Abstract

In this work, we report on defects generation in TiO2 inverse opal (IO) nanostructures by electrochemical reduction in order to increase photocatalytic activity and improve photoelectrochemical (PEC) water splitting performance. Macroporous structures, such as inverse opals, have attracted a lot of attention for energy-related applications because of their large surface area, interconnected pores, and ability to enhance light-matter interaction. Photocurrent density of electrochemically reduced TiO2-IO increased by almost 4 times, compared to pristine TiO2-IO photoelectrodes. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses confirm the presence of oxygen vacancies in electrochemically reduced TiO2-IO photoelectrodes. Oxygen vacancies extend the absorption of TiO2 from the UV to visible region. The incident photon-to-current efficiency (IPCE) increased by almost 3 times in the absorption (UV) region of TiO2 and slightly in the visible region. Impedance studies show improved electrical conductivity, longer photogenerated electron lifetime, and a negative shift of the flatband potential, which are attributed to oxygen vacancies acting as electron donors. The Fermi level shifts to be closer to the conduction band edge of TiO2-IO.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon based photoelectrodes for photoelectrochemical water splitting

Ronglei Fan, Zetian Mi, and Mingrong Shen
Opt. Express 27(4) A51-A80 (2019)

Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting

Mostafa Afifi Hassan, Muhammad Ali Johar, Aadil Waseem, Indrajit V. Bagal, Jun-Seok Ha, and Sang-Wan Ryu
Opt. Express 27(4) A184-A196 (2019)

Gallium Phosphide photoanode coated with TiO2 and CoOx for stable photoelectrochemical water oxidation

M. Alqahtani, S. Ben-Jabar, M. Ebaid, S. Sathasivam, P. Jurczak, X. Xia, A. Alromaeh, C. Blackman, Y. Qin, B. Zhang, B. S. Ooi, H. Liu, I. P. Parkin, and J. Wu
Opt. Express 27(8) A364-A371 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
    [Crossref] [PubMed]
  2. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
    [Crossref] [PubMed]
  3. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
    [Crossref] [PubMed]
  4. T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting - the untamed dream: a review of recent advances,” Molecules 21(7), 900 (2016).
    [Crossref] [PubMed]
  5. Y. Yamada and Y. Kanemitsu, “Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals,” Appl. Phys. Lett. 101(13), 133907 (2012).
    [Crossref]
  6. X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science 331(6018), 746–750 (2011).
    [Crossref] [PubMed]
  7. I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
    [Crossref]
  8. A. P. Singh, N. Kodan, B. R. Mehta, A. Dey, and S. Krishnamurthy, “In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties,” Mater. Res. Bull. 76, 284–291 (2016).
    [Crossref]
  9. L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, and X. An, “Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature,” RSC Advances 6(8), 6643–6650 (2016).
    [Crossref]
  10. M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
    [Crossref]
  11. D. K. Behara, A. K. Ummireddi, V. Aragonda, P. K. Gupta, R. G. Pala, and S. Sivakumar, “Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction,” Phys. Chem. Chem. Phys. 18(12), 8364–8377 (2016).
    [Crossref] [PubMed]
  12. Z. Zhang, M. N. Hedhili, H. Zhu, and P. Wang, “Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes,” Phys. Chem. Chem. Phys. 15(37), 15637–15644 (2013).
    [Crossref] [PubMed]
  13. P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
    [Crossref] [PubMed]
  14. J.-W. Yun, K. Y. Ryu, T. K. Nguyen, F. Ullah, Y. Chang Park, and Y. S. Kim, “Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities,” RSC Advances 7(11), 6202–6208 (2017).
    [Crossref]
  15. H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
    [Crossref] [PubMed]
  16. R. van de Krol, Y. Liang, and J. Schoonman, “Solar hydrogen production with nanostructured metal oxides,” J. Mater. Chem. 18(20), 2311–2320 (2008).
    [Crossref]
  17. S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
    [Crossref]
  18. S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
    [Crossref] [PubMed]
  19. C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
    [Crossref] [PubMed]
  20. R. Yew, S. K. Karuturi, H. H. Tan, and C. Jagadish, Semiconductors and Semimetals – Semiconductors for Photocatalysis (Elsevier, 2017), Chap. 8.
  21. S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
    [Crossref]
  22. T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
    [Crossref]
  23. F. Tian, Y. Zhang, J. Zhang, and C. Pan, “Raman spectroscopy : a new approach to measure the percentage of anatase TiO2 exposed (001) facets,” J. Phys. Chem. C 116(13), 7515–7519 (2012).
    [Crossref]
  24. D. Bersani, P. P. Lottici, and X. Ding, “Phonon confinement effects in the Raman scattering by TiO2 nanocrystals phonon confinement effects in the Raman scattering by TiO2 nanocrystals,” Appl. Phys. Lett. 73(1), 72–75 (1998).
  25. A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, “Hybrid functional studies of the oxygen vacancy in TiO2,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085212 (2010).
    [Crossref]
  26. J. C. Parker and R. W. Siegel, “Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes,” J. Mater. Res. 5(6), 1246–1252 (1990).
    [Crossref]
  27. S. Sahoo, A. K. Arora, and V. Sridharan, “Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals,” J. Phys. Chem. C 113(39), 16927–16933 (2009).
    [Crossref]
  28. C. M. Greenlief, J. M. White, C. S. Ko, and R. J. Gorte, “An XPS investigation of titanium dioxide thin films on polycrystalline platinum,” J. Phys. Chem. 89(23), 5025–5028 (1985).
    [Crossref]
  29. M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
    [Crossref]
  30. K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, “Electrochemical reduction and capacitance of hybrid titanium dioxides - nanotube arrays and nanograss,” Electrochim. Acta 210, 367–374 (2016).
    [Crossref]
  31. A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
    [Crossref] [PubMed]
  32. M. A. Henderson, W. S. Epling, C. H. F. Peden, and C. L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110),” J. Phys. Chem. B 107(2), 534–545 (2003).
    [Crossref]
  33. S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2,” Surfaces 1(1), 73–89 (2018).
    [Crossref]
  34. S. E. Lindquist, B. Finnström, and L. Tegner, “Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates,” J. Electrochem. Soc. 130(2), 351–358 (1983).
    [Crossref]
  35. C. Sanchez, K. D. Sieber, and G. A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3,” J. Electroanal. Chem. 252(2), 269–290 (1988).
    [Crossref]
  36. D. Tafalla and P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-TiO2 electrodes,” J. Electrochem. Soc. 137(6), 1810–1815 (1990).
    [Crossref]
  37. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
    [Crossref] [PubMed]
  38. R. C. Rai, “Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films,” J. Appl. Phys. 113(15), 153508 (2013).
    [Crossref]
  39. T. Gu, “Role of oxygen vacancies in TiO2-based resistive switches,” J. Appl. Phys. 113(3), 033707 (2013).
    [Crossref]

