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise,” Opt. Lett. 44(7), 1789 (2019).
[Crossref]

H. Y. Hao, L. Tian, H. X. Yuan, S. J. Li, and H. Wang, “The Experimental Investigation of 795 nm Correlation Photons caused by Spontaneous Parametric Down-Conversion,” Acta Sinica Quantum Opt. 20, 177–182 (2014).

Torabi-Goudarzi, F.

F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227(4-6), 389–403 (2003).
[Crossref]

Turchette, Q. A.

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, and H. J. Kimble, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

Uehara, N.

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

Villa, F.

Walmsley, I. A.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Wang, D.

Wang, H.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

H. Y. Hao, L. Tian, H. X. Yuan, S. J. Li, and H. Wang, “The Experimental Investigation of 795 nm Correlation Photons caused by Spontaneous Parametric Down-Conversion,” Acta Sinica Quantum Opt. 20, 177–182 (2014).

Wang, J.

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO$_{4}$4 and periodically poled KTiOPO$_{4}$4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Wang, Y. H.

Wang, Y. J.

Wasilewski, W.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

Wen, X.

Wolf, M. M.

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

Wu, J. Z.

Wu, L.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

Xie, C. D.

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

Xu, S. H.

Xue, J.

J. F. Tian, C. Yang, J. Xue, Y. C. Zhang, G. Li, and T. C. Zhang, “High-efficiency blue light generation at 426 nm in low pump regime,” J. Opt. 18(5), 055506 (2016).
[Crossref]

Yan, J. L.

Y. H. Liu, J. L. Yan, L. X. Ma, Z. H. Yan, and X. J. Jia, “Continuous-variable entanglement distillation between remote quantum nodes,” Phys. Rev. A 98(5), 052308 (2018).
[Crossref]

Yan, Z. H.

Y. H. Liu, J. L. Yan, L. X. Ma, Z. H. Yan, and X. J. Jia, “Continuous-variable entanglement distillation between remote quantum nodes,” Phys. Rev. A 98(5), 052308 (2018).
[Crossref]

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

Z. H. Yan and X. J. Jia, “Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control,” Quantum Sci. Technol. 2(2), 024003 (2017).
[Crossref]

Yang, B. D.

Yang, C.

J. F. Tian, C. Yang, J. Xue, Y. C. Zhang, G. Li, and T. C. Zhang, “High-efficiency blue light generation at 426 nm in low pump regime,” J. Opt. 18(5), 055506 (2016).
[Crossref]

Yang, W. H.

Yang, Z. M.

Yonezawa, H.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860 nm with periodically poled KTiOPO$_{4}$4,” Appl. Phys. Lett. 89(6), 061116 (2006).
[Crossref]

Yu, X. D.

Yuan, H. X.

H. Y. Hao, L. Tian, H. X. Yuan, S. J. Li, and H. Wang, “The Experimental Investigation of 795 nm Correlation Photons caused by Spontaneous Parametric Down-Conversion,” Acta Sinica Quantum Opt. 20, 177–182 (2014).

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Zhang, J.

Zhang, J. X.

Zhang, T. C.

J. F. Tian, C. Yang, J. Xue, Y. C. Zhang, G. Li, and T. C. Zhang, “High-efficiency blue light generation at 426 nm in low pump regime,” J. Opt. 18(5), 055506 (2016).
[Crossref]

X. Deng, J. Zhang, Y. C. Zhang, G. Li, and T. C. Zhang, “Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO$_{4}$4,” Opt. Express 21(22), 25907 (2013).
[Crossref]

Zhang, Y.

Zhang, Y. C.

J. F. Tian, C. Yang, J. Xue, Y. C. Zhang, G. Li, and T. C. Zhang, “High-efficiency blue light generation at 426 nm in low pump regime,” J. Opt. 18(5), 055506 (2016).
[Crossref]

X. Deng, J. Zhang, Y. C. Zhang, G. Li, and T. C. Zhang, “Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO$_{4}$4,” Opt. Express 21(22), 25907 (2013).
[Crossref]

Zheng, Y. H.

