K. Desnijder, P. Hanselaer, and Y. Meuret, “Ray mapping method for off-axis and non-paraxial freeform illumination lens design,” Opt. Lett. 44(4), 771–774 (2019).

[Crossref]

Z. Feng, D. Cheng, and Y. Wang, “Iterative wavefront tailoring to simplify freeform optical design for prescribed irradiance,” Opt. Lett. 44(9), 2274–2277 (2019).

[Crossref]

S. Wei, Z. Zhu, Z. Fan, Y. Yan, and D. Ma, “Multi-surface catadioptric freeform lens design for ultra-efficient off-axis road illumination,” Opt. Express 27(12), A779–A789 (2019).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

D. A. Bykov, L. L. Doskolovich, A. A. Mingazov, E. A. Bezus, and N. L. Kazanskiy, “Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions,” Opt. Express 26(21), 27812–27825 (2018).

[Crossref]

V. Oliker, L. L. Doskolovich, and D. A. Bykov, “Beam shaping with a plano-freeform lens pair,” Opt. Express 26(15), 19406–19419 (2018).

[Crossref]

C. Bösel, N. G. Worku, and H. Gross, “Ray-mapping approach in double freeform surface design for collimated beam shaping beyond the paraxial approximation,” Appl. Opt. 56(13), 3679–3688 (2017).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]

Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56(33), 9308–9314 (2017).

[Crossref]

C. Gannon and R. Liang, “Ray mapping with surface information for freeform illumination design,” Opt. Express 25(8), 9426–9434 (2017).

[Crossref]

K. Desnijder, P. Hanselaer, and Y. Meuret, “Flexible design method for freeform lenses with an arbitrary lens contour,” Opt. Lett. 42(24), 5238–5241 (2017).

[Crossref]

Z. Feng, B. D. Froese, and R. Liang, “Freeform illumination optics construction following an optimal transport map,” Appl. Opt. 55(16), 4301–4306 (2016).

[Crossref]

C. Bösel and H. Gross, “Ray mapping approach for the efficient design of continuous freeform surfaces,” Opt. Express 24(13), 14271–14282 (2016).

[Crossref]

S. Chang, R. Wu, L. An, and Z. Zheng, “Design beam shapers with double freeform surfaces to form a desired wavefront with prescribed illumination pattern by solving a monge-ampère type equation,” J. Opt. 18(12), 125602 (2016).

[Crossref]

Z. Feng, B. D. Froese, C.-Y. Huang, D. Ma, and R. Liang, “Creating unconventional geometric beams with large depth of field using double freeform-surface optics,” Appl. Opt. 54(20), 6277–6281 (2015).

[Crossref]

C. Prins, R. Beltman, J. ten Thije Boonkkamp, W. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the monge-ampere equation,” SIAM J. on Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with l 2 monge-kantorovich theory for the monge–ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]

Y. Zhang, R. Wu, P. Liu, Z. Zheng, H. Li, and X. Liu, “Double freeform surfaces design for laser beam shaping with monge–ampère equation method,” Opt. Commun. 331, 297–305 (2014).

[Crossref]

M. M. Sulman, J. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the monge–ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

V. Oliker, “Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport,” Arch. Ration. Mech. Anal. 201(3), 1013–1045 (2011).

[Crossref]

H. Ma, Z. Liu, P. Jiang, X. Xu, and S. Du, “Improvement of galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size,” Opt. Express 19(14), 13105–13117 (2011).

[Crossref]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. computer vision 60(3), 225–240 (2004).

D. L. Shealy and S.-H. Chao, “Geometric optics-based design of laser beam shapers,” Opt. Eng. 42(11), 3123–3139 (2003).

[Crossref]

L. Casetti, “Efficient symplectic algorithms for numerical simulations of hamiltonian flows,” Phys. Scr. 51(1), 29–34 (1995).

[Crossref]

V. Galindo, “Design of dual-reflector antennas with arbitrary phase and amplitude distributions,” IEEE Trans. Antennas Propag. 12(4), 403–408 (1964).

[Crossref]

S. Chang, R. Wu, L. An, and Z. Zheng, “Design beam shapers with double freeform surfaces to form a desired wavefront with prescribed illumination pattern by solving a monge-ampère type equation,” J. Opt. 18(12), 125602 (2016).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. computer vision 60(3), 225–240 (2004).

