Abstract

We propose and analyze an active mirror structure that uses a subwavelength grating reflector combined with optical gain. The structure is designed to be directly bonded to a thermal substrate (such as diamond) for efficient heat removal. We present optical wave propagation and thermal transport analysis and show that such a structure is well suited for power scaling of optically pumped semiconductor disk lasers to multi-kilowatt CW power operation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optically pumped DBR-free semiconductor disk lasers

Zhou Yang, Alexander R. Albrecht, Jeffrey G. Cederberg, and Mansoor Sheik-Bahae
Opt. Express 23(26) 33164-33169 (2015)

Semiconductor membrane external-cavity surface-emitting laser (MECSEL)

Hermann Kahle, Cherry May N. Mateo, Uwe Brauch, Philipp Tatar-Mathes, Roman Bek, Michael Jetter, Thomas Graf, and Peter Michler
Optica 3(12) 1506-1512 (2016)

Power scalable semiconductor disk laser using multiple gain cavity

Esa. J. Saarinen, Antti Härkönen, Soile Suomalainen, and Oleg G. Okhotnikov
Opt. Express 14(26) 12868-12871 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5 W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
    [Crossref]
  2. O. G. Okhotnikov, Semiconductor disk lasers: physics and technology (Wiley-VCH, 2010).
  3. M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs : review of technology Optically pumped VECSELs : review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
    [Crossref]
  4. A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
    [Crossref]
  5. R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199–208 (2005).
    [Crossref]
  6. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
    [Crossref]
  7. Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “Optically pumped DBR-free semiconductor disk lasers,” Opt. Express 23(26), 33164–33169 (2015).
    [Crossref]
  8. H. Kahle, C. M. N. Mateo, U. Brauch, P. Tatar-Mathes, R. Bek, M. Jetter, T. Graf, and P. Michler, “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica 3(12), 1506–1512 (2016).
    [Crossref]
  9. S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
    [Crossref]
  10. Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
    [Crossref]
  11. A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
    [Crossref]
  12. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref]
  13. I. Avrutsky and R. Rabady, “Waveguide grating mirror for large-area semiconductor lasers,” Opt. Lett. 26(13), 989–991 (2001).
    [Crossref]
  14. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
    [Crossref]
  15. T. Czyszanowski, M. Gebski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
    [Crossref]
  16. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
    [Crossref]
  17. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
    [Crossref]
  18. S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt. 34(14), 2414–2420 (1995).
    [Crossref]
  19. M. Shokooh-Saremi and R. Magnusson, “Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers,” Opt. Express 16(22), 18249–18263 (2008).
    [Crossref]
  20. F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Monolithic dielectric surfaces as new low-loss light-matter interfaces,” Opt. Lett. 33(3), 264–266 (2008).
    [Crossref]
  21. A. Taghizadeh, G. C. Park, J. Mørk, and I.-S. Chung, “Hybrid grating reflector with high reflectivity and broad bandwidth,” Opt. Express 22(18), 21175–21184 (2014).
    [Crossref]
  22. A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, “High reflectivity grating waveguide coatings for 1064 nm,” Classical Quantum Gravity 23(24), 7297–7303 (2006).
    [Crossref]
  23. M. G. Moharam and T. K. Gaylord, “Rigorous coupled wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  24. M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
    [Crossref]
  25. L. Coldren, M. L. Mashanovitch, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 2012).
  26. Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80 nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109(2), 022101 (2016).
    [Crossref]
  27. A. R. Albrecht, Y. Wang, M. Ghasemkhani, D. V. Seletskiy, J. G. Cederberg, and M. Sheik-Bahae, “Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers,” Opt. Express 21(23), 28801–28808 (2013).
    [Crossref]
  28. B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
    [Crossref]
  29. M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
    [Crossref]
  30. D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
    [Crossref]
  31. A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
    [Crossref]
  32. B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012).
    [Crossref]
  33. C. Glynn, T. S. O’Donovan, and D. B. Murray, “Jet impingement cooling,” in Proceedings of the 9th UK National Heat Transfer Conference, PS3-01 (2005).
  34. A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
    [Crossref]

2018 (1)

Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
[Crossref]

2017 (4)

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs : review of technology Optically pumped VECSELs : review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

T. Czyszanowski, M. Gebski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref]

2016 (5)

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
[Crossref]