2018 (2)

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

2017 (1)

J.-W. Yun, K. Y. Ryu, T. K. Nguyen, F. Ullah, Y. Chang Park, and Y. S. Kim, “Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities,” RSC Advances 7(11), 6202–6208 (2017).
[Crossref]

2016 (6)

T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting - the untamed dream: a review of recent advances,” Molecules 21(7), 900 (2016).
[Crossref] [PubMed]

A. P. Singh, N. Kodan, B. R. Mehta, A. Dey, and S. Krishnamurthy, “In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties,” Mater. Res. Bull. 76, 284–291 (2016).
[Crossref]

L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, and X. An, “Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature,” RSC Advances 6(8), 6643–6650 (2016).
[Crossref]

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

D. K. Behara, A. K. Ummireddi, V. Aragonda, P. K. Gupta, R. G. Pala, and S. Sivakumar, “Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction,” Phys. Chem. Chem. Phys. 18(12), 8364–8377 (2016).
[Crossref] [PubMed]

K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, “Electrochemical reduction and capacitance of hybrid titanium dioxides - nanotube arrays and nanograss,” Electrochim. Acta 210, 367–374 (2016).
[Crossref]

2015 (1)

P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
[Crossref] [PubMed]

2013 (3)

Z. Zhang, M. N. Hedhili, H. Zhu, and P. Wang, “Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes,” Phys. Chem. Chem. Phys. 15(37), 15637–15644 (2013).
[Crossref] [PubMed]

R. C. Rai, “Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films,” J. Appl. Phys. 113(15), 153508 (2013).
[Crossref]

T. Gu, “Role of oxygen vacancies in TiO2-based resistive switches,” J. Appl. Phys. 113(3), 033707 (2013).
[Crossref]

2012 (6)

Y. Yamada and Y. Kanemitsu, “Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals,” Appl. Phys. Lett. 101(13), 133907 (2012).
[Crossref]

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[Crossref] [PubMed]

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

F. Tian, Y. Zhang, J. Zhang, and C. Pan, “Raman spectroscopy : a new approach to measure the percentage of anatase TiO2 exposed (001) facets,” J. Phys. Chem. C 116(13), 7515–7519 (2012).
[Crossref]

2011 (2)

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science 331(6018), 746–750 (2011).
[Crossref] [PubMed]

2010 (4)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, “Hybrid functional studies of the oxygen vacancy in TiO2,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085212 (2010).
[Crossref]

2009 (1)

S. Sahoo, A. K. Arora, and V. Sridharan, “Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals,” J. Phys. Chem. C 113(39), 16927–16933 (2009).
[Crossref]

2008 (1)

R. van de Krol, Y. Liang, and J. Schoonman, “Solar hydrogen production with nanostructured metal oxides,” J. Mater. Chem. 18(20), 2311–2320 (2008).
[Crossref]

2003 (1)

M. A. Henderson, W. S. Epling, C. H. F. Peden, and C. L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110),” J. Phys. Chem. B 107(2), 534–545 (2003).
[Crossref]

2002 (1)

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

2001 (1)

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

1998 (1)

D. Bersani, P. P. Lottici, and X. Ding, “Phonon confinement effects in the Raman scattering by TiO2 nanocrystals phonon confinement effects in the Raman scattering by TiO2 nanocrystals,” Appl. Phys. Lett. 73(1), 72–75 (1998).

