Abstract

Graphene oxide (GO) with an ideal two-dimensional structure, presents outstanding optical, electric, and mechanical properties which draws great attention in advanced information devices. Recently, GO-based films were found to show photochromic behavior, especially for the TiO2 involved system which has potential data processing capability, such as storing holograms. However, expanding spectral response range and increasing exposure sensitivity are still challenges for such a film, due to the limited photo-quantum efficiency in reduction reaction. Here, an innovative method of “Immersion-Dropping” technology is proposed to fabricate GO-based continuous films. We, for the first time, achieve colored holography from violet to yellow regions on GO/TiO2 nanocomposite films with introduction of weak acid molecules. A “diffraction self-enhancement” is observed. The obtained results benefit from the broadband photo-response of weak acid molecules and photo-triggered transferring of electrons in multi-channels. This work provides a research strategy for the large-capacity information storage and colorful display device.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors

Shuangyan Liu, Shencheng Fu, Xintong Zhang, Xinnong Wang, Lihong Kang, Xiuxiu Han, Xi Chen, Jiarui Wu, and Yichun Liu
Opt. Mater. Express 8(5) 1143-1153 (2018)

Visible laser-assisted reduction of plasmonic Ag nanoparticles with narrow-band optical absorption for colored holographic reconstruction

Xinnong Wang, Shencheng Fu, Xintong Zhang, Xiuxiu Han, Shuangyan Liu, Lihong Kang, Yang Zhang, and Yichun Liu
Opt. Express 25(25) 31253-31262 (2017)

Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage

Xiuxiu Han, Shencheng Fu, Xintong Zhang, Shuang Lu, Shuangyan Liu, Xinnong Wang, Ruiya Ji, Xiuli Wang, Yichun Liu, and Jinhuan Li
Appl. Opt. 56(28) 7892-7897 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Lynch, “How do your data grow?” Nature 455(7209), 28–29 (2008).
    [Crossref] [PubMed]
  2. Z. Z. Bandić and R. H. Victora, “Advances in magnetic data storage technologies,” Proc. IEEE 96(11), 1749–1753 (2008).
    [Crossref]
  3. Y. Fujisaki, “Overview of emerging semiconductor non-volatile memories,” IEICE Electron. Express 9(10), 908–925 (2012).
    [Crossref]
  4. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
    [Crossref] [PubMed]
  5. G. A. Rakuljic, A. Yariv, and V. Leyva, “Optical data storage using orthogonal wavelength multiplexed volume holograms,” Opt. Lett. 17(20), 1471–1473 (1992).
    [Crossref] [PubMed]
  6. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43(25), 4902–4914 (2004).
    [Crossref] [PubMed]
  7. H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
    [Crossref]
  8. T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Dual-page reproduction to increase the data transfer rate in holographic memory,” Opt. Lett. 42(12), 2287–2290 (2017).
    [Crossref] [PubMed]
  9. X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
    [Crossref] [PubMed]
  10. G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10(1), 219 (2015).
    [Crossref] [PubMed]
  11. T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
    [Crossref] [PubMed]
  12. S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
    [Crossref] [PubMed]
  13. S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
    [Crossref]
  14. S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
    [Crossref] [PubMed]
  15. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
    [Crossref] [PubMed]
  16. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  17. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  18. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
    [Crossref] [PubMed]
  19. M. Inagaki and F. Y. Kang, “Graphene derivatives: graphene, fluorographene, graphene oxide, graphyne and graphdiyne,” J. Mater. Chem. A Mater. Energy Sustain. 2(33), 13193–13206 (2014).
    [Crossref]
  20. L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
    [Crossref] [PubMed]
  21. B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
    [Crossref] [PubMed]
  22. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
    [Crossref] [PubMed]
  23. Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
    [Crossref] [PubMed]
  24. P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
    [Crossref]
  25. X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).
  26. B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).
  27. G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
    [Crossref] [PubMed]
  28. G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
    [Crossref] [PubMed]
  29. G. K. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
    [Crossref] [PubMed]
  30. Y. D. Lei, Z. H. Tang, R. J. Liao, and B. C. Guo, “Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide,” Green Chem. 13(7), 1655–1658 (2011).
    [Crossref]
  31. A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
    [Crossref] [PubMed]
  32. A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-modulation-depth surface relief gratings using s−s polarization configuration in supramolecular polymer−azobenzene complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
    [Crossref]