X. C. Sun, Y. J. Wang, L. Tian, S. P. Shi, Y. H. Zheng, and K. C. Peng, “Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise,” Opt. Lett. 44(7), 1789 (2019).
[Crossref]

S. P. Shi, Y. J. Wang, W. H. Yang, Y. H. Zheng, and K. C. Peng, “Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption,” Opt. Lett. 43(21), 5411 (2018).
[Crossref]

W. H. Yang, X. L. Jin, X. D. Yu, Y. H. Zheng, and K. C. Peng, “Dependence of measured audio-band squeezing level on local oscillator intensity noise,” Opt. Express 25(20), 24262 (2017).
[Crossref]

W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations,” Opt. Lett. 42(21), 4553 (2017).
[Crossref]

C. Y. Chen, S. P. Shi, and Y. H. Zheng, “Low-noise, transformer-coupled resonant photodetector for squeezed state generation,” Rev. Sci. Instrum. 88(10), 103101 (2017).
[Crossref]

Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41(14), 3331 (2016).
[Crossref]

W. H. Yang, Y. J. Wang, Y. H. Zheng, and H. D. Lu, “Comparative study of the frequency-doubling performance on ring and linear cavity at short wavelength region,” Opt. Express 23(15), 19624 (2015).
[Crossref]

Zondy, J.-J.

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

Acta Sinica Quantum Opt. (1)

H. Y. Hao, L. Tian, H. X. Yuan, S. J. Li, and H. Wang, “The Experimental Investigation of 795 nm Correlation Photons caused by Spontaneous Parametric Down-Conversion,” Acta Sinica Quantum Opt. 20, 177–182 (2014).

Appl. Phys. Lett. (2)

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7dB quadrature squeezing at 860 nm with periodically poled KTiOPO$_{4}$4,” Appl. Phys. Lett. 89(6), 061116 (2006).
[Crossref]

M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56(19), 1831–1833 (1990).
[Crossref]

Class. Quantum Gravity (1)

M. S. Stefszky, C. M. M. Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. Quantum Gravity 29(14), 145015 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant Optical Second Harmonic Generation and Mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966).
[Crossref]

J. Appl. Phys. (2)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO$_{4}$4 and periodically poled KTiOPO$_{4}$4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

J. Opt. (1)

J. F. Tian, C. Yang, J. Xue, Y. C. Zhang, G. Li, and T. C. Zhang, “High-efficiency blue light generation at 426 nm in low pump regime,” J. Opt. 18(5), 055506 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

Z. H. Yan, L. Wu, X. J. Jia, Y. H. Liu, R. J. Deng, S. J. Li, H. Wang, C. D. Xie, and K. C. Peng, “Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles,” Nat. Commun. 8(1), 718 (2017).
[Crossref]

Nat. Photonics (1)

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4(4), 218–221 (2010).
[Crossref]

Nat. Phys. (2)

K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik, “Quantum memory for entangled continuous-variable states,” Nat. Phys. 7(1), 13–16 (2011).
[Crossref]

H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, H. Shen, T. Fernholz, and E. S. Polzik, “Deterministic quantum teleportation between distant atomic objects,” Nat. Phys. 9(7), 400–404 (2013).
[Crossref]

Nature (1)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

Opt. Commun. (2)

R. Le Targat, J.-J. Zondy, and P. Lemonde, “75%-Efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

F. Torabi-Goudarzi and E. Riis, “Efficient cw high-power frequency doubling in periodically poled KTP,” Opt. Commun. 227(4-6), 389–403 (2003).
[Crossref]

Opt. Express (8)

J. H. Lundeman, O. B. Jensen, P. E. Andersen, S. Andersson-Engels, B. Sumpf, G. Erbert, and P. M. Petersen, “High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser,” Opt. Express 16(4), 2486 (2008).
[Crossref]

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the $D_{2}$D2 cesium line,” Opt. Express 17(5), 3777 (2009).
[Crossref]

T. Eberle, V. Handchen, and R. Schnabel, “Stable control of 10 dB two-mode squeezed vacuum states of light,” Opt. Express 21(9), 11546 (2013).
[Crossref]

X. Deng, J. Zhang, Y. C. Zhang, G. Li, and T. C. Zhang, “Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO$_{4}$4,” Opt. Express 21(22), 25907 (2013).
[Crossref]

X. Wen, Y. S. Han, J. D. Bai, J. He, Y. H. Wang, B. D. Yang, and J. Wang, “Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime,” Opt. Express 22(26), 32293 (2014).
[Crossref]

W. H. Yang, Y. J. Wang, Y. H. Zheng, and H. D. Lu, “Comparative study of the frequency-doubling performance on ring and linear cavity at short wavelength region,” Opt. Express 23(15), 19624 (2015).
[Crossref]

W. H. Yang, X. L. Jin, X. D. Yu, Y. H. Zheng, and K. C. Peng, “Dependence of measured audio-band squeezing level on local oscillator intensity noise,” Opt. Express 25(20), 24262 (2017).
[Crossref]