1990 (2)

J. C. Parker and R. W. Siegel, “Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes,” J. Mater. Res. 5(6), 1246–1252 (1990).
[Crossref]

D. Tafalla and P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-TiO2 electrodes,” J. Electrochem. Soc. 137(6), 1810–1815 (1990).
[Crossref]

1988 (1)

C. Sanchez, K. D. Sieber, and G. A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3,” J. Electroanal. Chem. 252(2), 269–290 (1988).
[Crossref]

1985 (1)

C. M. Greenlief, J. M. White, C. S. Ko, and R. J. Gorte, “An XPS investigation of titanium dioxide thin films on polycrystalline platinum,” J. Phys. Chem. 89(23), 5025–5028 (1985).
[Crossref]

1983 (1)

S. E. Lindquist, B. Finnström, and L. Tegner, “Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates,” J. Electrochem. Soc. 130(2), 351–358 (1983).
[Crossref]

1978 (1)

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Amin, A. S.

T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting - the untamed dream: a review of recent advances,” Molecules 21(7), 900 (2016).
[Crossref] [PubMed]

An, X.

L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, and X. An, “Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature,” RSC Advances 6(8), 6643–6650 (2016).
[Crossref]

Aragonda, V.

D. K. Behara, A. K. Ummireddi, V. Aragonda, P. K. Gupta, R. G. Pala, and S. Sivakumar, “Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction,” Phys. Chem. Chem. Phys. 18(12), 8364–8377 (2016).
[Crossref] [PubMed]

Arora, A. K.

S. Sahoo, A. K. Arora, and V. Sridharan, “Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals,” J. Phys. Chem. C 113(39), 16927–16933 (2009).
[Crossref]

Basu, S.

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

Battiston, G. A.

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

Beglitis, N. S.

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

Behara, D. K.

D. K. Behara, A. K. Ummireddi, V. Aragonda, P. K. Gupta, R. G. Pala, and S. Sivakumar, “Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction,” Phys. Chem. Chem. Phys. 18(12), 8364–8377 (2016).
[Crossref] [PubMed]

Bersani, D.

D. Bersani, P. P. Lottici, and X. Ding, “Phonon confinement effects in the Raman scattering by TiO2 nanocrystals phonon confinement effects in the Raman scattering by TiO2 nanocrystals,” Appl. Phys. Lett. 73(1), 72–75 (1998).

Biesinger, M. C.

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Boettcher, S. W.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Cabailh, G.

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

Canto, G.

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

Chang Park, Y.

J.-W. Yun, K. Y. Ryu, T. K. Nguyen, F. Ullah, Y. Chang Park, and Y. S. Kim, “Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities,” RSC Advances 7(11), 6202–6208 (2017).
[Crossref]

Chen, C. K.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[Crossref] [PubMed]

Chen, H. M.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[Crossref] [PubMed]

Chen, Q.

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

Chen, X.

K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, “Electrochemical reduction and capacitance of hybrid titanium dioxides - nanotube arrays and nanograss,” Electrochim. Acta 210, 367–374 (2016).
[Crossref]

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science 331(6018), 746–750 (2011).
[Crossref] [PubMed]

Cheng, C.

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Dey, A.

A. P. Singh, N. Kodan, B. R. Mehta, A. Dey, and S. Krishnamurthy, “In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties,” Mater. Res. Bull. 76, 284–291 (2016).
[Crossref]

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

Ding, C.

P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
[Crossref] [PubMed]

Ding, X.

D. Bersani, P. P. Lottici, and X. Ding, “Phonon confinement effects in the Raman scattering by TiO2 nanocrystals phonon confinement effects in the Raman scattering by TiO2 nanocrystals,” Appl. Phys. Lett. 73(1), 72–75 (1998).

Du, K.

K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, “Electrochemical reduction and capacitance of hybrid titanium dioxides - nanotube arrays and nanograss,” Electrochim. Acta 210, 367–374 (2016).
[Crossref]

Epling, W. S.

M. A. Henderson, W. S. Epling, C. H. F. Peden, and C. L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110),” J. Phys. Chem. B 107(2), 534–545 (2003).
[Crossref]

Fan, H. J.

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Fang, P.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Figueras, A.

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

Finnström, B.

S. E. Lindquist, B. Finnström, and L. Tegner, “Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates,” J. Electrochem. Soc. 130(2), 351–358 (1983).
[Crossref]

Fisher, A. J.

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

Fraxedas, J.

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

Fujiki, Y.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Gan, Y.

P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
[Crossref] [PubMed]

Gerbasi, R.

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

Gerson, A. R.

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Gorte, R. J.

C. M. Greenlief, J. M. White, C. S. Ko, and R. J. Gorte, “An XPS investigation of titanium dioxide thin films on polycrystalline platinum,” J. Phys. Chem. 89(23), 5025–5028 (1985).
[Crossref]

Grätzel, M.

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

Greenlief, C. M.

C. M. Greenlief, J. M. White, C. S. Ko, and R. J. Gorte, “An XPS investigation of titanium dioxide thin films on polycrystalline platinum,” J. Phys. Chem. 89(23), 5025–5028 (1985).
[Crossref]

Gu, T.