2017 (5)

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Dual-page reproduction to increase the data transfer rate in holographic memory,” Opt. Lett. 42(12), 2287–2290 (2017).
[Crossref] [PubMed]

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
[Crossref] [PubMed]

2016 (1)

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

2015 (3)

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10(1), 219 (2015).
[Crossref] [PubMed]

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

2014 (3)

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

M. Inagaki and F. Y. Kang, “Graphene derivatives: graphene, fluorographene, graphene oxide, graphyne and graphdiyne,” J. Mater. Chem. A Mater. Energy Sustain. 2(33), 13193–13206 (2014).
[Crossref]

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-modulation-depth surface relief gratings using s−s polarization configuration in supramolecular polymer−azobenzene complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

2012 (4)

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
[Crossref]

Y. Fujisaki, “Overview of emerging semiconductor non-volatile memories,” IEICE Electron. Express 9(10), 908–925 (2012).
[Crossref]

S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[Crossref] [PubMed]

2011 (1)

Y. D. Lei, Z. H. Tang, R. J. Liao, and B. C. Guo, “Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide,” Green Chem. 13(7), 1655–1658 (2011).
[Crossref]

2010 (4)

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

2009 (2)

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

2008 (3)

C. Lynch, “How do your data grow?” Nature 455(7209), 28–29 (2008).
[Crossref] [PubMed]

Z. Z. Bandić and R. H. Victora, “Advances in magnetic data storage technologies,” Proc. IEEE 96(11), 1749–1753 (2008).
[Crossref]

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

2006 (1)

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

1999 (1)

G. K. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[Crossref] [PubMed]

1992 (1)

Arshad, M. S.

G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
[Crossref] [PubMed]

Bandic, Z. Z.

Z. Z. Bandić and R. H. Victora, “Advances in magnetic data storage technologies,” Proc. IEEE 96(11), 1749–1753 (2008).
[Crossref]

Bartkiewicz, S.

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-modulation-depth surface relief gratings using s−s polarization configuration in supramolecular polymer−azobenzene complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Bielawski, C. W.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Bjornson, E.

Cai, W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Cao, L. C.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Chen, P.

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

Chen, X.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Chitara, B.

P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
[Crossref]

Cote, L. J.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

Cruz-Silva, R.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

Daiber, A. J.

Das, B.

P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
[Crossref]

Dikin, D. A.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Djinovic, P.

G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
[Crossref] [PubMed]

Dommett, G. H. B.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Dreyer, D. R.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Fu, S.

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[Crossref] [PubMed]

Fujisaki, Y.

Y. Fujisaki, “Overview of emerging semiconductor non-volatile memories,” IEICE Electron. Express 9(10), 908–925 (2012).
[Crossref]

Geim, A. K.

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gopalakrishnan, K.

P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
[Crossref]

Gu, M.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Guo, B. C.

Y. D. Lei, Z. H. Tang, R. J. Liao, and B. C. Guo, “Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide,” Green Chem. 13(7), 1655–1658 (2011).
[Crossref]

Han, Q.

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Han, R.

S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[Crossref] [PubMed]

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Han, X.

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

Hermes-Lima, M.

G. K. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[Crossref] [PubMed]

Hesselink, L.

Hu, B.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Huang, J.

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

Inagaki, M.

M. Inagaki and F. Y. Kang, “Graphene derivatives: graphene, fluorographene, graphene oxide, graphyne and graphdiyne,” J. Mater. Chem. A Mater. Energy Sustain. 2(33), 13193–13206 (2014).
[Crossref]

Ishida, T.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

Ishii, N.

Jaroniec, M.

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Ji, R.

Jia, J.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Jin, G. F.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Junkar, I.