H. Kahle, C. M. N. Mateo, U. Brauch, P. Tatar-Mathes, R. Bek, M. Jetter, T. Graf, and P. Michler, “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica 3(12), 1506–1512 (2016).
[Crossref]

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80 nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109(2), 022101 (2016).
[Crossref]

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

2015 (2)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “Optically pumped DBR-free semiconductor disk lasers,” Opt. Express 23(26), 33164–33169 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (3)

B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

2011 (1)

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

2010 (1)

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

2008 (2)

2006 (1)

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, “High reflectivity grating waveguide coatings for 1064 nm,” Classical Quantum Gravity 23(24), 7297–7303 (2006).
[Crossref]

2005 (2)

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199–208 (2005).
[Crossref]

2004 (1)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

2001 (1)

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5 W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

1995 (1)

1993 (1)

1989 (1)

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

1981 (1)

Albrecht, A. R.

Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
[Crossref]

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80 nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109(2), 022101 (2016).
[Crossref]

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “Optically pumped DBR-free semiconductor disk lasers,” Opt. Express 23(26), 33164–33169 (2015).
[Crossref]

A. R. Albrecht, Y. Wang, M. Ghasemkhani, D. V. Seletskiy, J. G. Cederberg, and M. Sheik-Bahae, “Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers,” Opt. Express 21(23), 28801–28808 (2013).
[Crossref]

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Alfieri, C. G. E.

Avrutsky, I.

Balakrishnan, G.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Bedford, R. G.

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199–208 (2005).
[Crossref]

Bek, R.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

H. Kahle, C. M. N. Mateo, U. Brauch, P. Tatar-Mathes, R. Bek, M. Jetter, T. Graf, and P. Michler, “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica 3(12), 1506–1512 (2016).
[Crossref]

Brauch, U.

Brennan, T. M.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Britzger, M.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

Broda, A.

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Brückner, F.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Monolithic dielectric surfaces as new low-loss light-matter interfaces,” Opt. Lett. 33(3), 264–266 (2008).
[Crossref]

Brueck, S. R. J.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Bunkowski, A.

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, “High reflectivity grating waveguide coatings for 1064 nm,” Classical Quantum Gravity 23(24), 7297–7303 (2006).
[Crossref]

Burmeister, O.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Monolithic dielectric surfaces as new low-loss light-matter interfaces,” Opt. Lett. 33(3), 264–266 (2008).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, “High reflectivity grating waveguide coatings for 1064 nm,” Classical Quantum Gravity 23(24), 7297–7303 (2006).
[Crossref]

Burns, D.

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Calvez, S.

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Cederberg, J. G.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Chen, L.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Chilla, J. L. A.

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199–208 (2005).
[Crossref]

Chmielewski, K.

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Chung, I.-S.

Clausnitzer, T.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Monolithic dielectric surfaces as new low-loss light-matter interfaces,” Opt. Lett. 33(3), 264–266 (2008).
[Crossref]

Coldren, L.

L. Coldren, M. L. Mashanovitch, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 2012).

Cole, G. D.

Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
[Crossref]

Corzine, S. W.

L. Coldren, M. L. Mashanovitch, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 2012).

Czyszanowski, T.

T. Czyszanowski, M. Gebski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref]

Danzmann, K.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Monolithic dielectric surfaces as new low-loss light-matter interfaces,” Opt. Lett. 33(3), 264–266 (2008).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, “High reflectivity grating waveguide coatings for 1064 nm,” Classical Quantum Gravity 23(24), 7297–7303 (2006).
[Crossref]

Dawson, M. D.

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Dems, M.

T. Czyszanowski, M. Gebski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref]

Fedorova, K. A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Follman, D.

Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
[Crossref]

Friedrich, D.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Monolithic dielectric surfaces as new low-loss light-matter interfaces,” Opt. Lett. 33(3), 264–266 (2008).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, “High reflectivity grating waveguide coatings for 1064 nm,” Classical Quantum Gravity 23(24), 7297–7303 (2006).
[Crossref]

Gaafar, M. A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Gaylord, T. K.

Gebski, M.

T. Czyszanowski, M. Gebski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref]

Ghasemkhani, M.

Giannini, N.

Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
[Crossref]

Gini, E.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Glynn, C.

C. Glynn, T. S. O’Donovan, and D. B. Murray, “Jet impingement cooling,” in Proceedings of the 9th UK National Heat Transfer Conference, PS3-01 (2005).

Golaszewska-Malec, K.