T. Gu, “Role of oxygen vacancies in TiO2-based resistive switches,” J. Appl. Phys. 113(3), 033707 (2013).
[Crossref]

Gupta, P. K.

D. K. Behara, A. K. Ummireddi, V. Aragonda, P. K. Gupta, R. G. Pala, and S. Sivakumar, “Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction,” Phys. Chem. Chem. Phys. 18(12), 8364–8377 (2016).
[Crossref] [PubMed]

Han, H.

P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
[Crossref] [PubMed]

Han, L.

L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, and X. An, “Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature,” RSC Advances 6(8), 6643–6650 (2016).
[Crossref]

Hedhili, M. N.

Z. Zhang, M. N. Hedhili, H. Zhu, and P. Wang, “Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes,” Phys. Chem. Chem. Phys. 15(37), 15637–15644 (2013).
[Crossref] [PubMed]

Henderson, M. A.

M. A. Henderson, W. S. Epling, C. H. F. Peden, and C. L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110),” J. Phys. Chem. B 107(2), 534–545 (2003).
[Crossref]

Hofer, W. A.

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Izumi, F.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Jaegermann, W.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Jafari, T.

T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting - the untamed dream: a review of recent advances,” Molecules 21(7), 900 (2016).
[Crossref] [PubMed]

Jagadish, C.

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

Janotti, A.

A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, “Hybrid functional studies of the oxygen vacancy in TiO2,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085212 (2010).
[Crossref]

Justicia, I.

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

Kanemitsu, Y.

Y. Yamada and Y. Kanemitsu, “Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals,” Appl. Phys. Lett. 101(13), 133907 (2012).
[Crossref]

Karuturi, S. K.

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Kashiwaya, S.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Kaushal, A.

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

Kim, Y. S.

J.-W. Yun, K. Y. Ryu, T. K. Nguyen, F. Ullah, Y. Chang Park, and Y. S. Kim, “Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities,” RSC Advances 7(11), 6202–6208 (2017).
[Crossref]

Klein, A.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Ko, C. S.

C. M. Greenlief, J. M. White, C. S. Ko, and R. J. Gorte, “An XPS investigation of titanium dioxide thin films on polycrystalline platinum,” J. Phys. Chem. 89(23), 5025–5028 (1985).
[Crossref]

Kodan, N.

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

A. P. Singh, N. Kodan, B. R. Mehta, A. Dey, and S. Krishnamurthy, “In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties,” Mater. Res. Bull. 76, 284–291 (2016).
[Crossref]

Kong, M.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Kresse, G.

A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, “Hybrid functional studies of the oxygen vacancy in TiO2,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085212 (2010).
[Crossref]

Krishnamurthy, S.

A. P. Singh, N. Kodan, B. R. Mehta, A. Dey, and S. Krishnamurthy, “In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties,” Mater. Res. Bull. 76, 284–291 (2016).
[Crossref]

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

Kumar, S.

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

Lau, L. W.

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Lewis, N. S.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Li, C.

P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
[Crossref] [PubMed]

Li, H.

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Li, L.

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

Li, M.

K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, “Electrochemical reduction and capacitance of hybrid titanium dioxides - nanotube arrays and nanograss,” Electrochim. Acta 210, 367–374 (2016).
[Crossref]

Li, Y.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Liang, Y.

R. van de Krol, Y. Liang, and J. Schoonman, “Solar hydrogen production with nanostructured metal oxides,” J. Mater. Chem. 18(20), 2311–2320 (2008).
[Crossref]

Lindquist, S. E.

S. E. Lindquist, B. Finnström, and L. Tegner, “Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates,” J. Electrochem. Soc. 130(2), 351–358 (1983).
[Crossref]

Liu, G.

K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, “Electrochemical reduction and capacitance of hybrid titanium dioxides - nanotube arrays and nanograss,” Electrochim. Acta 210, 367–374 (2016).
[Crossref]

L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, and X. An, “Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature,” RSC Advances 6(8), 6643–6650 (2016).
[Crossref]

P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
[Crossref] [PubMed]

Liu, J.

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Liu, L.

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science 331(6018), 746–750 (2011).
[Crossref] [PubMed]

Liu, R. S.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[Crossref] [PubMed]

Lottici, P. P.

D. Bersani, P. P. Lottici, and X. Ding, “Phonon confinement effects in the Raman scattering by TiO2 nanocrystals phonon confinement effects in the Raman scattering by TiO2 nanocrystals,” Appl. Phys. Lett. 73(1), 72–75 (1998).

Luo, J.

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Luo, Z.

L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, and X. An, “Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature,” RSC Advances 6(8), 6643–6650 (2016).
[Crossref]

Ma, J.

L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, and X. An, “Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature,” RSC Advances 6(8), 6643–6650 (2016).
[Crossref]

Ma, Z.

L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, and X. An, “Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature,” RSC Advances 6(8), 6643–6650 (2016).
[Crossref]

Mao, S. S.

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science 331(6018), 746–750 (2011).
[Crossref] [PubMed]

Mayrhofer, L.