C. Prins, R. Beltman, J. ten Thije Boonkkamp, W. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the monge-ampere equation,” SIAM J. on Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

D. A. Bykov, L. L. Doskolovich, A. A. Mingazov, E. A. Bezus, and N. L. Kazanskiy, “Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions,” Opt. Express 26(21), 27812–27825 (2018).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]

V. Oliker, L. L. Doskolovich, and D. A. Bykov, “Beam shaping with a plano-freeform lens pair,” Opt. Express 26(15), 19406–19419 (2018).

[Crossref]

D. A. Bykov, L. L. Doskolovich, A. A. Mingazov, E. A. Bezus, and N. L. Kazanskiy, “Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions,” Opt. Express 26(21), 27812–27825 (2018).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]

L. Casetti, “Efficient symplectic algorithms for numerical simulations of hamiltonian flows,” Phys. Scr. 51(1), 29–34 (1995).

[Crossref]

S. Chang, R. Wu, L. An, and Z. Zheng, “Design beam shapers with double freeform surfaces to form a desired wavefront with prescribed illumination pattern by solving a monge-ampère type equation,” J. Opt. 18(12), 125602 (2016).

[Crossref]

D. L. Shealy and S.-H. Chao, “Geometric optics-based design of laser beam shapers,” Opt. Eng. 42(11), 3123–3139 (2003).

[Crossref]

Z. Feng, D. Cheng, and Y. Wang, “Iterative wavefront tailoring to simplify freeform optical design for prescribed irradiance,” Opt. Lett. 44(9), 2274–2277 (2019).

[Crossref]

Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56(33), 9308–9314 (2017).

[Crossref]

K. Desnijder, P. Hanselaer, and Y. Meuret, “Ray mapping method for off-axis and non-paraxial freeform illumination lens design,” Opt. Lett. 44(4), 771–774 (2019).

[Crossref]

K. Desnijder, P. Hanselaer, and Y. Meuret, “Flexible design method for freeform lenses with an arbitrary lens contour,” Opt. Lett. 42(24), 5238–5241 (2017).

[Crossref]

F. M. Dickey, S. C. Holswade, T. E. Lizotte, and D. L. Shealy, Laser Beam Shaping Applications (Taylor Francis Group, 2006).

F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).

V. Oliker, L. L. Doskolovich, and D. A. Bykov, “Beam shaping with a plano-freeform lens pair,” Opt. Express 26(15), 19406–19419 (2018).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

D. A. Bykov, L. L. Doskolovich, A. A. Mingazov, E. A. Bezus, and N. L. Kazanskiy, “Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions,” Opt. Express 26(21), 27812–27825 (2018).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]

Z. Feng, D. Cheng, and Y. Wang, “Iterative wavefront tailoring to simplify freeform optical design for prescribed irradiance,” Opt. Lett. 44(9), 2274–2277 (2019).

[Crossref]

Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56(33), 9308–9314 (2017).

[Crossref]

Z. Feng, B. D. Froese, and R. Liang, “Freeform illumination optics construction following an optimal transport map,” Appl. Opt. 55(16), 4301–4306 (2016).

[Crossref]

Z. Feng, B. D. Froese, C.-Y. Huang, D. Ma, and R. Liang, “Creating unconventional geometric beams with large depth of field using double freeform-surface optics,” Appl. Opt. 54(20), 6277–6281 (2015).

[Crossref]

Z. Feng, L. Huang, G. Jin, and M. Gong, “Designing double freeform optical surfaces for controlling both irradiance and wavefront,” Opt. Express 21(23), 28693–28701 (2013).

[Crossref]

Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56(33), 9308–9314 (2017).

[Crossref]

Z. Feng, B. D. Froese, and R. Liang, “Freeform illumination optics construction following an optimal transport map,” Appl. Opt. 55(16), 4301–4306 (2016).

[Crossref]

Z. Feng, B. D. Froese, C.-Y. Huang, D. Ma, and R. Liang, “Creating unconventional geometric beams with large depth of field using double freeform-surface optics,” Appl. Opt. 54(20), 6277–6281 (2015).

[Crossref]

B. D. Froese and A. M. Oberman, “Convergent filtered schemes for the monge–ampére partial differential equation,” SIAM J. on Numer. Analysis 51(1), 423–444 (2013).

[Crossref]

V. Galindo, “Design of dual-reflector antennas with arbitrary phase and amplitude distributions,” IEEE Trans. Antennas Propag. 12(4), 403–408 (1964).

[Crossref]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. computer vision 60(3), 225–240 (2004).

K. Desnijder, P. Hanselaer, and Y. Meuret, “Ray mapping method for off-axis and non-paraxial freeform illumination lens design,” Opt. Lett. 44(4), 771–774 (2019).