G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
[Crossref] [PubMed]

Kamat, P. V.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Kang, F. Y.

M. Inagaki and F. Y. Kang, “Graphene derivatives: graphene, fluorographene, graphene oxide, graphyne and graphdiyne,” J. Mater. Chem. A Mater. Energy Sustain. 2(33), 13193–13206 (2014).
[Crossref]

Katano, Y.

Kawamura, G.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10(1), 219 (2015).
[Crossref] [PubMed]

Kinoshita, N.

Kohlhaas, K. M.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Kovac, J.

G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
[Crossref] [PubMed]

Krupanidhi, S. B.

P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
[Crossref]

Kumar, P.

P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
[Crossref]

Kwan, D.

Lee, K.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Lei, Y. D.

Y. D. Lei, Z. H. Tang, R. J. Liao, and B. C. Guo, “Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide,” Green Chem. 13(7), 1655–1658 (2011).
[Crossref]

Leyva, V.

Li, B.

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Li, C.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Li, J.

Li, Q.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Li, X.

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Li, X. H.

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

Li, X. P.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Liao, R. J.

Y. D. Lei, Z. H. Tang, R. J. Liao, and B. C. Guo, “Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide,” Green Chem. 13(7), 1655–1658 (2011).
[Crossref]

Liu, B.

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Liu, J.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Liu, S.

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

Liu, Y.

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[Crossref] [PubMed]

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Liu, Y. C.

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

Lockman, Z.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10(1), 219 (2015).
[Crossref] [PubMed]

Lopes, G. K.

G. K. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[Crossref] [PubMed]

Lu, S.

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Lynch, C.

C. Lynch, “How do your data grow?” Nature 455(7209), 28–29 (2008).
[Crossref] [PubMed]

Matsuda, A.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10(1), 219 (2015).
[Crossref] [PubMed]

McDonald, M. E.

McLeod, R. R.

Miniewicz, A.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Murali, S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Muroi, T.

Muto, H.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10(1), 219 (2015).
[Crossref] [PubMed]

Nguyen, S. T.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Nishi, H.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Ohmi, H.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10(1), 219 (2015).
[Crossref] [PubMed]

Okas, R.

Orlov, S. S.

Park, J.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Park, S.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Park, Y.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Phillips, W.

Piner, R. D.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Pintar, A.

G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
[Crossref] [PubMed]

Potts, J. R.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Priimagi, A.

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-modulation-depth surface relief gratings using s−s polarization configuration in supramolecular polymer−azobenzene complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

Rakuljic, G. A.

Rao, C. N. R.

P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
[Crossref]

Ren, H. R.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Robertson, T. L.

Ruoff, R. S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Sahu, A.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Schab-Balcerzak, E.

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Schulman, H. M.

G. K. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[Crossref] [PubMed]

Seger, B.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Slagle, T.

Snyder, R.

Sobolewska, A.

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-modulation-depth surface relief gratings using s−s polarization configuration in supramolecular polymer−azobenzene complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

Sochava, S. L.

Stach, E. A.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Stankovich, S.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

Subrahmanyam, K. S.

P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
[Crossref]

Suk, J. W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Sun, S.

Sundaram, P.

Takashima, Y.

Tan, W. K.

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10(1), 219 (2015).
[Crossref] [PubMed]

Tang, Z. H.

Y. D. Lei, Z. H. Tang, R. J. Liao, and B. C. Guo, “Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide,” Green Chem. 13(7), 1655–1658 (2011).
[Crossref]

Tatsuma, T.

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

Victora, R. H.

Z. Z. Bandić and R. H. Victora, “Advances in magnetic data storage technologies,” Proc. IEEE 96(11), 1749–1753 (2008).
[Crossref]

Wang, L.

S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[Crossref] [PubMed]

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Wang, L. L.

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

Wang, X.

Wang, Y. T.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Williams, G.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Xiang, Q.

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Xue, G. L.

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Yariv, A.

Yu, H.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Yu, J.

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

Zavašnik, J.