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

McKone, J. R.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Mehta, B. R.

A. P. Singh, N. Kodan, B. R. Mehta, A. Dey, and S. Krishnamurthy, “In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties,” Mater. Res. Bull. 76, 284–291 (2016).
[Crossref]

Mehta, M.

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

Mi, Q.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Miao, R.

T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting - the untamed dream: a review of recent advances,” Molecules 21(7), 900 (2016).
[Crossref] [PubMed]

Moharreri, E.

T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting - the untamed dream: a review of recent advances,” Molecules 21(7), 900 (2016).
[Crossref] [PubMed]

Morasch, J.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Moseler, M.

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

Mozos, J. L.

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

Narangari, P. R.

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

Nguyen, T. K.

J.-W. Yun, K. Y. Ryu, T. K. Nguyen, F. Ullah, Y. Chang Park, and Y. S. Kim, “Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities,” RSC Advances 7(11), 6202–6208 (2017).
[Crossref]

Ohsaka, T.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Ordejón, P.

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

Pala, R. G.

D. K. Behara, A. K. Ummireddi, V. Aragonda, P. K. Gupta, R. G. Pala, and S. Sivakumar, “Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction,” Phys. Chem. Chem. Phys. 18(12), 8364–8377 (2016).
[Crossref] [PubMed]

Pan, C.

F. Tian, Y. Zhang, J. Zhang, and C. Pan, “Raman spectroscopy : a new approach to measure the percentage of anatase TiO2 exposed (001) facets,” J. Phys. Chem. C 116(13), 7515–7519 (2012).
[Crossref]

Pang, C. L.

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

Papageorgiou, A. C.

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

Parker, J. C.

J. C. Parker and R. W. Siegel, “Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes,” J. Mater. Res. 5(6), 1246–1252 (1990).
[Crossref]

Peden, C. H. F.

M. A. Henderson, W. S. Epling, C. H. F. Peden, and C. L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110),” J. Phys. Chem. B 107(2), 534–545 (2003).
[Crossref]

Perkins, C. L.

M. A. Henderson, W. S. Epling, C. H. F. Peden, and C. L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110),” J. Phys. Chem. B 107(2), 534–545 (2003).
[Crossref]

Rai, R. C.

R. C. Rai, “Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films,” J. Appl. Phys. 113(15), 153508 (2013).
[Crossref]

Rinke, P.

A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, “Hybrid functional studies of the oxygen vacancy in TiO2,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085212 (2010).
[Crossref]

Ryu, K. Y.

J.-W. Yun, K. Y. Ryu, T. K. Nguyen, F. Ullah, Y. Chang Park, and Y. S. Kim, “Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities,” RSC Advances 7(11), 6202–6208 (2017).
[Crossref]

Sahoo, S.

S. Sahoo, A. K. Arora, and V. Sridharan, “Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals,” J. Phys. Chem. C 113(39), 16927–16933 (2009).
[Crossref]

Salvador, P.

D. Tafalla and P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-TiO2 electrodes,” J. Electrochem. Soc. 137(6), 1810–1815 (1990).
[Crossref]

Sanchez, C.

C. Sanchez, K. D. Sieber, and G. A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3,” J. Electroanal. Chem. 252(2), 269–290 (1988).
[Crossref]

Santori, E. A.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Schoonman, J.

R. van de Krol, Y. Liang, and J. Schoonman, “Solar hydrogen production with nanostructured metal oxides,” J. Mater. Chem. 18(20), 2311–2320 (2008).
[Crossref]

Shi, J.

P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
[Crossref] [PubMed]

Sieber, K. D.

C. Sanchez, K. D. Sieber, and G. A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3,” J. Electroanal. Chem. 252(2), 269–290 (1988).
[Crossref]

Siegel, R. W.

J. C. Parker and R. W. Siegel, “Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes,” J. Mater. Res. 5(6), 1246–1252 (1990).
[Crossref]

Singh, A. P.

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

A. P. Singh, N. Kodan, B. R. Mehta, A. Dey, and S. Krishnamurthy, “In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties,” Mater. Res. Bull. 76, 284–291 (2016).
[Crossref]

Sivakumar, S.

D. K. Behara, A. K. Ummireddi, V. Aragonda, P. K. Gupta, R. G. Pala, and S. Sivakumar, “Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction,” Phys. Chem. Chem. Phys. 18(12), 8364–8377 (2016).
[Crossref] [PubMed]

Smart, R. S.

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Somorjai, G. A.

C. Sanchez, K. D. Sieber, and G. A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3,” J. Electroanal. Chem. 252(2), 269–290 (1988).
[Crossref]

Song, W.

T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting - the untamed dream: a review of recent advances,” Molecules 21(7), 900 (2016).
[Crossref] [PubMed]

Sridharan, V.

S. Sahoo, A. K. Arora, and V. Sridharan, “Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals,” J. Phys. Chem. C 113(39), 16927–16933 (2009).
[Crossref]

Streibel, V.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Su, L. T.

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

Suib, S. L.

T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting - the untamed dream: a review of recent advances,” Molecules 21(7), 900 (2016).
[Crossref] [PubMed]

Tafalla, D.