[Crossref]

K. Desnijder, P. Hanselaer, and Y. Meuret, “Flexible design method for freeform lenses with an arbitrary lens contour,” Opt. Lett. 42(24), 5238–5241 (2017).

[Crossref]

F. M. Dickey, S. C. Holswade, T. E. Lizotte, and D. L. Shealy, Laser Beam Shaping Applications (Taylor Francis Group, 2006).

F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).

C. Prins, R. Beltman, J. ten Thije Boonkkamp, W. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the monge-ampere equation,” SIAM J. on Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

J. L. Kreuzer, “Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface,” (1969). US Patent 3,476,463.

Y. Zhang, R. Wu, P. Liu, Z. Zheng, H. Li, and X. Liu, “Double freeform surfaces design for laser beam shaping with monge–ampère equation method,” Opt. Commun. 331, 297–305 (2014).

[Crossref]

C. Gannon and R. Liang, “Ray mapping with surface information for freeform illumination design,” Opt. Express 25(8), 9426–9434 (2017).

[Crossref]

Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56(33), 9308–9314 (2017).

[Crossref]

Z. Feng, B. D. Froese, and R. Liang, “Freeform illumination optics construction following an optimal transport map,” Appl. Opt. 55(16), 4301–4306 (2016).

[Crossref]

Z. Feng, B. D. Froese, C.-Y. Huang, D. Ma, and R. Liang, “Creating unconventional geometric beams with large depth of field using double freeform-surface optics,” Appl. Opt. 54(20), 6277–6281 (2015).

[Crossref]

Y. Zhang, R. Wu, P. Liu, Z. Zheng, H. Li, and X. Liu, “Double freeform surfaces design for laser beam shaping with monge–ampère equation method,” Opt. Commun. 331, 297–305 (2014).

[Crossref]

Y. Zhang, R. Wu, P. Liu, Z. Zheng, H. Li, and X. Liu, “Double freeform surfaces design for laser beam shaping with monge–ampère equation method,” Opt. Commun. 331, 297–305 (2014).

[Crossref]

F. M. Dickey, S. C. Holswade, T. E. Lizotte, and D. L. Shealy, Laser Beam Shaping Applications (Taylor Francis Group, 2006).

S. Wei, Z. Zhu, Z. Fan, Y. Yan, and D. Ma, “Multi-surface catadioptric freeform lens design for ultra-efficient off-axis road illumination,” Opt. Express 27(12), A779–A789 (2019).

[Crossref]

Z. Feng, B. D. Froese, C.-Y. Huang, D. Ma, and R. Liang, “Creating unconventional geometric beams with large depth of field using double freeform-surface optics,” Appl. Opt. 54(20), 6277–6281 (2015).

[Crossref]

K. Desnijder, P. Hanselaer, and Y. Meuret, “Ray mapping method for off-axis and non-paraxial freeform illumination lens design,” Opt. Lett. 44(4), 771–774 (2019).

[Crossref]

K. Desnijder, P. Hanselaer, and Y. Meuret, “Flexible design method for freeform lenses with an arbitrary lens contour,” Opt. Lett. 42(24), 5238–5241 (2017).

[Crossref]

D. A. Bykov, L. L. Doskolovich, A. A. Mingazov, E. A. Bezus, and N. L. Kazanskiy, “Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions,” Opt. Express 26(21), 27812–27825 (2018).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]

B. D. Froese and A. M. Oberman, “Convergent filtered schemes for the monge–ampére partial differential equation,” SIAM J. on Numer. Analysis 51(1), 423–444 (2013).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

V. Oliker, L. L. Doskolovich, and D. A. Bykov, “Beam shaping with a plano-freeform lens pair,” Opt. Express 26(15), 19406–19419 (2018).

[Crossref]

V. Oliker, “Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport,” Arch. Ration. Mech. Anal. 201(3), 1013–1045 (2011).

[Crossref]

V. Oliker, “On design of free-form refractive beam shapers, sensitivity to figure error, and convexity of lenses,” J. Opt. Soc. Am. A 25(12), 3067–3076 (2008).

[Crossref]

V. Oliker, “Optical design of freeform two-mirror beam-shaping systems,” J. Opt. Soc. Am. A 24(12), 3741–3752 (2007).

[Crossref]

C. Prins, R. Beltman, J. ten Thije Boonkkamp, W. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the monge-ampere equation,” SIAM J. on Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

M. M. Sulman, J. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the monge–ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

D. L. Shealy and S.-H. Chao, “Geometric optics-based design of laser beam shapers,” Opt. Eng. 42(11), 3123–3139 (2003).

[Crossref]

P. W. Rhodes and D. L. Shealy, “Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis,” Appl. Opt. 19(20), 3545–3553 (1980).