Y. Zhang, J. H. Liu, J. Z. Wu, R. Ma, D. Wang, and J. X. Zhang, “Single-frequency tunable 447.3 nm laser by frequency doubling of tapered amplified diode laser at cesium $D_{1}$D1 line,” Opt. Express 24(17), 19769–19775 (2016).
[Crossref]

Opt. Lett. (7)

Phys. Rev. A (2)

Q. A. Turchette, N. Ph. Georgiades, C. J. Hood, and H. J. Kimble, “Squeezed excitation in cavity QED: Experiment and theory,” Phys. Rev. A 58(5), 4056–4077 (1998).
[Crossref]

Y. H. Liu, J. L. Yan, L. X. Ma, Z. H. Yan, and X. J. Jia, “Continuous-variable entanglement distillation between remote quantum nodes,” Phys. Rev. A 98(5), 052308 (2018).
[Crossref]

Phys. Rev. Lett. (2)

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117(11), 110801 (2016).
[Crossref]

J. Hald, J. L. S. Sørensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Proc. SPIE (1)

N. Uehara, E. K. Gustafson, M. M. Fejer, and R. L. Byer, “Modeling of efficient mode matching and thermal-lensing effect on a laser-beam coupling into a mode-cleaner cavity,” Proc. SPIE 2989, 57–68 (1997).
[Crossref]

Quantum Sci. Technol. (1)

Z. H. Yan and X. J. Jia, “Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control,” Quantum Sci. Technol. 2(2), 024003 (2017).
[Crossref]

Rev. Mod. Phys. (1)

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82(2), 1041–1093 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

C. Y. Chen, S. P. Shi, and Y. H. Zheng, “Low-noise, transformer-coupled resonant photodetector for squeezed state generation,” Rev. Sci. Instrum. 88(10), 103101 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Power density distribution along the crystal axis with different beam waists: (a) 32 $\mu m$, (b) 36 $\mu m$, (c) 40 $\mu m$. (d) is the new power density distribution along the axis after optimizing the crystal position with a beam waist of 36 $\mu m$.
Fig. 2.
Fig. 2. Variation of the waist radius with the incident power. Solid line: after the optimization; Dashed line: before the optimization.
Fig. 3.
Fig. 3. Mode-matching efficiency as the input FW power. Solid line: after the optimization; Dashed line: before the optimization.
Fig. 4.
Fig. 4. Experimental setup. DL, diode laser; OF, optical fiber; OI, optical isolator; EOM, electro-optic modulator; PD1-2, photodetector; LPF1-2, low-pass filter; PID, proportional-integral-derivative; HVA1-2, high-voltage amplifier; HR, high-reflection mirror; DBS, dichroic beam splitter; PM, power meter.
Fig. 5.
Fig. 5. Theoretical and experimental conversion efficiencies. Brown solid line is the theoretical result without considering thermal lens. Red dotted line and black dashed line are theoretical results after and before the optimization, respectively. Blue squares and carmine circles are experimental results after and before the optimization, respectively.
Fig. 6.
Fig. 6. Power stability of the HW output with different input FW power.
Fig. 7.
Fig. 7. Saturation absorption spectroscopy of $(6^{2}S_{1/2},F=4)\to (6^{2}P_{3/2},F'=3)$$(6^{2}S_{1/2},F=4)\to (6^{2}P_{3/2},F'=5)$ transitions of Cs $D_{2}$ line when the infrared diode laser is scanned.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

  P c = P i n T 1 [ 1 ( 1 T 1 ) ( 1 L ) ( 1 Γ P c ) ] 2 .
  E N L = 4 ω 2 d e f f 2 L c ε 0 c 3 λ 1 n 1 n 2 h ( α , ξ , σ ) exp [ ( α 1 + α 2 / 2 ) L c ] ,
  h ( α , ξ , σ ) = 1 2 ξ ξ / 2 + ξ / 2 d t d t exp [ α ( t + t + ξ ) i σ ( t t ) ] ( 1 + i t ) ( 1 i t ) .
  f = π K c ω 0 2 P o u t ( d n / d T ) 1 1 e ( α 1 + α 2 / 2 ) L c .
  κ 00 = 16 α = x , y { 0 l 1 W 2 α ( z ) + W 2 α , e ( z ) d z } 2 α { 0 l 1 W 2 α ( z ) d z } { 0 l 1 W 2 α , e ( z ) d z } ,
  W 2 α ( z ) = W 2 α 0 { 1 + ( z z α z α 0 ) } 2 ,
  z α 0 = π W 2 α 0 / λ .

Metrics