D. Tafalla and P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-TiO2 electrodes,” J. Electrochem. Soc. 137(6), 1810–1815 (1990).
[Crossref]

Tan, H. H.

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

Tat Su, L.

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Tegner, L.

S. E. Lindquist, B. Finnström, and L. Tegner, “Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates,” J. Electrochem. Soc. 130(2), 351–358 (1983).
[Crossref]

Teobaldi, G.

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

Thornton, G.

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

Tian, F.

F. Tian, Y. Zhang, J. Zhang, and C. Pan, “Raman spectroscopy : a new approach to measure the percentage of anatase TiO2 exposed (001) facets,” J. Phys. Chem. C 116(13), 7515–7519 (2012).
[Crossref]

Tian, T.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Tok, A. I. Y.

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Toupance, T.

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Ullah, F.

J.-W. Yun, K. Y. Ryu, T. K. Nguyen, F. Ullah, Y. Chang Park, and Y. S. Kim, “Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities,” RSC Advances 7(11), 6202–6208 (2017).
[Crossref]

Umezawa, N.

A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, “Hybrid functional studies of the oxygen vacancy in TiO2,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085212 (2010).
[Crossref]

Ummireddi, A. K.

D. K. Behara, A. K. Ummireddi, V. Aragonda, P. K. Gupta, R. G. Pala, and S. Sivakumar, “Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction,” Phys. Chem. Chem. Phys. 18(12), 8364–8377 (2016).
[Crossref] [PubMed]

van de Krol, R.

R. van de Krol, Y. Liang, and J. Schoonman, “Solar hydrogen production with nanostructured metal oxides,” J. Mater. Chem. 18(20), 2311–2320 (2008).
[Crossref]

Van de Walle, C. G.

A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, “Hybrid functional studies of the oxygen vacancy in TiO2,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085212 (2010).
[Crossref]

Varley, J. B.

A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, “Hybrid functional studies of the oxygen vacancy in TiO2,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085212 (2010).
[Crossref]

Vora, K.

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

Walter, M.

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

Walter, M. G.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Wang, K.

K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, “Electrochemical reduction and capacitance of hybrid titanium dioxides - nanotube arrays and nanograss,” Electrochim. Acta 210, 367–374 (2016).
[Crossref]

Wang, P.

Z. Zhang, M. N. Hedhili, H. Zhu, and P. Wang, “Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes,” Phys. Chem. Chem. Phys. 15(37), 15637–15644 (2013).
[Crossref] [PubMed]

Warren, E. L.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

White, J. M.

C. M. Greenlief, J. M. White, C. S. Ko, and R. J. Gorte, “An XPS investigation of titanium dioxide thin films on polycrystalline platinum,” J. Phys. Chem. 89(23), 5025–5028 (1985).
[Crossref]

Wilkinson, D. P.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[Crossref] [PubMed]

Wong-Leung, J.

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

Wu, C.

K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, “Electrochemical reduction and capacitance of hybrid titanium dioxides - nanotube arrays and nanograss,” Electrochim. Acta 210, 367–374 (2016).
[Crossref]

Yamada, Y.

Y. Yamada and Y. Kanemitsu, “Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals,” Appl. Phys. Lett. 101(13), 133907 (2012).
[Crossref]

Yan, P.

P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
[Crossref] [PubMed]

Yew, R.

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

Yu, P. Y.

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science 331(6018), 746–750 (2011).
[Crossref] [PubMed]

Yun, J.-W.

J.-W. Yun, K. Y. Ryu, T. K. Nguyen, F. Ullah, Y. Chang Park, and Y. S. Kim, “Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities,” RSC Advances 7(11), 6202–6208 (2017).
[Crossref]

Zhang, J.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[Crossref] [PubMed]

F. Tian, Y. Zhang, J. Zhang, and C. Pan, “Raman spectroscopy : a new approach to measure the percentage of anatase TiO2 exposed (001) facets,” J. Phys. Chem. C 116(13), 7515–7519 (2012).
[Crossref]

Zhang, L.

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[Crossref] [PubMed]

Zhang, Y.

F. Tian, Y. Zhang, J. Zhang, and C. Pan, “Raman spectroscopy : a new approach to measure the percentage of anatase TiO2 exposed (001) facets,” J. Phys. Chem. C 116(13), 7515–7519 (2012).
[Crossref]

Zhang, Z.

Z. Zhang, M. N. Hedhili, H. Zhu, and P. Wang, “Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes,” Phys. Chem. Chem. Phys. 15(37), 15637–15644 (2013).
[Crossref] [PubMed]

Zhao, X.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Zheng, F.

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

Zhu, H.