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Golling, M.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Graf, T.

Guina, M.

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs : review of technology Optically pumped VECSELs : review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

Hader, J.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Hains, C. P.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5 W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Hammons, B. E.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Harkonen, A.

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs : review of technology Optically pumped VECSELs : review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

Hastie, J. E.

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Heinen, B.

B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Heu, P.

Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
[Crossref]

Hopkins, J.-M.

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Jetter, M.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

H. Kahle, C. M. N. Mateo, U. Brauch, P. Tatar-Mathes, R. Bek, M. Jetter, T. Graf, and P. Michler, “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica 3(12), 1506–1512 (2016).
[Crossref]

Kahle, H.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

H. Kahle, C. M. N. Mateo, U. Brauch, P. Tatar-Mathes, R. Bek, M. Jetter, T. Graf, and P. Michler, “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica 3(12), 1506–1512 (2016).
[Crossref]

Kaneda, Y.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Keller, U.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Kemp, A. J.

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Klenner, A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Kley, E.-B.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Monolithic dielectric surfaces as new low-loss light-matter interfaces,” Opt. Lett. 33(3), 264–266 (2008).
[Crossref]

Koch, M.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Koch, S. W.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Kolesik, M.

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199–208 (2005).
[Crossref]

Kunert, B.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012).
[Crossref]

Kuzmicz, A.

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5 W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Link, S. M.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Magnusson, R.

Malloy, K. J.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Mangold, M.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Mashanovitch, M. L.

L. Coldren, M. L. Mashanovitch, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 2012).

Mateo, C. M. N.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Mayer, A. S.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

McInerney, J. G.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Michalak, K.

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Michler, P.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

H. Kahle, C. M. N. Mateo, U. Brauch, P. Tatar-Mathes, R. Bek, M. Jetter, T. Graf, and P. Michler, “Semiconductor membrane external-cavity surface-emitting laser (MECSEL),” Optica 3(12), 1506–1512 (2016).
[Crossref]

Mirkhanov, S.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

Moharam, M. G.

Moloney, J. V.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199–208 (2005).
[Crossref]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5 W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Mørk, J.

Murray, D. B.

C. Glynn, T. S. O’Donovan, and D. B. Murray, “Jet impingement cooling,” in Proceedings of the 9th UK National Heat Transfer Conference, PS3-01 (2005).

Muszalski, J.

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Nelson, T. R.

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199–208 (2005).
[Crossref]

O’Donovan, T. S.

C. Glynn, T. S. O’Donovan, and D. B. Murray, “Jet impingement cooling,” in Proceedings of the 9th UK National Heat Transfer Conference, PS3-01 (2005).

Okhotnikov, O. G.

O. G. Okhotnikov, Semiconductor disk lasers: physics and technology (Wiley-VCH, 2010).

Osinski, M.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Panajotov, K.

T. Czyszanowski, M. Gebski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref]

Park, G. C.

Pecoroni, R.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

Quarterman, A. H.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

Rabady, R.

Rafailov, E. U.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Rahimi-Iman, A.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
[Crossref]

Raja, M. Y. A.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Rantamaki, A.

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs : review of technology Optically pumped VECSELs : review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

Reed, M. K.

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199–208 (2005).
[Crossref]

Rotter, T. J.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Rychlik, G.

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Sankowska, I.

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Sarzala, R.

T. Czyszanowski, M. Gebski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref]

Schaus, C. F.

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

Schnabel, R.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Monolithic dielectric surfaces as new low-loss light-matter interfaces,” Opt. Lett. 33(3), 264–266 (2008).
[Crossref]

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, “High reflectivity grating waveguide coatings for 1064 nm,” Classical Quantum Gravity 23(24), 7297–7303 (2006).
[Crossref]

Seletskiy, D. V.

Sheik-Bahae, M.

Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
[Crossref]

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80 nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109(2), 022101 (2016).
[Crossref]

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “Optically pumped DBR-free semiconductor disk lasers,” Opt. Express 23(26), 33164–33169 (2015).
[Crossref]

A. R. Albrecht, Y. Wang, M. Ghasemkhani, D. V. Seletskiy, J. G. Cederberg, and M. Sheik-Bahae, “Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers,” Opt. Express 21(23), 28801–28808 (2013).
[Crossref]

Shokooh-Saremi, M.

Smith, S. A.

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Smyth, C. J. C.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

Sparenberg, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012).
[Crossref]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5 W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

Stintz, A.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Stolz, W.