G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
[Crossref] [PubMed]

Žerjav, G.

G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
[Crossref] [PubMed]

Zhang, C.

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

Zhang, X.

X. Han, S. Fu, X. Zhang, S. Lu, S. Liu, X. Wang, R. Ji, X. Wang, Y. Liu, and J. Li, “Selective photo-oxidation induced bi-periodic plasmonic structures for high-density data storage,” Appl. Opt. 56(28), 7892–7897 (2017).
[Crossref] [PubMed]

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

S. Fu, X. Zhang, R. Han, S. Sun, L. Wang, and Y. Liu, “Photoinduced anisotropy and polarization holographic gratings formed in Ag/TiO2 nanocomposite films,” Appl. Opt. 51(16), 3357–3363 (2012).
[Crossref] [PubMed]

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Zhang, X. T.

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

Zheng, W.

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Zheng, W. T.

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

Zhu, Y.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Zimney, E. J.

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

ACS Nano (1)

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Appl. Opt. (4)

Biochim. Biophys. Acta (1)

G. K. Lopes, H. M. Schulman, and M. Hermes-Lima, “Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions,” Biochim. Biophys. Acta 1472(1-2), 142–152 (1999).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-assisted preparation and patterning of large-area reduced graphene oxide-TiO2 conductive thin film,” Chem. Commun. (Camb.) 46(20), 3499–3501 (2010).
[Crossref] [PubMed]

Chem. Sci. (Camb.) (1)

T. Tatsuma, H. Nishi, and T. Ishida, “Plasmon-induced charge separation: chemistry and wide applications,” Chem. Sci. (Camb.) 8(5), 3325–3337 (2017).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

Q. Xiang, J. Yu, and M. Jaroniec, “Graphene-based semiconductor photocatalysts,” Chem. Soc. Rev. 41(2), 782–796 (2012).
[Crossref] [PubMed]

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39(1), 228–240 (2010).
[Crossref] [PubMed]

Green Chem. (1)

Y. D. Lei, Z. H. Tang, R. J. Liao, and B. C. Guo, “Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide,” Green Chem. 13(7), 1655–1658 (2011).
[Crossref]

IEICE Electron. Express (1)

Y. Fujisaki, “Overview of emerging semiconductor non-volatile memories,” IEICE Electron. Express 9(10), 908–925 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

L. J. Cote, R. Cruz-Silva, and J. Huang, “Flash reduction and patterning of graphite oxide and its polymer composite,” J. Am. Chem. Soc. 131(31), 11027–11032 (2009).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

M. Inagaki and F. Y. Kang, “Graphene derivatives: graphene, fluorographene, graphene oxide, graphyne and graphdiyne,” J. Mater. Chem. A Mater. Energy Sustain. 2(33), 13193–13206 (2014).
[Crossref]

J. Phys. Chem. B (1)

A. Sobolewska, S. Bartkiewicz, A. Miniewicz, and E. Schab-Balcerzak, “Polarization dependence of holographic grating recording in azobenzene-functionalized polymers monitored by visible and infrared light,” J. Phys. Chem. B 114(30), 9751–9760 (2010).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-modulation-depth surface relief gratings using s−s polarization configuration in supramolecular polymer−azobenzene complexes,” J. Phys. Chem. C 118(40), 23279–23284 (2014).
[Crossref]

S. Fu, Q. Han, S. Lu, X. Zhang, X. Wang, and Y. Liu, “Polarization-controlled bicolor recording enhances holographic memory in Ag/TiO2 nanocomposite films,” J. Phys. Chem. C 119(32), 18559–18566 (2015).
[Crossref]

Macromol. Chem. Phys. (1)

P. Kumar, B. Das, B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao, “Novel radiation-induced properties of grapheme and related materials,” Macromol. Chem. Phys. 213(10–11), 1146–1163 (2012).
[Crossref]

Nanoscale (1)

G. Žerjav, M. S. Arshad, P. Djinović, I. Junkar, J. Kovač, J. Zavašnik, and A. Pintar, “Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance,” Nanoscale 9(13), 4578–4592 (2017).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

G. Kawamura, H. Ohmi, W. K. Tan, Z. Lockman, H. Muto, and A. Matsuda, “Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells,” Nanoscale Res. Lett. 10(1), 219 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

X. P. Li, H. R. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. L. Xue, J. Jia, L. C. Cao, A. Sahu, B. Hu, Y. T. Wang, G. F. Jin, and M. Gu, “Athermally photoreduced grapheme oxides for three-dimensional holographic images,” Nat. Commun. 6, 6984 (2015).