Z. Zhang, M. N. Hedhili, H. Zhu, and P. Wang, “Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes,” Phys. Chem. Chem. Phys. 15(37), 15637–15644 (2013).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

P. Yan, G. Liu, C. Ding, H. Han, J. Shi, Y. Gan, and C. Li, “Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction,” ACS Appl. Mater. Interfaces 7(6), 3791–3796 (2015).
[Crossref] [PubMed]

Adv. Mater. (2)

S. K. Karuturi, J. Luo, C. Cheng, L. Liu, L. T. Su, A. I. Y. Tok, and H. J. Fan, “A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells,” Adv. Mater. 24(30), 4157–4162 (2012).
[Crossref] [PubMed]

I. Justicia, P. Ordejón, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, and A. Figueras, “Designed self-doped titanium dioxide thin films for efficient visible-light photocatalysis,” Adv. Mater. 14(19), 1399–1402 (2002).
[Crossref]

Appl. Phys. Lett. (2)

Y. Yamada and Y. Kanemitsu, “Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals,” Appl. Phys. Lett. 101(13), 133907 (2012).
[Crossref]

D. Bersani, P. P. Lottici, and X. Ding, “Phonon confinement effects in the Raman scattering by TiO2 nanocrystals phonon confinement effects in the Raman scattering by TiO2 nanocrystals,” Appl. Phys. Lett. 73(1), 72–75 (1998).

Appl. Surf. Sci. (1)

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn,” Appl. Surf. Sci. 257(3), 887–898 (2010).
[Crossref]

Chem. Rev. (1)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, “Nano-architecture and material designs for water splitting photoelectrodes,” Chem. Soc. Rev. 41(17), 5654–5671 (2012).
[Crossref] [PubMed]

Electrochim. Acta (1)

K. Du, G. Liu, M. Li, C. Wu, X. Chen, and K. Wang, “Electrochemical reduction and capacitance of hybrid titanium dioxides - nanotube arrays and nanograss,” Electrochim. Acta 210, 367–374 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, and X. Zhao, “Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency,” J. Am. Chem. Soc. 133(41), 16414–16417 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (2)

R. C. Rai, “Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films,” J. Appl. Phys. 113(15), 153508 (2013).
[Crossref]

T. Gu, “Role of oxygen vacancies in TiO2-based resistive switches,” J. Appl. Phys. 113(3), 033707 (2013).
[Crossref]

J. Electroanal. Chem. (1)

C. Sanchez, K. D. Sieber, and G. A. Somorjai, “The photoelectrochemistry of niobium doped α-Fe2O3,” J. Electroanal. Chem. 252(2), 269–290 (1988).
[Crossref]

J. Electrochem. Soc. (2)

D. Tafalla and P. Salvador, “Kinetic approach to the photocurrent transients in water photoelectrolysis at n-TiO2 electrodes,” J. Electrochem. Soc. 137(6), 1810–1815 (1990).
[Crossref]

S. E. Lindquist, B. Finnström, and L. Tegner, “Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates,” J. Electrochem. Soc. 130(2), 351–358 (1983).
[Crossref]

J. Mater. Chem. (1)

R. van de Krol, Y. Liang, and J. Schoonman, “Solar hydrogen production with nanostructured metal oxides,” J. Mater. Chem. 18(20), 2311–2320 (2008).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

M. Mehta, N. Kodan, S. Kumar, A. Kaushal, L. Mayrhofer, M. Walter, M. Moseler, A. Dey, S. Krishnamurthy, S. Basu, and A. P. Singh, “Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory,” J. Mater. Chem. A Mater. Energy Sustain. 4(7), 2670–2681 (2016).
[Crossref]

J. Mater. Res. (1)

J. C. Parker and R. W. Siegel, “Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes,” J. Mater. Res. 5(6), 1246–1252 (1990).
[Crossref]

J. Phys. Chem. (1)

C. M. Greenlief, J. M. White, C. S. Ko, and R. J. Gorte, “An XPS investigation of titanium dioxide thin films on polycrystalline platinum,” J. Phys. Chem. 89(23), 5025–5028 (1985).
[Crossref]

J. Phys. Chem. B (1)

M. A. Henderson, W. S. Epling, C. H. F. Peden, and C. L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110),” J. Phys. Chem. B 107(2), 534–545 (2003).
[Crossref]

J. Phys. Chem. C (2)

F. Tian, Y. Zhang, J. Zhang, and C. Pan, “Raman spectroscopy : a new approach to measure the percentage of anatase TiO2 exposed (001) facets,” J. Phys. Chem. C 116(13), 7515–7519 (2012).
[Crossref]

S. Sahoo, A. K. Arora, and V. Sridharan, “Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals,” J. Phys. Chem. C 113(39), 16927–16933 (2009).
[Crossref]

J. Raman Spectrosc. (1)

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase TiO2,” J. Raman Spectrosc. 7(6), 321–324 (1978).
[Crossref]

Mater. Res. Bull. (1)

A. P. Singh, N. Kodan, B. R. Mehta, A. Dey, and S. Krishnamurthy, “In-situ plasma hydrogenated TiO2 thin films for enhanced photoelectrochemical properties,” Mater. Res. Bull. 76, 284–291 (2016).
[Crossref]

Molecules (1)

T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting - the untamed dream: a review of recent advances,” Molecules 21(7), 900 (2016).
[Crossref] [PubMed]

Nano Energy (1)

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Nano Futures (1)

S. K. Karuturi, R. Yew, P. R. Narangari, J. Wong-Leung, L. Li, K. Vora, H. H. Tan, and C. Jagadish, “CdS / TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation,” Nano Futures 2(1), 015004 (2018).
[Crossref]