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012).
[Crossref]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

Swift, S.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

Taghizadeh, A.

Tatar-Mathes, P.

Tilma, B. W.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Tünnermann, A.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

F. Brückner, T. Clausnitzer, O. Burmeister, D. Friedrich, E.-B. Kley, K. Danzmann, A. Tünnermann, and R. Schnabel, “Monolithic dielectric surfaces as new low-loss light-matter interfaces,” Opt. Lett. 33(3), 264–266 (2008).
[Crossref]

Valentine, G. J.

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Vollmer, S.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

Waldburger, D.

D. Waldburger, S. M. Link, M. Mangold, C. G. E. Alfieri, E. Gini, M. Golling, B. W. Tilma, and U. Keller, “High-power 100  fs semiconductor disk lasers,” Optica 3(8), 844–852 (2016).
[Crossref]

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Wang, S. S.

Wang, T.-L.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Wang, Y.

Wasiak, M.

T. Czyszanowski, M. Gebski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref]

Weber, A.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

Wilcox, K. G.

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

Wójcik-Jedlinska, A.

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Xin, G.

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Yang, W.

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Yang, Z.

Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
[Crossref]

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80 nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109(2), 022101 (2016).
[Crossref]

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “Optically pumped DBR-free semiconductor disk lasers,” Opt. Express 23(26), 33164–33169 (2015).
[Crossref]

Zaugg, C. A.

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Zhang, F.

B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012).
[Crossref]

Adv. Opt. Photonics (2)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov, and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt. Photonics 8(3), 370–400 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Z. Yang, A. R. Albrecht, J. G. Cederberg, and M. Sheik-Bahae, “80 nm tunable DBR-free semiconductor disk laser,” Appl. Phys. Lett. 109(2), 022101 (2016).
[Crossref]

Classical Quantum Gravity (1)

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel, “High reflectivity grating waveguide coatings for 1064 nm,” Classical Quantum Gravity 23(24), 7297–7303 (2006).
[Crossref]

Electron. Lett. (3)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012).
[Crossref]

S. Mirkhanov, A. H. Quarterman, H. Kahle, R. Bek, R. Pecoroni, C. J. C. Smyth, S. Vollmer, S. Swift, P. Michler, M. Jetter, and K. G. Wilcox, “DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm,” Electron. Lett. 53(23), 1537–1539 (2017).
[Crossref]

Z. Yang, D. Follman, A. R. Albrecht, P. Heu, N. Giannini, G. D. Cole, and M. Sheik-Bahae, “16 W DBR-free membrane semiconductor disk laser with dual-SiC heatspreader,” Electron. Lett. 54(7), 430–432 (2018).
[Crossref]

IEEE J. Quantum Electron. (3)

M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25(6), 1500–1512 (1989).
[Crossref]

A. J. Kemp, G. J. Valentine, J.-M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 µm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16(7), 1676–1678 (2004).
[Crossref]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-Power (>0.5 W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997).
[Crossref]

J. Opt. (1)

A. Rahimi-Iman, “Recent advances in VECSELs,” J. Opt. 18(9), 093003 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (1)

M. Guina, A. Rantamaki, and A. Harkonen, “Optically pumped VECSELs : review of technology Optically pumped VECSELs : review of technology and progress,” J. Phys. D: Appl. Phys. 50(38), 383001 (2017).
[Crossref]

Light: Sci. Appl. (1)

B. W. Tilma, M. Mangold, C. A. Zaugg, S. M. Link, D. Waldburger, A. Klenner, A. S. Mayer, E. Gini, M. Golling, and U. Keller, “Recent advances in ultrafast semiconductor disk lasers,” Light: Sci. Appl. 4(7), e310 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. Broda, A. Kuźmicz, G. Rychlik, K. Chmielewski, A. Wójcik-Jedlińska, I. Sankowska, K. Gołaszewska-Malec, K. Michalak, and J. Muszalski, “Highly efficient heat extraction by double diamond heat-spreaders applied to a vertical external cavity surface-emitting laser,” Opt. Quantum Electron. 49(9), 287 (2017).
[Crossref]

Optica (2)

Phys. Rev. Lett. (1)

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett. 104(16), 163903 (2010).
[Crossref]

Proc. SPIE (2)