[Crossref]

F. M. Dickey, S. C. Holswade, T. E. Lizotte, and D. L. Shealy, Laser Beam Shaping Applications (Taylor Francis Group, 2006).

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with l 2 monge-kantorovich theory for the monge–ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]

M. M. Sulman, J. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the monge–ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. computer vision 60(3), 225–240 (2004).

C. Prins, R. Beltman, J. ten Thije Boonkkamp, W. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the monge-ampere equation,” SIAM J. on Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

C. Prins, R. Beltman, J. ten Thije Boonkkamp, W. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the monge-ampere equation,” SIAM J. on Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

Z. Feng, D. Cheng, and Y. Wang, “Iterative wavefront tailoring to simplify freeform optical design for prescribed irradiance,” Opt. Lett. 44(9), 2274–2277 (2019).

[Crossref]

Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56(33), 9308–9314 (2017).

[Crossref]

M. M. Sulman, J. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the monge–ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

S. Chang, R. Wu, L. An, and Z. Zheng, “Design beam shapers with double freeform surfaces to form a desired wavefront with prescribed illumination pattern by solving a monge-ampère type equation,” J. Opt. 18(12), 125602 (2016).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with l 2 monge-kantorovich theory for the monge–ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]

Y. Zhang, R. Wu, P. Liu, Z. Zheng, H. Li, and X. Liu, “Double freeform surfaces design for laser beam shaping with monge–ampère equation method,” Opt. Commun. 331, 297–305 (2014).

[Crossref]

Y. Zhang, R. Wu, P. Liu, Z. Zheng, H. Li, and X. Liu, “Double freeform surfaces design for laser beam shaping with monge–ampère equation method,” Opt. Commun. 331, 297–305 (2014).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with l 2 monge-kantorovich theory for the monge–ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]

S. Chang, R. Wu, L. An, and Z. Zheng, “Design beam shapers with double freeform surfaces to form a desired wavefront with prescribed illumination pattern by solving a monge-ampère type equation,” J. Opt. 18(12), 125602 (2016).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with l 2 monge-kantorovich theory for the monge–ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]

Y. Zhang, R. Wu, P. Liu, Z. Zheng, H. Li, and X. Liu, “Double freeform surfaces design for laser beam shaping with monge–ampère equation method,” Opt. Commun. 331, 297–305 (2014).

[Crossref]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. computer vision 60(3), 225–240 (2004).

M. M. Sulman, J. Williams, and R. D. Russell, “An efficient approach for the numerical solution of the monge–ampère equation,” Appl. Numer. Math. 61(3), 298–307 (2011).

[Crossref]

Z. Feng, B. D. Froese, C.-Y. Huang, D. Ma, and R. Liang, “Creating unconventional geometric beams with large depth of field using double freeform-surface optics,” Appl. Opt. 54(20), 6277–6281 (2015).

[Crossref]

Z. Feng, B. D. Froese, and R. Liang, “Freeform illumination optics construction following an optimal transport map,” Appl. Opt. 55(16), 4301–4306 (2016).

[Crossref]

C. Bösel, N. G. Worku, and H. Gross, “Ray-mapping approach in double freeform surface design for collimated beam shaping beyond the paraxial approximation,” Appl. Opt. 56(13), 3679–3688 (2017).

[Crossref]

Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56(33), 9308–9314 (2017).

[Crossref]

B. R. Frieden, “Lossless conversion of a plane laser wave to a plane wave of uniform irradiance,” Appl. Opt. 4(11), 1400–1403 (1965).

[Crossref]

P. W. Rhodes and D. L. Shealy, “Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis,” Appl. Opt. 19(20), 3545–3553 (1980).

[Crossref]

J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a gaussian to a flattop beam,” Appl. Opt. 39(30), 5488–5499 (2000).

[Crossref]

V. Oliker, “Designing freeform lenses for intensity and phase control of coherent light with help from geometry and mass transport,” Arch. Ration. Mech. Anal. 201(3), 1013–1045 (2011).

[Crossref]

V. Galindo, “Design of dual-reflector antennas with arbitrary phase and amplitude distributions,” IEEE Trans. Antennas Propag. 12(4), 403–408 (1964).

[Crossref]

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, “Optimal mass transport for registration and warping,” Int. J. computer vision 60(3), 225–240 (2004).