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Nature (2)

S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442(7100), 282–286 (2006).
[Crossref] [PubMed]

C. Lynch, “How do your data grow?” Nature 455(7209), 28–29 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. IEEE (1)

Z. Z. Bandić and R. H. Victora, “Advances in magnetic data storage technologies,” Proc. IEEE 96(11), 1749–1753 (2008).
[Crossref]

RCS Adv. (1)

B. Li, X. T. Zhang, P. Chen, X. H. Li, L. L. Wang, C. Zhang, W. T. Zheng, and Y. C. Liu, “Waveband-dependent photochemical processing of graphene oxide in fabricating reduced grapheme oxide film and grapheme oxide-Ag nanoparticles film,” RCS Adv. 4(5), 2404–2408 (2014).

Sci. Rep. (1)

S. Fu, X. Zhang, Q. Han, S. Liu, X. Han, and Y. Liu, “Blu-ray-sensitive localized surface plasmon resonance for high-density optical memory,” Sci. Rep. 6(1), 36701 (2016).
[Crossref] [PubMed]

Science (1)

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Fabrication process of GO/TA-TiO2 nanocomposite films. (a) TiO2 nanoporous films prepared on glass slides by a dip-coating method. (b) Heat treatment to remove polymer from titania slurry. (c) Adsorption of TA on the TiO2 porous surface. (d) Dropping GO solution onto the TiO2 film with TA. (e) The obtained GO/TA-TiO2 film placed on the Chinese characters printed paper. (f) AFM observation of surface of the obtained GO/TA-TiO2 film.
Fig. 2
Fig. 2 Optical setup for holographic grating recording in GO/TA-TiO2 nanocomposite films. (M, mirror; BS, beam splitter; F, lens; BE, beam expander; PD, photodiode).
Fig. 3
Fig. 3 (a) UV-Vis absorption spectrum of the GO/TiO2 film, and the GO/TA-TiO2 film on the glass substrate. Differential absorbance of GO/TiO2 (b) and GO/TA-TiO2 films (c) separately irradiated by blue-violet light (403.4 nm, 5 mW). The inset graphs show the change of absorption value at 671 nm with the near-UV laser irradiation. (d) The schematic diagram of photo-energy transformation in the GO/TA-TiO2 nanocomposite system.
Fig. 4
Fig. 4 Chemical structure for phenolic and quinonic forms of tannic acid.
Fig. 5
Fig. 5 Time dependence of the first-order diffraction efficiency in (s-s) recording configurations in the GO/TiO2 and GO/TA-TiO2 nanocomposite films under the different writing lights. The diffraction efficiency dynamics for the grating recorded by 403.4 nm (a), 473 nm (b), 532 nm (c) and 589 nm (d).
Fig. 6
Fig. 6 Mechanism of holographic grating formation in the GO-based film.
Fig. 7
Fig. 7 Holographic dynamics in GO/TiO2 and GO/TA-TiO2 films. Readout for about 9420 s after recording about 1192 s.
Fig. 8
Fig. 8 Colored holographic reconstruction in the GO/TA-TiO2 film with violet, blue, green and yellow lights.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) = [ A ( ) A ( 0 ) ] [ 1 exp ( t τ ) ] + A ( 0 )
Δ A = A ( ) A ( 0 ) A ( 0 )
2 h + ( T i O 2 ) + 2 H 2 O H 2 O 2 + 2 H +
4 e ( T A T i O 2 ) + G O + 4 H + ( T A T i O 2 ) r G O + 2 H 2 O

Metrics