R. G. Bedford, M. Kolesik, J. L. A. Chilla, M. K. Reed, T. R. Nelson, and J. V. Moloney, “Power-limiting mechanisms in VECSELs,” Proc. SPIE 5814, 199–208 (2005).
[Crossref]

A. R. Albrecht, T. J. Rotter, C. P. Hains, A. Stintz, G. Xin, T.-L. Wang, Y. Kaneda, J. V. Moloney, K. J. Malloy, and G. Balakrishnan, “High-power 1.25 µm InAs QD VECSEL based on resonant periodic gain structure,” Proc. SPIE 7919, 791904 (2011).
[Crossref]

Sci. Rep. (1)

T. Czyszanowski, M. Gebski, M. Dems, M. Wasiak, R. Sarzała, and K. Panajotov, “Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system,” Sci. Rep. 7(1), 40348 (2017).
[Crossref]

Other (3)

L. Coldren, M. L. Mashanovitch, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 2012).

O. G. Okhotnikov, Semiconductor disk lasers: physics and technology (Wiley-VCH, 2010).

C. Glynn, T. S. O’Donovan, and D. B. Murray, “Jet impingement cooling,” in Proceedings of the 9th UK National Heat Transfer Conference, PS3-01 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of subwavelength grating having a period $\Lambda $, height $h$, fill factor f and index of refraction nH. The grating is bonded to a substrate of index nL< nH. The optical field under normal incidence is diffracted into m = 0, ±1,.. orders while the subwavelength nature of the grating only allows m = 0 reflection. The diffracted higher order modes will couple backward after TIR from the semiconductor/substrate interface.
Fig. 2.
Fig. 2. Calcualted diffraction effiency ${\eta _0}$ of the incident optical field (TM polarization) into the m = 0 transmitted mode versus normalized graing paramters ${\Lambda }{\textrm{n}_\textrm{H}}/{{\lambda }_0}$ and $\textrm{h}/{\Lambda }$ for various fill factors f. The white area corresponds to ${{\eta }_0} < 1{\%}$. The vertical lines (solid and dashed blue) mark the limits of inequality in Eq. (1) for three thermal substrates of sapphire, diamond and SiC. For example, for a sapphire substrate, the possible values of ΛnH0 range from 1 to 2. SiC and diamond have smaller design space. The black contour curves are at an increment of 10%.
Fig. 3.
Fig. 3. Calcualted passive reflectivity maps (${\log _{10}}\frac{1}{{1 - \textrm{R}}}{\;\ }$) versus normalized grating pitch ${\textrm{n}_\textrm{H}}{\Lambda }/{{\lambda }_0}$ and height $\textrm{h}/{\Lambda }$ for two fill factors of (a) f = 55% and (b) f = 63.5%, for semoconductor membranes on sapphire and diamond thermal substrates respectively. The membrane thickness, t + h, is 1 µm. The areas in white correspond to a reflectivity of 99.9%.
Fig. 4.
Fig. 4. The x-component of the electric-field distribution ${|{{\textrm{E}_\textrm{x}}} |^2}{\;\ }$ inside the grating medium calculated for f = 61%, ${\textrm{n}_\textrm{H}}{\Lambda }/{{\lambda }_0} = 1.40$ and $\textrm{h}/{\Lambda \;\ }$ = 0.75. The white dashed lines represent the boundary of the grating. Only one unit-cell is present here and periodic boundary condition are assumed along the x-direction.
Fig. 5.
Fig. 5. The spectra of reflectivity with (red solid) and without gain (black dashline), and gain coefficient (orange). The inset shows the GEMM structre bonded to a diamond substrate with an inserted active layer of thickness d = 750 nm, ${\Lambda }{\textrm{n}_\textrm{H}}/{{\lambda }_0} = 1.40$ and $\textrm{h}/{\Lambda } = 0.75$, f = 61%.
Fig. 6.
Fig. 6. (a) An example of GEMM used as an active mirror in a linear VECSEL cavity. (b) The maximum temperature rise in the gain region versus dissipated heat load for VECSELs based on (1) GEMM (solid lines) and (2) DBR (dashed lines) structures as depicted in the insets. The thermal substrate in both cases is taken to be 0.5 mm thick diamond. The heat load is taken to be inside the gain region within a circualr area assuming two pump spot sizes (radius) of 1 mm (red lines) and 5 mm (blue lines).

Tables (1)

Tables Icon

Table 1. Material thermal conductivity values used in calculation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 < n H Λ λ 0 < n H n L ,

Metrics