S. Chang, R. Wu, L. An, and Z. Zheng, “Design beam shapers with double freeform surfaces to form a desired wavefront with prescribed illumination pattern by solving a monge-ampère type equation,” J. Opt. 18(12), 125602 (2016).

[Crossref]

Y. Zhang, R. Wu, P. Liu, Z. Zheng, H. Li, and X. Liu, “Double freeform surfaces design for laser beam shaping with monge–ampère equation method,” Opt. Commun. 331, 297–305 (2014).

[Crossref]

D. L. Shealy and S.-H. Chao, “Geometric optics-based design of laser beam shapers,” Opt. Eng. 42(11), 3123–3139 (2003).

[Crossref]

H. Ma, Z. Liu, P. Jiang, X. Xu, and S. Du, “Improvement of galilean refractive beam shaping system for accurately generating near-diffraction-limited flattop beam with arbitrary beam size,” Opt. Express 19(14), 13105–13117 (2011).

[Crossref]

Z. Feng, L. Huang, G. Jin, and M. Gong, “Designing double freeform optical surfaces for controlling both irradiance and wavefront,” Opt. Express 21(23), 28693–28701 (2013).

[Crossref]

R. Wu, Y. Zhang, M. M. Sulman, Z. Zheng, P. Benítez, and J. C. Miñano, “Initial design with l 2 monge-kantorovich theory for the monge–ampère equation method in freeform surface illumination design,” Opt. Express 22(13), 16161–16177 (2014).

[Crossref]

C. Bösel and H. Gross, “Ray mapping approach for the efficient design of continuous freeform surfaces,” Opt. Express 24(13), 14271–14282 (2016).

[Crossref]

C. Gannon and R. Liang, “Ray mapping with surface information for freeform illumination design,” Opt. Express 25(8), 9426–9434 (2017).

[Crossref]

L. L. Doskolovich, A. A. Mingazov, D. A. Bykov, E. S. Andreev, and E. A. Bezus, “Variational approach to calculation of light field eikonal function for illuminating a prescribed region,” Opt. Express 25(22), 26378–26392 (2017).

[Crossref]

V. Oliker, L. L. Doskolovich, and D. A. Bykov, “Beam shaping with a plano-freeform lens pair,” Opt. Express 26(15), 19406–19419 (2018).

[Crossref]

L. L. Doskolovich, D. A. Bykov, E. S. Andreev, E. A. Bezus, and V. Oliker, “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems,” Opt. Express 26(19), 24602–24613 (2018).

[Crossref]

D. A. Bykov, L. L. Doskolovich, A. A. Mingazov, E. A. Bezus, and N. L. Kazanskiy, “Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions,” Opt. Express 26(21), 27812–27825 (2018).

[Crossref]

S. Wei, Z. Zhu, Z. Fan, Y. Yan, and D. Ma, “Multi-surface catadioptric freeform lens design for ultra-efficient off-axis road illumination,” Opt. Express 27(12), A779–A789 (2019).

[Crossref]

K. Desnijder, P. Hanselaer, and Y. Meuret, “Ray mapping method for off-axis and non-paraxial freeform illumination lens design,” Opt. Lett. 44(4), 771–774 (2019).

[Crossref]

Z. Feng, D. Cheng, and Y. Wang, “Iterative wavefront tailoring to simplify freeform optical design for prescribed irradiance,” Opt. Lett. 44(9), 2274–2277 (2019).

[Crossref]

K. Desnijder, P. Hanselaer, and Y. Meuret, “Flexible design method for freeform lenses with an arbitrary lens contour,” Opt. Lett. 42(24), 5238–5241 (2017).

[Crossref]

L. Casetti, “Efficient symplectic algorithms for numerical simulations of hamiltonian flows,” Phys. Scr. 51(1), 29–34 (1995).

[Crossref]

B. D. Froese and A. M. Oberman, “Convergent filtered schemes for the monge–ampére partial differential equation,” SIAM J. on Numer. Analysis 51(1), 423–444 (2013).

[Crossref]

C. Prins, R. Beltman, J. ten Thije Boonkkamp, W. IJzerman, and T. W. Tukker, “A least-squares method for optimal transport using the monge-ampere equation,” SIAM J. on Sci. Comput. 37(6), B937–B961 (2015).

[Crossref]

J. L. Kreuzer, “Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface,” (1969). US Patent 3,476,463.

F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).

F. M. Dickey, S. C. Holswade, T. E. Lizotte, and D. L. Shealy, Laser Beam Shaping Applications (Taylor Francis Group, 2006).