Nature (2)

M. Grätzel, “Photoelectrochemical cells,” Nature 414(6861), 338–344 (2001).
[Crossref] [PubMed]

A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (2)

D. K. Behara, A. K. Ummireddi, V. Aragonda, P. K. Gupta, R. G. Pala, and S. Sivakumar, “Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction,” Phys. Chem. Chem. Phys. 18(12), 8364–8377 (2016).
[Crossref] [PubMed]

Z. Zhang, M. N. Hedhili, H. Zhu, and P. Wang, “Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes,” Phys. Chem. Chem. Phys. 15(37), 15637–15644 (2013).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C. G. Van de Walle, “Hybrid functional studies of the oxygen vacancy in TiO2,” Phys. Rev. B Condens. Matter Mater. Phys. 81(8), 085212 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, “Electron traps and their effect on the surface chemistry of TiO2(110),” Proc. Natl. Acad. Sci. U.S.A. 107(6), 2391–2396 (2010).
[Crossref] [PubMed]

RSC Advances (2)

J.-W. Yun, K. Y. Ryu, T. K. Nguyen, F. Ullah, Y. Chang Park, and Y. S. Kim, “Tuning optical band gap by electrochemical reduction in TiO2 nanorods for improving photocatalytic activities,” RSC Advances 7(11), 6202–6208 (2017).
[Crossref]

L. Han, Z. Ma, Z. Luo, G. Liu, J. Ma, and X. An, “Enhanced visible light and photocatalytic performance of TiO2 nanotubes by hydrogenation at lower temperature,” RSC Advances 6(8), 6643–6650 (2016).
[Crossref]

Science (1)

X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, “Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals,” Science 331(6018), 746–750 (2011).
[Crossref] [PubMed]

Small (1)

C. Cheng, S. K. Karuturi, L. Liu, J. Liu, H. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, “Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation,” Small 8(1), 37–42 (2012).
[Crossref] [PubMed]

Surfaces (1)

S. Kashiwaya, J. Morasch, V. Streibel, T. Toupance, W. Jaegermann, and A. Klein, “The work function of TiO2,” Surfaces 1(1), 73–89 (2018).
[Crossref]

Other (1)

R. Yew, S. K. Karuturi, H. H. Tan, and C. Jagadish, Semiconductors and Semimetals – Semiconductors for Photocatalysis (Elsevier, 2017), Chap. 8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 SEM images of (a) PS opal template (b) top view of TiO2-IO (c) cross section of TiO2-IO (d) magnified cross sectional image TiO2-IO showing the pore structure (e) ER400s-TiO2-IO and (f) ER400s TiO2-IO after 3.5 hrs of photoelectrochemical stability test.
Fig. 2
Fig. 2 (a) XRD patterns of FTO substrate, pristine, ER400s and ER400s (after stability test) TiO2-IO (b) Raman spectra of pristine and ER400s TiO2-IOs.
Fig. 3
Fig. 3 (a) XPS core level spectra of Ti 2p (b) XPS core level spectra of O 1s (c) Fitting of XPS core level spectra (d) UPS spectra of pristine and ER400s TiO2-IOs.
Fig. 4
Fig. 4 Linear sweep voltammograms obtained for pristine and electrochemically reduced TiO2-IO photoelectrodes for duration of 300 s, 400 s and 500 s in 1 M NaOH (pH = 13) electrolyte, in darkness and under AM1.5 G simulated sunlight (100 mW cm−2), and at a scan rate of 10 mV s−1.
Fig. 5
Fig. 5 (a) Transient photocurrent responses of pristine and ER400s TiO2-IO photoelectrodes measured under 50 s on-off light cycles (b) Photocurrent-time measurement of ER400s TiO2-IO photoelectrode measured for 3.5 hours (c) IPCE of pristine and ER400s TiO2-IO photoelectrodes measured at incident wavelength from 300 to 500 nm and (d) absorption spectra of pristine and ER400s TiO2-IO photoelectrodes as a function of wavelength. Transient photocurrent, photocurrent-time and IPCE measurements were carried out in 1 M NaOH at an applied potential of 1.23 VRHE.
Fig. 6
Fig. 6 (a) Nyquist plot of pristine, ER300s, ER400s and ER500s TiO2-IO photoelectrodes (b) Nyquist plots of pristine and ER400s TiO2-IO photoelectrodes fitted to the equivalent circuit. (c) Bode magnitude and (d) Bode phase plots of pristine, ER300s, ER400s and ER500s TiO2-IO photoelectrodes.
Fig. 7
Fig. 7 (a) Mott-Schottky plots collected for (a) pristine (b) ER400s TiO2-IO photoelectrodes at 500Hz in dark condition.

Tables (1)

Tables Icon

Table 1 FWHM of Raman spectra for pristine and ER400s samples

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IPCE(%)=[ 1240( V.nm )× j photo ( mA/c m 2 ) ]/[ P mono ( mW/c m 2 )×λ( nm ) ]×100%
1 C 2 =  2 ( qεε 0 N D A 2 ) ( E app E fb kT q )

Metrics